Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 272(Pt 2): 132940, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38848845

ABSTRACT

This study reports on the design and synthesis of hypoxia responsive nanoparticles (HRNPs) composed of methoxy polyethylene glycol-4,4 dicarboxylic azolinker-chitosan (mPEG-Azo-chitosan) as ideal drug delivery platform for Fingolimod (FTY720, F) delivery to achieve selective and highly enhanced TNBC therapy in vivo. Herein, HRNPs with an average size of 49.86 nm and a zeta potential of +3.22 mV were synthetized, which after PEG shedding can shift into a more positively-charged NPs (+30.3 mV), possessing self-activation ability under hypoxia situation in vitro, 2D and 3D culture. Treatment with lower doses of HRNPs@F significantly reduced MDA-MB-231 microtumor size to 15 %, induced apoptosis by 88 % within 72 h and reduced highly-proliferative 4 T1 tumor weight by 87.66 % vs. ∼30 % for Fingolimod compared to the untreated controls. To the best of our knowledge, this is the first record for development of hypoxia-responsive chitosan-based NPs with desirable physicochemical properties, and selective self-activation potential to generate highly-charged nanosized tumor-penetrating chitosan NPs. This formulation is capable of localized delivery of Fingolimod to the tumor core, minimizing its side effects while boosting its anti-tumor potential for eradication of TNBC solid tumors.


Subject(s)
Chitosan , Fingolimod Hydrochloride , Nanoparticles , Chitosan/chemistry , Chitosan/analogs & derivatives , Nanoparticles/chemistry , Humans , Animals , Cell Line, Tumor , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/administration & dosage , Mice , Female , Drug Carriers/chemistry , Apoptosis/drug effects , Polyethylene Glycols/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology
2.
Int J Nanomedicine ; 19: 4081-4101, 2024.
Article in English | MEDLINE | ID: mdl-38736654

ABSTRACT

Purpose: Spinal cord injury (SCI) is an incurable and disabling event that is accompanied by complex inflammation-related pathological processes, such as the production of excessive reactive oxygen species (ROS) by infiltrating inflammatory immune cells and their release into the extracellular microenvironment, resulting in extensive apoptosis of endogenous neural stem cells. In this study, we noticed the neuroregeneration-promoting effect as well as the ability of the innovative treatment method of FTY720-CDs@GelMA paired with NSCs to increase motor function recovery in a rat spinal cord injury model. Methods: Carbon dots (CDs) and fingolimod (FTY720) were added to a hydrogel created by chemical cross-linking GelMA (FTY720-CDs@GelMA). The basic properties of FTY720-CDs@GelMA hydrogels were investigated using TEM, SEM, XPS, and FTIR. The swelling and degradation rates of FTY720-CDs@GelMA hydrogels were measured, and each group's ability to scavenge reactive oxygen species was investigated. The in vitro biocompatibility of FTY720-CDs@GelMA hydrogels was assessed using neural stem cells. The regeneration of the spinal cord and recovery of motor function in rats were studied following co-treatment of spinal cord injury using FTY720-CDs@GelMA hydrogel in combination with NSCs, utilising rats with spinal cord injuries as a model. Histological and immunofluorescence labelling were used to determine the regeneration of axons and neurons. The recovery of motor function in rats was assessed using the BBB score. Results: The hydrogel boosted neurogenesis and axonal regeneration by eliminating excess ROS and restoring the regenerative environment. The hydrogel efficiently contained brain stem cells and demonstrated strong neuroprotective effects in vivo by lowering endogenous ROS generation and mitigating ROS-mediated oxidative stress. In a follow-up investigation, we discovered that FTY720-CDs@GelMA hydrogel could dramatically boost NSC proliferation while also promoting neuronal regeneration and synaptic formation, hence lowering cavity area. Conclusion: Our findings suggest that the innovative treatment of FTY720-CDs@GelMA paired with NSCs can effectively improve functional recovery in SCI patients, making it a promising therapeutic alternative for SCI.


Subject(s)
Fingolimod Hydrochloride , Hydrogels , Neural Stem Cells , Rats, Sprague-Dawley , Spinal Cord Injuries , Animals , Spinal Cord Injuries/drug therapy , Spinal Cord Injuries/therapy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/administration & dosage , Neural Stem Cells/drug effects , Hydrogels/chemistry , Hydrogels/pharmacology , Hydrogels/administration & dosage , Rats , Recovery of Function/drug effects , Reactive Oxygen Species/metabolism , Quantum Dots/chemistry , Disease Models, Animal , Female , Spinal Cord/drug effects
3.
Bioorg Chem ; 147: 107412, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38696845

ABSTRACT

The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.


