Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 439
Filter
1.
J Am Heart Assoc ; 13(14): e033232, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38958128

ABSTRACT

BACKGROUND: Thoracic aortic aneurysm (TAA) is associated with significant morbidity and mortality. Although individuals with family histories of TAA often undergo clinical molecular genetic testing, adults with nonsyndromic TAA are not typically evaluated for genetic causes. We sought to understand the genetic contribution of both germline and somatic mosaic variants in a cohort of adult individuals with nonsyndromic TAA at a single center. METHODS AND RESULTS: One hundred eighty-one consecutive patients <60 years who presented with nonsyndromic TAA at the Massachusetts General Hospital underwent deep (>500×) targeted sequencing across 114 candidate genes associated with TAA and its related functional pathways. Samples from 354 age- and sex-matched individuals without TAA were also sequenced, with a 2:1 matching. We found significant enrichments for germline (odds ratio [OR], 2.44, P=4.6×10-6 [95% CI, 1.67-3.58]) and also somatic mosaic variants (OR, 4.71, P=0.026 [95% CI, 1.20-18.43]) between individuals with and without TAA. Likely genetic causes were present in 24% with nonsyndromic TAA, of which 21% arose from germline variants and 3% from somatic mosaic alleles. The 3 most frequently mutated genes in our cohort were FLNA (encoding Filamin A), NOTCH3 (encoding Notch receptor 3), and FBN1 (encoding Fibrillin-1). There was increased frequency of both missense and loss of function variants in TAA individuals. CONCLUSIONS: Likely contributory dominant acting genetic variants were found in almost one quarter of nonsyndromic adults with TAA. Our findings suggest a more extensive genetic architecture to TAA than expected and that genetic testing may improve the care and clinical management of adults with nonsyndromic TAA.


Subject(s)
Aortic Aneurysm, Thoracic , Genetic Predisposition to Disease , Germ-Line Mutation , Mosaicism , Humans , Male , Female , Aortic Aneurysm, Thoracic/genetics , Aortic Aneurysm, Thoracic/diagnosis , Adult , Middle Aged , Receptor, Notch3/genetics , Fibrillin-1/genetics , Case-Control Studies , Phenotype , Filamins/genetics , Risk Factors , High-Throughput Nucleotide Sequencing , Adipokines
2.
Gene ; 927: 148702, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-38880187

ABSTRACT

BACKGROUND: Clear cell renal cell carcinoma (ccRCC) remains a deadly disease with a poor prognosis. Here, we identified the ETS homologous factor (EHF) and its target Filamin-B (FLNB) as molecules related to immune evasion in ccRCC. We also explored the upstream modifier that manipulates EHF in ccRCC. DESIGN: Cell proliferation and apoptosis assay, wound healing assay, and Transwell assay were designed to analyze the effects of EHF or FLNB knockdown on the biological activity of ccRCC cells. The growth of differently treated ccRCC cells was assessed by orthotopic tumors. ccRCC cells with different treatments were co-cultured with macrophages, and the role of the lysine-specific demethylase 5B (KDM5B)/EHF/FLNB axis on macrophage polarization or ccRCC progression was characterized by detecting the expression of M2 macrophage markers in the co-culture system or tumor tissues of tumor-bearing mice. RESULTS: The expression of EHF and FLNB was higher, while KDM5B was lower in HK2 cells than in ccRCC cells. EHF overexpression inhibited the biological behavior of ccRCC cells and tumor growth in mice. EHF activated FLNB transcription. Knockdown of FLNB supported the biological activity of ccRCC cells and tumor growth and reversed M2 macrophage polarization in tumor tissues of mice in the presence of EHF. KDM5B inhibited EHF expression by H3K4me3 demethylation, and EHF knockdown potentiated M2 macrophage polarization and tumor growth in vivo repressed by KDM5B knockdown. CONCLUSIONS: KDM5B inhibited the expression of EHF by repressing H3K4me3 modification and the transcription of FLNB by EHF to promote immune evasion and progression of ccRCC.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Filamins , Jumonji Domain-Containing Histone Demethylases , Kidney Neoplasms , Transcription Factors , Animals , Humans , Mice , Apoptosis , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , Cell Line, Tumor , Filamins/metabolism , Filamins/genetics , Gene Expression Regulation, Neoplastic , Jumonji Domain-Containing Histone Demethylases/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , Macrophages/metabolism , Mice, Nude , Nuclear Proteins , Repressor Proteins , Transcription Factors/genetics , Transcription Factors/metabolism
3.
PLoS Genet ; 20(6): e1011101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38905299