Subject(s)
Antineoplastic Agents , DNA Topoisomerases, Type I , Fingolimod Hydrochloride , Molecular Docking Simulation , Topoisomerase I Inhibitors , Humans , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/chemical synthesis , DNA Topoisomerases, Type I/metabolism , DNA Topoisomerases, Type I/chemistry , Topoisomerase I Inhibitors/pharmacology , Topoisomerase I Inhibitors/chemistry , Topoisomerase I Inhibitors/chemical synthesis , Molecular Structure , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects , Molecular Dynamics Simulation , MCF-7 Cells
4.
Adv Mater ; 36(21): e2311803, 2024 May.
Article in English | MEDLINE | ID: mdl-38519052

ABSTRACT

Neuroinflammation has emerged as a major concern in ischemic stroke therapy because it exacebates neurological dysfunction and suppresses neurological recovery after ischemia/reperfusion. Fingolimod hydrochloride (FTY720) is an FDA-approved anti-inflammatory drug which exhibits potential neuroprotective effects in ischemic brain parenchyma. However, delivering a sufficient amount of FTY720 through the blood-brain barrier into brain lesions without inducing severe cardiovascular side effects remains challenging. Here, a neutrophil membrane-camouflaged polyprodrug nanomedicine that can migrate into ischemic brain tissues and in situ release FTY720 in response to elevated levels of reactive oxygen species. This nanomedicine delivers 15.2-fold more FTY720 into the ischemic brain and significantly reduces the risk of cardiotoxicity and infection compared with intravenously administered free drug. In addition, single-cell RNA-sequencing analysis identifies that the nanomedicine attenuates poststroke inflammation by reprogramming microglia toward anti-inflammatory phenotypes, which is realized via modulating Cebpb-regulated activation of NLRP3 inflammasomes and secretion of CXCL2 chemokine. This study offers new insights into the design and fabrication of polyprodrug nanomedicines for effective suppression of inflammation in ischemic stroke therapy.


Subject(s)
Fingolimod Hydrochloride , Ischemic Stroke , Nanomedicine , Neutrophils , Animals , Ischemic Stroke/drug therapy , Mice , Neutrophils/drug effects , Neutrophils/metabolism , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Inflammation/drug therapy , Prodrugs/chemistry , Prodrugs/pharmacology , Prodrugs/therapeutic use , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Cell Membrane/metabolism , Cell Membrane/drug effects , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology , Reactive Oxygen Species/metabolism , Microglia/drug effects , Microglia/metabolism , Humans , Neuroprotective Agents/chemistry , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use
5.
Curr Top Med Chem ; 24(3): 192-200, 2024.
Article in English | MEDLINE | ID: mdl-38185890

ABSTRACT

FTY720 is an analog of sphingosine-1-phosphate (S1P) derived from the ascomycete Cordyceps sinensis. As a new immunosuppressant, FTY720 is widely used to treat multiple sclerosis. FTY720 binds to the S1P receptor after phosphorylation, thereby exerting immunosuppressive effects. The nonphosphorylated form of FTY720 can induce cell apoptosis, enhance chemotherapy sensitivity, and inhibit tumor metastasis of multiple tumors by inhibiting SPHK1 (sphingosine kinase 1) and activating PP2A (protein phosphatase 2A) and various cell death pathways. FTY720 can induce neutrophil extracellular traps to neutralize and kill pathogens in vitro, thus exerting anti- infective effects. At present, a series of FTY720 derivatives, which have pharmacological effects such as anti-tumor and alleviating airway hyperresponsiveness, have been developed through structural modification. This article reviews the pharmacological effects of FTY720 and its derivatives.


Subject(s)
Fingolimod Hydrochloride , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/chemistry , Humans , Animals , Immunosuppressive Agents/pharmacology , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Neoplasms/drug therapy , Neoplasms/pathology , Apoptosis/drug effects
6.
Eur J Med Chem ; 250: 115182, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36758307

ABSTRACT

Multiple sclerosis (MS) is a neurological disease that leads to severe physical and cognitive disabilities. Drugs used in the treatment of MS vary from small synthetic molecules to large macromolecules such as antibodies. Sphingosine 1-phosphate receptor modulators are frequently used for the treatment of MS. These medicines prevent the egress of lymphocytes from secondary lymphoid organs leading to immune system suppression. Currently, four S1PR modulators are on the market and several potential drug candidates are in clinical trials for the treatment of MS. These compounds differ in chemical structure, adverse effects, and efficacy points of view. The current article reviews the latest studies on S1PR1 modulators and compares them with other MS drugs in terms of efficacy, tolerability, and safety. A special focus was dedicated to discussing the structure-activity relationships of these compounds and performing a three-dimensional quantitative structure-activity relationship (3D-QSAR) analysis to gain better insight into the ligand-receptor interaction mode.