ABSTRACT

Filamins are mechanosensitive actin crosslinking proteins that organize the actin cytoskeleton in a variety of shapes and tissues. In muscles, filamin crosslinks actin filaments from opposing sarcomeres, the smallest contractile units of muscles. This happens at the Z-disc, the actin-organizing center of sarcomeres. In flies and vertebrates, filamin mutations lead to fragile muscles that appear ruptured, suggesting filamin helps counteract muscle rupturing during muscle contractions by providing elastic support and/or through signaling. An elastic region at the C-terminus of filamin is called the mechanosensitive region and has been proposed to sense and counteract contractile damage. Here we use molecularly defined mutants and microscopy analysis of the Drosophila indirect flight muscles to investigate the molecular details by which filamin provides cohesion to the Z-disc. We made novel filamin mutations affecting the C-terminal region to interrogate the mechanosensitive region and detected three Z-disc phenotypes: dissociation of actin filaments, Z-disc rupture, and Z-disc enlargement. We tested a constitutively closed filamin mutant, which prevents the elastic changes in the mechanosensitive region and results in ruptured Z-discs, and a constitutively open mutant which has the opposite elastic effect on the mechanosensitive region and gives rise to enlarged Z-discs. Finally, we show that muscle contraction is required for Z-disc rupture. We propose that filamin senses myofibril damage by elastic changes in its mechanosensory region, stabilizes the Z-disc, and counteracts contractile damage at the Z-disc.


Subject(s)
Drosophila Proteins , Drosophila melanogaster , Filamins , Muscle Contraction , Mutation , Myofibrils , Animals , Actin Cytoskeleton/metabolism , Actin Cytoskeleton/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Filamins/metabolism , Filamins/genetics , Mechanotransduction, Cellular/genetics , Muscle Contraction/genetics , Muscle Contraction/physiology , Myofibrils/metabolism , Myofibrils/genetics , Phenotype , Sarcomeres/metabolism , Sarcomeres/genetics
4.
Neurobiol Dis ; 198: 106558, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38852754

ABSTRACT

Periventricular nodular heterotopia (PNH), the most common brain malformation diagnosed in adulthood, is characterized by the presence of neuronal nodules along the ventricular walls. PNH is mainly associated with mutations in the FLNA gene - encoding an actin-binding protein - and patients often develop epilepsy. However, the molecular mechanisms underlying the neuronal failure still remain elusive. It has been hypothesized that dysfunctional cortical circuitry, rather than ectopic neurons, may explain the clinical manifestations. To address this issue, we depleted FLNA from cortical pyramidal neurons of a conditional Flnaflox/flox mice by timed in utero electroporation of Cre recombinase. We found that FLNA regulates dendritogenesis and spinogenesis thus promoting an appropriate excitatory/inhibitory inputs balance. We demonstrated that FLNA modulates RAC1 and cofilin activity through its interaction with the Rho-GTPase Activating Protein 24 (ARHGAP24). Collectively, we disclose an uncharacterized role of FLNA and provide strong support for neural circuit dysfunction being a consequence of FLNA mutations.


Subject(s)
Cerebral Cortex , Filamins , rac1 GTP-Binding Protein , Animals , Mice , Actin Depolymerizing Factors/metabolism , Cerebral Cortex/metabolism , Filamins/metabolism , Filamins/genetics , GTPase-Activating Proteins/metabolism , GTPase-Activating Proteins/genetics , Mice, Transgenic , Neurogenesis/physiology , Neurons/metabolism , Neuropeptides/metabolism , Neuropeptides/genetics , Periventricular Nodular Heterotopia/genetics , Periventricular Nodular Heterotopia/metabolism , Periventricular Nodular Heterotopia/pathology , Pyramidal Cells/metabolism , rac1 GTP-Binding Protein/metabolism , rac1 GTP-Binding Protein/genetics
5.
Int J Mol Sci ; 25(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38892455