Subject(s)
Multiple Sclerosis , Humans , Multiple Sclerosis/drug therapy , Fingolimod Hydrochloride/pharmacology , Fingolimod Hydrochloride/therapeutic use , Fingolimod Hydrochloride/chemistry , Structure-Activity Relationship , Antibodies , Receptors, Lysosphingolipid , Sphingosine-1-Phosphate Receptors
7.
Future Microbiol ; 16: 1289-1301, 2021 11.
Article in English | MEDLINE | ID: mdl-34689597

ABSTRACT

COVID-19, caused by the SARS-CoV-2 outbreak, has resulted in a massive global health crisis. Bioactive molecules extracted or synthesized using starting material obtained from marine species, including griffithsin, plitidepsin and fingolimod are in clinical trials to evaluate their anti-SARS-CoV-2 and anti-HIV efficacies. The current review highlights the anti-SARS-CoV-2 potential of marine-derived phytochemicals explored using in silico, in vitro and in vivo models. The current literature suggests that these molecules have the potential to bind with various key drug targets of SARS-CoV-2. In addition, many of these agents have anti-inflammatory and immunomodulatory potentials and thus could play a role in the attenuation of COVID-19 complications. Overall, these agents may play a role in the management of COVID-19, but further preclinical and clinical studies are still required to establish their role in the mitigation of the current viral pandemic.


Subject(s)
Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Oceans and Seas , SARS-CoV-2/drug effects , Alkaloids/pharmacology , Anti-Inflammatory Agents , Antiviral Agents/chemistry , Depsipeptides , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Humans , Lectins , Marine Biology , Molecular Docking Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Phycocyanin/pharmacology , Phytochemicals , Plant Lectins/chemistry , Plant Lectins/pharmacology , Polyphenols/pharmacology , Polysaccharides/pharmacology , Seaweed , Sesquiterpenes/pharmacology
8.
Adv Sci (Weinh) ; 8(20): e2101526, 2021 10.
Article in English | MEDLINE | ID: mdl-34436822

ABSTRACT

Reperfusion injury is still a major challenge that impedes neuronal survival in ischemic stroke. However, the current clinical treatments are remained on single pathological process, which are due to lack of comprehensive neuroprotective effects. Herein, a macrophage-disguised honeycomb manganese dioxide (MnO2 ) nanosphere loaded with fingolimod (FTY) is developed to salvage the ischemic penumbra. In particular, the biomimetic nanoparticles can accumulate actively in the damaged brain via macrophage-membrane protein-mediated recognition with cell adhesion molecules that are overexpressed on the damaged vascular endothelium. MnO2 nanosphere can consume excess hydrogen peroxide (H2 O2 ) and convert it into desiderated oxygen (O2 ), and can be decomposed in acidic lysosome for cargo release, so as to reduce oxidative stress and promote the transition of M1 microglia to M2 type, eventually reversing the proinflammatory microenvironment and reinforcing the survival of damaged neuron. This biomimetic nanomedicine raises new strategy for multitargeted combined treatment of ischemic stroke.


Subject(s)
Inflammation/drug therapy , Ischemic Stroke/drug therapy , Nanoparticles/chemistry , Neurons/drug effects , Oxidative Stress/drug effects , Animals , Cell Line, Tumor , Cellular Microenvironment/drug effects , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Humans , Hydrogen Peroxide/pharmacology , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Ischemic Stroke/genetics , Ischemic Stroke/metabolism , Ischemic Stroke/pathology , Lysosomes/drug effects , Lysosomes/genetics , Macrophages/drug effects , Manganese Compounds/chemistry , Manganese Compounds/pharmacology , Nanospheres/chemistry , Neurons/pathology , Neuroprotection , Oxides/chemistry , Oxides/pharmacology , Oxygen/metabolism , Primary Cell Culture , Rats , Reperfusion Injury/drug therapy , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Reperfusion Injury/pathology
9.
Neuropharmacology ; 186: 108464, 2021 03 15.
Article in English | MEDLINE | ID: mdl-33460688