ABSTRACT

Arrhythmogenic cardiomyopathy (ACM) is an inherited myocardial disease at risk of sudden death. Genetic testing impacts greatly in ACM diagnosis, but gene-disease associations have yet to be determined for the increasing number of genes included in clinical panels. Genetic variants evaluation was undertaken for the most relevant non-desmosomal disease genes. We retrospectively studied 320 unrelated Italian ACM patients, including 243 cases with predominant right-ventricular (ARVC) and 77 cases with predominant left-ventricular (ALVC) involvement, who did not carry pathogenic/likely pathogenic (P/LP) variants in desmosome-coding genes. The aim was to assess rare genetic variants in transmembrane protein 43 (TMEM43), desmin (DES), phospholamban (PLN), filamin c (FLNC), cadherin 2 (CDH2), and tight junction protein 1 (TJP1), based on current adjudication guidelines and reappraisal on reported literature data. Thirty-five rare genetic variants, including 23 (64%) P/LP, were identified in 39 patients (16/243 ARVC; 23/77 ALVC): 22 FLNC, 9 DES, 2 TMEM43, and 2 CDH2. No P/LP variants were found in PLN and TJP1 genes. Gene-based burden analysis, including P/LP variants reported in literature, showed significant enrichment for TMEM43 (3.79-fold), DES (10.31-fold), PLN (117.8-fold) and FLNC (107-fold). A non-desmosomal rare genetic variant is found in a minority of ARVC patients but in about one third of ALVC patients; as such, clinical decision-making should be driven by genes with robust evidence. More than two thirds of non-desmosomal P/LP variants occur in FLNC.


Subject(s)
Arrhythmogenic Right Ventricular Dysplasia , Humans , Arrhythmogenic Right Ventricular Dysplasia/genetics , Female , Male , Adult , Middle Aged , Membrane Proteins/genetics , Cadherins/genetics , Desmosomes/genetics , Desmosomes/metabolism , Genetic Predisposition to Disease , Genetic Variation , Filamins/genetics , Retrospective Studies , Italy , Calcium-Binding Proteins/genetics , Antigens, CD/genetics
6.
Aging (Albany NY) ; 16(9): 8198-8216, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38738994

ABSTRACT

Disulfidptosis, a newly recognized cell death triggered by disulfide stress, has garnered attention for its potential role in osteoporosis (OP) pathogenesis. Although sulfide-related proteins are reported to regulate the balance of bone metabolism in OP, the precise involvement of disulfidptosis regulators remains elusive. Herein, leveraging the GSE56815 dataset, we conducted an analysis to delineate disulfidptosis-associated diagnostic clusters and immune landscapes in OP. Subsequently, vertebral bone tissues obtained from OP patients and controls were subjected to RNA sequencing (RNA-seq) for the validation of key disulfidptosis gene expression. Our analysis unveiled seven significant disulfidptosis regulators, including FLNA, ACTB, PRDX1, SLC7A11, NUBPL, OXSM, and RAC1, distinguishing OP samples from controls. Furthermore, employing a random forest model, we identified four diagnostic disulfidptosis regulators including FLNA, SLC7A11, NUBPL, and RAC1 potentially predictive of OP risk. A nomogram model integrating these four regulators was constructed and validated using the GSE35956 dataset, demonstrating promising utility in clinical decision-making, as affirmed by decision curve analysis. Subsequent consensus clustering analysis stratified OP samples into two different disulfidptosis subgroups (clusters A and B) using significant disulfidptosis regulators, with cluster B exhibiting higher disulfidptosis scores and implicating monocyte immunity, closely linked to osteoclastogenesis. Notably, RNA-seq analysis corroborated the expression patterns of two disulfidptosis modulators, PRDX1 and OXSM, consistent with bioinformatics predictions. Collectively, our study sheds light on disulfidptosis patterns, offering potential markers and immunotherapeutic avenues for future OP management.