ABSTRACT

The sphingosine 1-phosphate (S1P) receptor 1 (S1P1) has emerged as a therapeutic target for the treatment of multiple sclerosis (MS). Fingolimod (FTY720) is the first functional antagonist of S1P1 that has been approved for oral treatment of MS. Previously, we have developed novel butterfly derivatives of FTY720 that acted similar to FTY720 in reducing disease symptoms in a mouse model of experimental autoimmune encephalomyelitis (EAE). In this study, we have synthesized a piperidine derivative of the oxazolo-oxazole compounds, denoted ST-1505, and its ring-opened analogue ST-1478, and characterised their in-vitro and in-vivo functions. Notably, the 3-piperidinopropyloxy moiety resembles a structural motif of pitolisant, a drug with histamine H3R antagonistic/inverse agonist activity approved for the treatment of narcolepsy. Both novel compounds exerted H3R affinities, and in addition, ST-1505 was characterised as a dual S1P1+3 agonist, whereas ST-1478 was a dual S1P1+5 agonist. Both multitargeting compounds were also active in mice and reduced the lymphocyte numbers as well as diminished disease symptoms in the mouse model of MS. The effect of ST-1478 was dependent on SK-2 activity suggesting that it is a prodrug like FTY720, but with a more selective S1P receptor activation profile, whereas ST-1505 is a fully active drug even in the absence of SK-2. In summary, these data suggest that the well soluble piperidine derivatives ST-1505 and ST-1478 hold promise as novel drugs for the treatment of MS and other autoimmune or inflammatory diseases, and by their H3R antagonist potency, they might additionally improve cognitive impairment during disease.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental/prevention & control , Fingolimod Hydrochloride/administration & dosage , Histamine H3 Antagonists/administration & dosage , Multiple Sclerosis/prevention & control , Neuroprotective Agents/administration & dosage , Sphingosine-1-Phosphate Receptors/agonists , Animals , CHO Cells , Cricetinae , Cricetulus , Encephalomyelitis, Autoimmune, Experimental/metabolism , Female , Fingolimod Hydrochloride/analogs & derivatives , Fingolimod Hydrochloride/chemistry , Histamine H3 Antagonists/chemistry , Histamine H3 Antagonists/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Multiple Sclerosis/metabolism , Neuroprotective Agents/chemistry , Protein Structure, Secondary , Sphingosine-1-Phosphate Receptors/metabolism
10.
Artif Cells Nanomed Biotechnol ; 49(1): 83-95, 2021 Dec.
Article in English | MEDLINE | ID: mdl-33438446

ABSTRACT

Cancer-targeted drug delivery systems based on nanoparticles (NPs) have been considered promising therapies. In this study, we developed a pH-responsive smart NPs drug delivery system using silk fibroin (SF), selenium nanoparticles (Se NPs), fingolimod (FTY720), and heptapeptide (T7). The prepared FTY720@T7-SF-Se NPs were spheres with an average diameter of 120 nm, which would contribute to the enhanced permeability and retention effects in tumour regions. The encapsulation efficiency (EE) of the FTY720@T7-SF-Se NPs was 71.95 ± 3.81%. The release of FTY720 from the nanocarriers was pH-dependent, and the release of FTY720 was accelerated in an acidic environment. Both in vitro and in vivo studies showed that FTY720@T7-SF-Se NPs had an enhanced cellular uptake selectivity and antitumor activity for thyroid cancer. The bio-distribution study in vivo further demonstrated that FTY720@T7-SF-Se NPs could effectively accumulate in the tumour region, thereby enhancing the ability to kill cancer cells in vivo. In addition, studies of histology and immunohistochemistry showed that FTY720@T7-SF-Se NPs had low toxicity to the major organs of tumour-bearing mice, indicating the prepared NPs has good biocompatibility in vivo. These results suggest that the tumour-targeted NPs delivery system (FTY720@T7-SF-Se NPs) has great potential as a new tool for thyroid cancer therapy.


Subject(s)
Antineoplastic Agents , Fibroins , Fingolimod Hydrochloride , Metal Nanoparticles , Selenium , Thyroid Neoplasms , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , BALB 3T3 Cells , Cell Line, Tumor , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Female , Fibroins/chemistry , Fibroins/pharmacokinetics , Fibroins/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacokinetics , Fingolimod Hydrochloride/pharmacology , Humans , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Metal Nanoparticles/therapeutic use , Mice , Mice, Inbred BALB C , Mice, Nude , Rats , Selenium/chemistry , Selenium/pharmacokinetics , Selenium/pharmacology , Thyroid Neoplasms/drug therapy , Thyroid Neoplasms/metabolism , Thyroid Neoplasms/pathology , Xenograft Model Antitumor Assays
11.
Drugs ; 81(2): 207-231, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33289881