Subject(s)
Osteoporosis , Sequence Analysis, RNA , rac1 GTP-Binding Protein , Humans , Osteoporosis/genetics , Osteoporosis/immunology , rac1 GTP-Binding Protein/genetics , rac1 GTP-Binding Protein/metabolism , Filamins/genetics , Female , Amino Acid Transport System y+/genetics , Amino Acid Transport System y+/metabolism , Nomograms , Male , Peroxiredoxins
7.
J Am Heart Assoc ; 13(10): e030467, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38761081

ABSTRACT

BACKGROUND: Many cardiomyopathy-associated FLNC pathogenic variants are heterozygous truncations, and FLNC pathogenic variants are associated with arrhythmias. Arrhythmia triggers in filaminopathy are incompletely understood. METHODS AND RESULTS: We describe an individual with biallelic FLNC pathogenic variants, p.Arg650X and c.970-4A>G, with peripartum cardiomyopathy and ventricular arrhythmias. We also describe clinical findings in probands with FLNC variants including Val2715fs87X, Glu2458Serfs71X, Phe106Leu, and c.970-4A>G with hypertrophic and dilated cardiomyopathy, atrial fibrillation, and ventricular tachycardia. Induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) were generated. The FLNC truncation, Arg650X/c.970-4A>G, showed a marked reduction in filamin C protein consistent with biallelic loss of function mutations. To assess loss of filamin C, gene editing of a healthy control iPSC line was used to generate a homozygous FLNC disruption in the actin binding domain. Because filamin C has been linked to protein quality control, we assessed the necessity of filamin C in iPSC-CMs for response to the proteasome inhibitor bortezomib. After exposure to low-dose bortezomib, FLNC-null iPSC-CMs showed an increase in the chaperone proteins BAG3, HSP70 (heat shock protein 70), and HSPB8 (small heat shock protein B8) and in the autophagy marker LC3I/II. FLNC null iPSC-CMs had prolonged electric field potential, which was further prolonged in the presence of low-dose bortezomib. FLNC null engineered heart tissues had impaired function after low-dose bortezomib. CONCLUSIONS: FLNC pathogenic variants associate with a predisposition to arrhythmias, which can be modeled in iPSC-CMs. Reduction of filamin C prolonged field potential, a surrogate for action potential, and with bortezomib-induced proteasome inhibition, reduced filamin C led to greater arrhythmia potential and impaired function.


Subject(s)
Filamins , Proteostasis , Filamins/genetics , Filamins/metabolism , Humans , Female , Induced Pluripotent Stem Cells/metabolism , Arrhythmias, Cardiac/genetics , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/physiopathology , Arrhythmias, Cardiac/etiology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Cardiomyopathies/genetics , Cardiomyopathies/metabolism , Cardiomyopathies/physiopathology , Male , Adult , Mutation , Bortezomib/pharmacology
8.
J Basic Clin Physiol Pharmacol ; 35(3): 181-187, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38743867

ABSTRACT

OBJECTIVES: Genetic disorders involved in skeleton system arise due to the disturbance in skeletal development, growth and homeostasis. Filamin B is an actin binding protein which is large dimeric protein which cross link actin cytoskeleton filaments into dynamic structure. A single nucleotide changes in the FLNB gene causes spondylocarpotarsal synostosis syndrome, a rare bone disorder due to which the fusion of carpels and tarsals synostosis occurred along with fused vertebrae. In the current study we investigated a family residing in north-western areas of Pakistan. METHODS: The whole exome sequencing of proband was performed followed by Sanger sequencing of all family members of the subject to validate the variant segregation within the family. Bioinformatics tools were utilized to assess the pathogenicity of the variant. RESULTS: Whole Exome Sequencing revealed a novel variant (NM_001457: c.209C>T and p.Pro70Leu) in the FLNB gene which was homozygous missense mutation in the FLNB gene. The variant was further validated and visualized by Sanger sequencing and protein structure studies respectively as mentioned before. CONCLUSIONS: The findings have highlighted the importance of the molecular diagnosis in SCT (spondylocarpotarsal synostosis syndrome) for genetic risk counselling in consanguineous families.