ABSTRACT

Lysophospholipids are a class of bioactive lipid molecules that produce their effects through various G protein-coupled receptors (GPCRs). Sphingosine 1-phosphate (S1P) is perhaps the most studied lysophospholipid and has a role in a wide range of physiological and pathophysiological events, via signalling through five distinct GPCR subtypes, S1PR1 to S1PR5. Previous and continuing investigation of the S1P pathway has led to the approval of three S1PR modulators, fingolimod, siponimod and ozanimod, as medicines for patients with multiple sclerosis (MS), as well as the identification of new S1PR modulators currently in clinical development, including ponesimod and etrasimod. S1PR modulators have complex effects on S1PRs, in some cases acting both as traditional agonists as well as agonists that produce functional antagonism. S1PR subtype specificity influences their downstream effects, including aspects of their benefit:risk profile. Some S1PR modulators are prodrugs, which require metabolic modification such as phosphorylation via sphingosine kinases, resulting in different pharmacokinetics and bioavailability, contrasting with others that are direct modulators of the receptors. The complex interplay of these characteristics dictates the clinical profile of S1PR modulators. This review focuses on the S1P pathway, the characteristics and S1PR binding profiles of S1PR modulators, the mechanisms of action of S1PR modulators with regard to immune cell trafficking and neuroprotection in MS, together with a summary of the clinical effectiveness of the S1PR modulators that are approved or in late-stage development for patients with MS. Sphingosine 1-phosphate receptor modulator therapy for multiple sclerosis: differential downstream receptor signalling and clinical profile effects (MP4 65540 kb).


Subject(s)
Azetidines/pharmacology , Benzyl Compounds/pharmacology , Fingolimod Hydrochloride/pharmacology , Indans/pharmacology , Multiple Sclerosis/drug therapy , Oxadiazoles/pharmacology , Prodrugs/pharmacology , Sphingosine-1-Phosphate Receptors/agonists , Animals , Azetidines/chemistry , Benzyl Compounds/chemistry , Fingolimod Hydrochloride/chemistry , Humans , Indans/chemistry , Multiple Sclerosis/metabolism , Oxadiazoles/chemistry , Prodrugs/chemistry , Signal Transduction/drug effects , Sphingosine-1-Phosphate Receptors/metabolism
12.
Arch Pharm Res ; 43(10): 1046-1055, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33111965

ABSTRACT

Fingolimod has been evaluated for use as an anticancer agent. However, many steps are required to synthesize fingolimod because of its intricate structure. A fingolimod analogue, N-(4-(2-((4-methoxybenzyl)amino)ethyl)phenyl)heptanamide (MPH), also has anti-cancer effects and is easier to synthesize but is poorly soluble in water. To compensate for its poor water solubility, MPH-loaded polymeric micelles were prepared by thin film hydration method using various polymers and the physicochemical properties of the MPH-loaded micelles such as particle size, drug-loading (DL, %), and encapsulation efficiency (EE, %) were evaluated. A storage stability test was conducted to select the final formulation and the release profile of the MPH-loaded micelles was confirmed by in vitro release assay. MPH-loaded mPEG-b-PLA micelles were selected for further testing based on their stability and physicochemical properties; they were stable for stable for 14 days at 4 °C and 25 °C and for 7 days at 37 °C. They showed anti-cancer efficacy against both A549 and U87 cancer cells. Encapsulation of MPH in polymeric micelles did not decrease the in vitro cytotoxicity of MPH. The findings of this study lay the groundwork for future formulations that enable the effective and stable delivery of poorly water-soluble agents.


Subject(s)
Antineoplastic Agents/pharmacokinetics , Drug Carriers/chemistry , Fingolimod Hydrochloride/pharmacokinetics , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/chemistry , Cell Line, Tumor , Drug Liberation , Drug Screening Assays, Antitumor , Drug Stability , Fingolimod Hydrochloride/administration & dosage , Fingolimod Hydrochloride/analogs & derivatives , Fingolimod Hydrochloride/chemistry , Humans , Micelles , Particle Size , Polymers/chemistry , Solubility , Water/chemistry
13.
J Mater Chem B ; 8(28): 6148-6158, 2020 07 28.
Article in English | MEDLINE | ID: mdl-32568342

ABSTRACT

The addition of osteoimmunology drugs to bone repair materials is beneficial to bone regeneration by regulating the local immune microenvironment. Fingolimod (FTY720) has been reported to be an osteoimmunology drug that promotes osteogenesis. However, there is no ideal biomaterial for the sustained release of FTY720 in the bone defect areas. In the present work, FTY720 loaded mesoporous bioactive glass (FTY720@MBGs) was successfully prepared based on the mesoporous properties of MBGs and electrostatic attraction. FTY720 achieved a sustained release for 7 days. The in vitro study found that FTY720@MBGs could synergistically promote osteogenesis and inhibit osteoclastogenesis due to their ability to promote macrophages toward the M2 phenotype. The in vivo study confirmed that FTY720@MBGs could significantly improve bone regeneration. This study provides new strategies for designing smart cell-instructive biomaterials that can play a role in all bone healing processes from early inflammation to bone reconstruction.


Subject(s)
Bone Regeneration/drug effects , Drug Delivery Systems , Fingolimod Hydrochloride/pharmacology , Immunosuppressive Agents/pharmacology , Osteoclasts/drug effects , Osteogenesis/drug effects , Animals , Cells, Cultured , Fingolimod Hydrochloride/chemical synthesis , Fingolimod Hydrochloride/chemistry , Glass/chemistry , Immunosuppressive Agents/chemical synthesis , Immunosuppressive Agents/chemistry , Macrophages/drug effects , Mesenchymal Stem Cells/drug effects , Mice , Particle Size , Porosity , RAW 264.7 Cells , Rats , Rats, Sprague-Dawley , Surface Properties
14.
Biomed Chromatogr ; 34(6): e4822, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32153027

ABSTRACT

A simple and sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method has been developed and validated for the determination of fingolimod in human blood. The analyte and internal standard fingolimod-d4 were extracted from 300 µl of human blood using protein precipitation coupled with solid-phase extraction method. The chromatographic separation was achieved with a Kinetex biphenyl column (100 × 4.6 mm, 2.6 µm) under isocratic conditions at the flow rate of 0.8 ml/min and column temperature was maintained at 45°C. The detection of analyte and internal standard was carried out by tandem mass spectrometry, operated in positive ion and multiple reaction monitoring acquisition mode. The method was fully validated for its selectivity, precision, accuracy, linearity, stability, detection and quantification limit. The extraction recovery of fingolimod in human blood ranged from 98.39 to 99.54%. The developed method was linear over the concentration range of 5-2500 pg/ml with a detection limit of 1 pg/ml. The developed method was validated and successfully applied for pharmacokinetic study after oral administration of fingolimod capsules.


Subject(s)
Chromatography, Liquid/methods , Fingolimod Hydrochloride/blood , Fingolimod Hydrochloride/pharmacokinetics , Tandem Mass Spectrometry/methods , Adult , Female , Fingolimod Hydrochloride/chemistry , Humans , Limit of Detection , Linear Models , Male , Reproducibility of Results , Solid Phase Extraction , Young Adult
15.
Drug Dev Ind Pharm ; 46(2): 318-328, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31976771

ABSTRACT

Uncontrolled distribution of nanoparticles (NPs) within the body can significantly decrease the efficiency of drug therapy and is considered among the main restrictions of NPs application. The aim of this study was to develop a depot combination delivery system (CDS) containing fingolimod loaded poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) NPs dispersed into a matrix of oleic acid-grafted-aminated alginate (OA-g-AAlg) to minimize the nonspecific biodistribution (BD) of PHBV NPs. OA-g-AAlg was synthesized in two step; First, Alg was aminated by using adipic dihydrazide (ADH). The degree of hyrazide group substitution of Alg was determined by trinitro-benzene-sulfonic acid (TNBS) assay. Second, OA was attached to AAlg through formation of an amide bond. Chemical structure of OA-g-AAlg was confirmed with FTIR and HNMR spectroscopy. Furthermore, rheological properties of OA-g-AAlg with different grafting ratios were evaluated. In-vitro release studies indicated that 47% of fingolimod was released from the CDS within 28 days. Blood and tissue samples were analyzed using liquid chromatography/tandem mass spectrometry following subcutaneous (SC) injection of fingolimod-CDS into Wistar rats. The elimination phase half-life of CDS-fingolimod was significantly higher than that of fingolimod (∼32 d vs. ∼20 h). To investigate the therapeutic efficacy, lymphocyte count was assessed over a 40 day period in Wistar rats. Peripheral blood lymphocyte count decreased from baseline by 27 ± 8% in 2 days after injection. Overall, the designed CDS represented promising results in improving the pharmacokinetic properties of fingolimod. Therefore, we believe that this sustained release formulation has a great potential to be applied to delivery of various therapeutics.


Subject(s)
Alginates/chemistry , Fingolimod Hydrochloride/chemistry , Nanoparticles/chemistry , Polyesters/chemistry , Animals , Delayed-Action Preparations/chemistry , Delayed-Action Preparations/pharmacokinetics , Delayed-Action Preparations/pharmacology , Drug Carriers/chemistry , Drug Delivery Systems/methods , Fingolimod Hydrochloride/pharmacokinetics , Fingolimod Hydrochloride/pharmacology , Hydrophobic and Hydrophilic Interactions , Male , Rats , Rats, Wistar , Tissue Distribution
16.
Commun Biol ; 3(1): 27, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31941999

ABSTRACT

The structural plasticity of G-protein coupled receptors (GPCRs) enables the long-range transmission of conformational changes induced by specific orthosteric site ligands and other pleiotropic factors. Here, we demonstrate that the ligand binding cavity in the sphingosine 1-phosphate receptor S1PR1, a class A GPCR, is in allosteric communication with both the ß-arrestin-binding C-terminal tail, and a receptor surface involved in oligomerization. We show that S1PR1 oligomers are required for full response to different agonists and ligand-specific association with arrestins, dictating the downstream signalling kinetics. We reveal that the active form of the immunomodulatory drug fingolimod, FTY720-P, selectively harnesses both these intramolecular networks to efficiently recruit ß-arrestins in a stable interaction with the receptor, promoting deep S1PR1 internalization and simultaneously abrogating ERK1/2 phosphorylation. Our results define a molecular basis for the efficacy of fingolimod for people with multiple sclerosis, and attest that GPCR signalling can be further fine-tuned by the oligomeric state.