Subject(s)
Exome Sequencing , Filamins , Synostosis , Humans , Synostosis/genetics , Filamins/genetics , Male , Female , Pedigree , Scoliosis/genetics , Scoliosis/congenital , Abnormalities, Multiple/genetics , Mutation, Missense , Pakistan , Homozygote , Lumbar Vertebrae/abnormalities , Musculoskeletal Diseases , Thoracic Vertebrae/abnormalities
10.
Stem Cell Res ; 77: 103409, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583294

ABSTRACT

Filamin C (FLNC) is a highly important actin crosslinker and multi-adaptor protein in striated skeletal and cardiac muscle. Mutations have been linked to a range of cardiomyopathy types. Here, we generated induced pluripotent stem cells (iPSC) from a patient with dilated cardiomyopathy (DCM) harboring a new, unique heterozygous FLNC mutation p.R2187P. From this patient-specific iPSC line, a corresponding isogenic control line was created by CRISPR/Cas9 genome editing. Both, the patient-specific and isogenic-control iPSC maintained full pluripotency, genomic integrity, and in vitro differentiation capacity. All iPSC lines differentiate into iPSC-cardiomyocytes, hence providing the possibility to study the pathogenesis of FLNC-mediated DCM further.


Subject(s)
CRISPR-Cas Systems , Cardiomyopathy, Dilated , Filamins , Induced Pluripotent Stem Cells , Humans , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , CRISPR-Cas Systems/genetics , Induced Pluripotent Stem Cells/metabolism , Filamins/genetics , Filamins/metabolism , Mutation , Cell Differentiation , Cell Line , Male
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 556-560, 2024 May 10.
Article in Chinese | MEDLINE | ID: mdl-38684300

ABSTRACT

OBJECTIVE: To analyze the clinical phenotype and genetic basis of a Chinese pedigree affected with Otopalatodigital syndrome type 1 (OPD1). METHODS: A pedigree which was evaluated at the Department of Endocrinology, General Hospital of the Central Theater Command on December 3, 2020 was selected as the study subject. Clinical phenotype and genetic features of the proband were analyzed. Whole exome sequencing was employed to screen for genetic variants in the proband, and Sanger sequencing was used to verify the candidate variants in the proband's mother, uncle, maternal aunt, and paternal aunt. Pathogenicity analysis was also conducted for the candidate variants. RESULTS: The proband, a 16-year-old male, had shown distinctive facial features including mildly prominent eyebrows, down-slanting palpebral fissures, hypertelorism, and depressed nasal bridge. Additionally, he had clubbing of bilateral thumbs and big toes, and central type diabetes insipidus. Genetic sequencing revealed that he has harbored a heterozygous c.586C>T (p.R196W) missense variant of the FLNA gene (NM_001110556.2), which was also carried by his mother and uncle. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), this variant was classified as likely pathogenic (PM1+PM2_Supporting+PP2+PP3+PS4 Supporting). CONCLUSION: The heterozygous c.586C>T (p.R196W) variant of the FLNA gene probably underlay the pathogenesis in this OPD1 family. The central type diabetes insipidus in the proband may represent a newly discovered phenotype of OPD1. Above finding has contributed crucial information for the comprehensive understanding of the clinical manifestations and pathogenic mechanisms of OPD1.


Subject(s)
Filamins , Pedigree , Phenotype , Adolescent , Female , Humans , Male , China , East Asian People/genetics , Exome Sequencing , Filamins/genetics , Mutation, Missense
12.
Leg Med (Tokyo) ; 69: 102438, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38547641

ABSTRACT

Forensic pathologists are frequently asked to investigate cases of sudden death (SD), and identifying the cause of death can be of particular importance, especially where it may be necessary to perform family screening among the relatives of the victim. A multidisciplinary approach inclusive of genetic analysis is therefore strongly recommended. According to forensic practice, arrhythmogenic cardiomyopathy (ACM) is a well-known cause of SD. However, cases of SD caused by a left ventricular pattern of ACM diagnosed at autopsy are rarely reported in the literature. We present the case of an apparently healthy, 37-year-old male found dead at his home. At autopsy, multiple foci of epicardial and mid-wall fibrous and fibro-adipose tissue were observed within the left ventricle and, to a lesser extent, within the interventricular septum. Toxicology was negative, whereas a filamin C truncating mutation was detected through genetic analysis. To our knowledge, this is the first instance of arrhythmogenic left ventricular cardiomyopathy being diagnosed at autopsy.