Subject(s)
Allosteric Regulation , Models, Molecular , Protein Conformation , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/chemistry , Cell Line , Cell Membrane/metabolism , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Humans , Kinetics , Phosphorylation , Proprotein Convertases/chemistry , Proprotein Convertases/metabolism , Protein Binding , Protein Multimerization , Protein Transport , Receptors, G-Protein-Coupled/metabolism , Serine Endopeptidases/chemistry , Serine Endopeptidases/metabolism , Signal Transduction , Structure-Activity Relationship , beta-Arrestins/chemistry , beta-Arrestins/metabolism
17.
Bioconjug Chem ; 31(3): 673-684, 2020 03 18.
Article in English | MEDLINE | ID: mdl-31986014

ABSTRACT

Targeting the inability of cancerous cells to adapt to metabolic stress is a promising alternative to conventional cancer chemotherapy. FTY720 (Gilenya), an FDA-approved drug for the treatment of multiple sclerosis, has recently been shown to inhibit cancer progression through the down-regulation of essential nutrient transport proteins, selectively starving cancer cells to death. However, the clinical use of FTY720 for cancer therapy is prohibited because of its capability of inducing immunosuppression (lymphopenia) and bradycardia when phosphorylated upon administration. A prodrug to specifically prevent phosphorylation during circulation, hence avoiding bradycardia and lymphopenia, was synthesized by capping its hydroxyl groups with polyethylene glycol (PEG) via an acid-cleavable ketal linkage. Improved aqueous solubility was also accomplished by PEGylation. The prodrug reduces to fully potent FTY720 upon cellular uptake and induces metabolic stress in cancer cells. Enhanced release of FTY720 at a mildly acidic endosomal pH and the ability to substantially down-regulate cell-surface nutrient transporter proteins in leukemia cells only by an acid-cleaved drug were confirmed. Importantly, the prodrug demonstrated nearly identical efficacy to FTY720 in an animal model of BCR-Abl-driven leukemia without inducing bradycardia or lymphopenia in vivo, highlighting its potential clinical value. The prodrug formulation of FTY720 demonstrates the utility of precisely engineering a drug to avoid undesirable effects by tackling specific molecular mechanisms as well as a financially favorable alternative to new drug development. A multitude of existing cancer therapeutics may be explored for prodrug formulation to avoid specific side effects and preserve or enhance therapeutic efficacy.


Subject(s)
Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Leukemia/drug therapy , Polyethylene Glycols/chemistry , Acetals/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Humans , Hydrogen-Ion Concentration , Leukemia/pathology , Phosphorylation
18.
Acta Biomater ; 91: 209-219, 2019 06.
Article in English | MEDLINE | ID: mdl-31029828

ABSTRACT

Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Patients undergoing cleft palate repair have a high degree of wound healing complications with up to 60% experiencing oronasal fistula (ONF) formation. In this study, we developed a mouse model of hard palate mucosal injury, to study the endogenous injury response during oral cavity wound healing and ONF formation. Immunophenotyping of the inflammatory infiltrate following hard palate injury showed delayed recruitment of non-classical LY6Clo monocytes and failure to resolve inflammation. To induce a pro-regenerative inflammatory response, delivery of FTY720 nanofiber scaffolds following hard palate mucosal injury promoted complete ONF healing and was associated with increased LY6Clo monocytes and pro-regenerative M2 macrophages. Alteration in gene expression with FTY720 delivery included increased Sox2 expression, reduction in pro-inflammatory IL-1, IL-4 and IL-6 and increased pro-regenerative IL-10 expression. Increased keratinocyte proliferation during ONF healing was observed at day 5 following FTY720 delivery. Our results show that local delivery of FTY720 from nanofiber scaffolds in the oral cavity enhances healing of ONF, occurring through multiple immunomodulatory mechanisms. STATEMENT OF SIGNIFICANCE: Wound healing complications occur in up to 60% of patients undergoing cleft palate repair where an oronasal fistula (ONF) develops, allowing food and air to escape from the nose. Using a mouse model of palate mucosal injury, we explored the role of immune cell infiltration during ONF formation. Delivery of FTY720, an immunomodulatory drug, using a nanofiber scaffold into the ONF was able to attract anti-inflammatory immune cells following injury that enhanced the reepithelization process. ONF healing at day 5 following FTY720 delivery was associated with altered inflammatory and epithelial transcriptional gene expression, increased anti-inflammatory immune cell infiltration, and increased proliferation. These findings demonstrate the potential efficacy of immunoregenerative therapies to improve oral cavity wound healing.