Subject(s)
Filamins , Mutation , Humans , Male , Adult , Filamins/genetics , Autopsy , Arrhythmogenic Right Ventricular Dysplasia/genetics , Heart Ventricles/pathology , Forensic Pathology/methods , Death, Sudden, Cardiac/etiology
13.
BMJ Case Rep ; 17(3)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38453218

ABSTRACT

A late adolescent primigravida was found to have a fetus with a cystic hygroma and significant shortening of the limbs on first-trimester ultrasound. She underwent chorionic villus sampling with normal microarray result. In the early second trimester, the fetus was found to have the absence of all four limbs and a thorough skeletal dysplasia workup was pursued, identifying a variant in the FLNB gene (c.62C>G). The patient underwent termination of pregnancy. The care of this patient was expedited by first-trimester sonographic evidence of limb abnormalities enabling timely clinical management.


Subject(s)
Fetal Diseases , Lymphangioma, Cystic , Osteochondrodysplasias , Pregnancy , Female , Adolescent , Humans , Fetal Diseases/genetics , Pregnancy Trimester, First , Ultrasonography , Mutation , Ultrasonography, Prenatal , Filamins/genetics
14.
Epilepsia ; 65(5): 1451-1461, 2024 May.
Article in English | MEDLINE | ID: mdl-38491957

ABSTRACT

OBJECTIVE: The contribution of somatic variants to epilepsy has recently been demonstrated, particularly in the etiology of malformations of cortical development. The aim of this study was to determine the diagnostic yield of somatic variants in genes that have been previously associated with a somatic or germline epilepsy model, ascertained from resected brain tissue from patients with multidrug-resistant focal epilepsy. METHODS: Forty-two patients were recruited across three categories: (1) malformations of cortical development, (2) mesial temporal lobe epilepsy with hippocampal sclerosis, and (3) nonlesional focal epilepsy. Participants were subdivided based on histopathology of the resected brain. Paired blood- and brain-derived DNA samples were sequenced using high-coverage targeted next generation sequencing to high depth (585× and 1360×, respectively). Variants were identified using Genome Analysis ToolKit (GATK4) MuTect-2 and confirmed using high-coverage Amplicon-EZ sequencing. RESULTS: Sequence data on 41 patients passed quality control. Four somatic variants were validated following amplicon sequencing: within CBL, ALG13, MTOR, and FLNA. The diagnostic yield across 41 patients was 10%, 9% in mesial temporal lobe epilepsy with hippocampal sclerosis and 20% in malformations of cortical development. SIGNIFICANCE: This study provides novel insights into the etiology of mesial temporal lobe epilepsy with hippocampal sclerosis, highlighting a potential pathogenic role of somatic variants in CBL and ALG13. We also report candidate diagnostic somatic variants in FLNA in focal cortical dysplasia, while providing further insight into the importance of MTOR and related genes in focal cortical dysplasia. This work demonstrates the potential molecular diagnostic value of variants in both germline and somatic epilepsy genes.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , Hippocampus , Sclerosis , Humans , Epilepsy, Temporal Lobe/genetics , Epilepsy, Temporal Lobe/pathology , Hippocampus/pathology , Sclerosis/genetics , Sclerosis/pathology , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/etiology , Drug Resistant Epilepsy/pathology , Female , Male , Adult , Young Adult , Adolescent , Malformations of Cortical Development/genetics , Malformations of Cortical Development/complications , Malformations of Cortical Development/pathology , Child , Filamins/genetics , Middle Aged , Child, Preschool , Genetic Variation/genetics , Hippocampal Sclerosis
15.
Steroids ; 205: 109380, 2024 May.
Article in English | MEDLINE | ID: mdl-38311094

ABSTRACT

Triple-negative breast cancer is a rare but highly heterogeneous breast cancer subtype with a limited choice of specific treatments. Chemotherapy remains the only efficient treatment, but its side effects and the development of resistance consolidate the urgent need to discover new targets. In TNBC, filamin A expression correlates to grade and TNM stage. Accordingly, this protein could constitute a new target for this BC subtype. Even if most of the data indicates its direct involvement in cancer progression, some contrasting results underline the need to deepen the studies. To elucidate a possible function of this protein as a TNBC marker, we summarized the main characteristic of filamin A and its involvement in physiological and pathological processes such as cancer. Lastly, we scrutinized its actions in triple-negative breast cancer and highlighted the need to increase the number of studies useful to better clarify the role of this versatile protein as a marker and target in TNBC, alone or in "collaboration" with other proteins with a relevant role in this BC subgroup.