Subject(s)
Fingolimod Hydrochloride , Immunomodulation/drug effects , Palate, Hard , Wound Healing , Animals , Cytokines/immunology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Macrophages/immunology , Macrophages/pathology , Mice , Nanofibers/chemistry , Nanofibers/therapeutic use , Palate, Hard/immunology , Palate, Hard/injuries , Palate, Hard/pathology , SOXB1 Transcription Factors/immunology , Wound Healing/drug effects , Wound Healing/immunology
19.
Free Radic Biol Med ; 137: 116-130, 2019 06.
Article in English | MEDLINE | ID: mdl-31035004

ABSTRACT

Fingolimod is one of the few oral drugs available for the treatment of multiple sclerosis (MS), a chronic, inflammatory, demyelinating and neurodegenerative disease. The mechanism of action proposed for this drug is based in the phosphorylation of the molecule to produce its active metabolite fingolimod phosphate (FP) which, in turns, through its interaction with S1P receptors, triggers the functional sequestration of T lymphocytes in lymphoid nodes. On the other hand, part if not most of the damage produced in MS and other neurological disorders seem to be mediated by reactive oxygen species (ROS), and mitochondria is one of the main sources of ROS. In the present work, we have evaluated the anti-oxidant profile of FP in a model of mitochondrial oxidative damage induced by menadione (Vitk3) on neuronal cultures. We provide evidence that incubation of neuronal cells with FP alleviates the Vitk3-induced toxicity, due to a decrease in mitochondrial ROS production. It also decreases regulated cell death triggered by imbalance in oxidative stress (restore values of advanced oxidation protein products and total thiol levels). Also restores mitochondrial function (cytochrome c oxidase activity, mitochondrial membrane potential and oxygen consumption rate) and morphology. Furthermore, increases the expression and activity of protective factors (increases Nrf2, HO1 and Trx2 expression and GST and NQO1 activity), being some of these effects modulated by its interaction with the S1P receptor. FP seems to increase mitochondrial stability and restore mitochondrial dynamics under conditions of oxidative stress, making this drug a potential candidate for the treatment of neurodegenerative diseases other than MS.


Subject(s)
Antioxidants/pharmacology , Dopaminergic Neurons/metabolism , Fingolimod Hydrochloride/pharmacology , Mitochondria/metabolism , Multiple Sclerosis/drug therapy , Sphingosine-1-Phosphate Receptors/metabolism , Animals , Cell Death , Cell Line , Dopaminergic Neurons/pathology , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/therapeutic use , Humans , Lysophospholipids/metabolism , Membrane Potential, Mitochondrial , Mice , Molecular Mimicry , Neuroprotection , Oxidative Stress/drug effects , Oxygen Consumption , Phosphates/chemistry , Reactive Oxygen Species/metabolism , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Vitamin K 3/toxicity
20.
Bioorg Med Chem Lett ; 28(23-24): 3585-3591, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30409535

ABSTRACT

Sphingolipids represent an essential class of lipids found in all eukaryotes, and strongly influence cellular signal transduction. Autoimmune diseases like asthma and multiple sclerosis (MS) are mediated by the sphingosine-1-phosphate receptor 1 (S1P1) to express a variety of symptoms and disease patterns. Inspired by its natural substrate, an array of artificial sphingolipid derivatives has been developed to target this specific G protein-coupled receptor (GPCR) in an attempt to suppress autoimmune disorders. FTY720, also known as fingolimod, is the first oral disease-modifying therapy for MS on the market. In pursuit of improved stability, bioavailability, and efficiency, structural analogues of this initial prodrug have emerged over time. This review covers a brief introduction to the sphingolipid metabolism, the mechanism of action on S1P1, and an updated overview of synthetic sphingosine S1P1 agonists.


Subject(s)
Autoimmune Diseases/pathology , Receptors, Lysosphingolipid/metabolism , Autoimmune Diseases/drug therapy , Autoimmune Diseases/metabolism , Biological Availability , Fingolimod Hydrochloride/chemistry , Fingolimod Hydrochloride/pharmacokinetics , Fingolimod Hydrochloride/therapeutic use , Humans , Immunosuppressive Agents/chemistry , Immunosuppressive Agents/pharmacokinetics , Immunosuppressive Agents/therapeutic use , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Multiple Sclerosis/pathology , Oxadiazoles/chemistry , Oxadiazoles/pharmacokinetics , Oxadiazoles/therapeutic use , Receptors, Lysosphingolipid/agonists , Receptors, Lysosphingolipid/antagonists & inhibitors , Sphingolipids/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...