Subject(s)
Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Filamins/genetics
16.
Cells ; 13(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38334670

ABSTRACT

Truncating mutations in filamin C (FLNC) are associated with dilated cardiomyopathy and arrhythmogenic cardiomyopathy. FLNC is an actin-binding protein and is known to interact with transmembrane and structural proteins; hence, the ablation of FLNC in cardiomyocytes is expected to dysregulate cell adhesion, cytoskeletal organization, sarcomere structural integrity, and likely nuclear function. Our previous study showed that the transcriptional profiles of FLNC homozygous deletions in human pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are highly comparable to the transcriptome profiles of hiPSC-CMs from patients with FLNC truncating mutations. Therefore, in this study, we used CRISPR-Cas-engineered hiPSC-derived FLNC knockout cardiac myocytes as a model of FLNC cardiomyopathy to determine pathogenic mechanisms and to examine structural changes caused by FLNC deficiency. RNA sequencing data indicated the significant upregulation of focal adhesion signaling and the dysregulation of thin filament genes in FLNC-knockout (FLNCKO) hiPSC-CMs compared to isogenic hiPSC-CMs. Furthermore, our findings suggest that the complete loss of FLNC in cardiomyocytes led to cytoskeletal defects and the activation of focal adhesion kinase. Pharmacological inhibition of PDGFRA signaling using crenolanib (an FDA-approved drug) reduced focal adhesion kinase activation and partially normalized the focal adhesion signaling pathway. The findings from this study suggest the opportunity in repurposing FDA-approved drug as a therapeutic strategy to treat FLNC cardiomyopathy.


Subject(s)
Cardiomyopathies , Filamins , Induced Pluripotent Stem Cells , Humans , Cardiomyopathies/metabolism , Filamins/genetics , Filamins/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Induced Pluripotent Stem Cells/metabolism , Myocytes, Cardiac/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Sarcomeres/metabolism , Signal Transduction
17.
Int J Cardiol ; 401: 131849, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38360096

ABSTRACT

BACKGROUND: Variants in Filamin-C (FLNC) have been associated with various hereditary cardiomyopathies. Recent literature reports a prevalence of sudden cardiac death (SCD) of 13-25% among carriers of truncating-variants, with mean age of 42±15 years for first SCD event. This study reports two familial cases of SCD and the results of cascade screening of their large family. METHODS: Molecular-autopsy of the SCD victims revealed a novel truncating-variant in the FLNC gene (chr 7:128496880 [hg19]; NM_001458.5; c.7467_7474del; p.(Ser2490fs)). We screened thirty-two family members following genetic counseling, and variant carriers underwent a comprehensive workup followed by consultation with a cardiologist with expertise in the genetics of cardiac diseases. RESULTS: Seventeen variant carriers were identified: ages between 9 and 85 (mean 47±26). Fifteen underwent clinical evaluation. To date, none of the identified carriers has had major adverse events. In evaluated patients, ECG showed right-axis deviation in 60% (n = 9). Holter recorded frequent premature ventricular contractions (PVCs) (991±2030 per 24 h) in 33% (n = 5) with 4 patients having polymorphic PVC morphology. Three carriers had echocardiographic evidence of mild left-ventricular (LV) systolic dysfunction and another with mild LV dilatation. Cardiac magnetic-resonance (CMR) exhibited late­gadolinium-enhancement in 10 out of 11 exams, mainly in the mid-myocardium and sub-epicardium, frequently involving the septum and the inferior-lateral wall. CONCLUSION: This large FLNC truncating variant carrier family exhibits high cardiomyopathy penetrance, best diagnosed by CMR, with variable clinical expressions. These findings present a challenge in SCD prevention management and underscoring the imperative for better risk stratification measures.


Subject(s)
Cardiomyopathies , Ventricular Premature Complexes , Humans , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Mutation/genetics , Filamins/genetics , Cardiomyopathies/genetics , Myocardium , Death, Sudden, Cardiac
18.
J Virol ; 98(3): e0148523, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38412044

ABSTRACT

Vaccinia virus (VACV) is a large DNA virus that encodes scores of proteins that modulate the host immune response. VACV protein C4 is one such immunomodulator known to inhibit the activation of both the NF-κB signaling cascade and the DNA-PK-mediated DNA sensing pathway. Here, we show that the N-terminal region of C4, which neither inhibits NF-κB nor mediates interaction with DNA-PK, still contributes to virus virulence. Furthermore, this domain interacts directly and with high affinity to the C-terminal domain of filamin B (FLNB). FLNB is a large actin-binding protein that stabilizes the F-actin network and is implicated in other cellular processes. Deletion of FLNB from cells results in larger VACV plaques and increased infectious viral yield, indicating that FLNB restricts VACV spread. These data demonstrate that C4 has a new function that contributes to virulence and engages the cytoskeleton. Furthermore, we show that the cytoskeleton performs further previously uncharacterized functions during VACV infection. IMPORTANCE: Vaccinia virus (VACV), the vaccine against smallpox and monkeypox, encodes many proteins to counteract the host immune response. Investigating these proteins provides insights into viral immune evasion mechanisms and thereby indicates how to engineer safer and more immunogenic VACV-based vaccines. Here, we report that the N-terminal domain of VACV protein C4 interacts directly with the cytoskeletal protein filamin B (FLNB), and this domain of C4 contributes to virus virulence. Furthermore, VACV replicates and spreads better in cells lacking FLNB, thus demonstrating that FLNB has antiviral activity. VACV utilizes the cytoskeleton for movement within and between cells; however, previous studies show no involvement of C4 in VACV replication or spread. Thus, C4 associates with FLNB for a different reason, suggesting that the cytoskeleton has further uncharacterized roles during virus infection.


Subject(s)
Filamins , Vaccinia virus , Viral Proteins , Humans , Cell Line , DNA/metabolism , Filamins/genetics , Filamins/metabolism , NF-kappa B/metabolism , Vaccinia/virology , Vaccinia virus/pathogenicity , Vaccinia virus/physiology , Viral Proteins/genetics , Viral Proteins/metabolism , Animals
19.
Stem Cell Res ; 76: 103320, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38309149

ABSTRACT

Here we introduce the human induced pluripotent stem cell lines (hiPSCs), HIMRi004-A and HIMRi005-A from dermal fibroblasts of a 48-year-old female (HIMRi004-A) carrying missense mutation that translate to the first described filamin C isoform p.W2710X and from a 56-year-old female (HIMRi005-A) carrying a recently described mutation in the same domain p.Y2704X. Both lines are generated via lentiviral expression of OCT4, SOX2, KLF4 and c-MYC. The lines display a typical embryonic stem cell-like morphology, express pluripotency markers, retain a normal karyotype (46, XX) and have the differentiation capacity in all three germ layers. The two lines can be used to elucidate the pathomechanisms of FLNC myofibrillar myopathies and to develop novel therapeutic options.


Subject(s)
Induced Pluripotent Stem Cells , Female , Humans , Middle Aged , Cell Differentiation/genetics , Cell Line , Dimerization , Fibroblasts/metabolism , Filamins/genetics , Filamins/metabolism , Induced Pluripotent Stem Cells/metabolism , Kruppel-Like Factor 4 , Mutation/genetics
20.
BMJ Case Rep ; 17(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167413

ABSTRACT

Cardiac sarcoidosis is an unpredictable, rare and potentially lethal condition whereby patients are exposed to sudden cardiac death. However, despite sophisticated imaging techniques and the need for careful multidisciplinary team assessment and management, the contribution from genetic mutations is uncertain. Hence, the case describes a novel observation of a patient who possessed both a filamin C mutation and cardiac sarcoidosis. The case highlights the need for detailed dedicated investigation and highlights the need for the consideration of genetic screening within patients with cardiac sarcoidosis.


Subject(s)
Cardiomyopathies , Sarcoidosis , Ventricular Dysfunction, Left , Humans , Cardiomyopathies/complications , Cardiomyopathies/genetics , Cardiomyopathies/diagnosis , Filamins/genetics , Prognosis , Sarcoidosis/complications , Sarcoidosis/genetics , Sarcoidosis/diagnosis , Ventricular Dysfunction, Left/diagnostic imaging , Death, Sudden, Cardiac/prevention & control , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL