Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 567
Filter
1.
Brain Behav ; 14(9): e70014, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39295072

ABSTRACT

OBJECTIVE: Anorexia nervosa has the highest mortality rate among psychiatric illnesses. Current treatments remain ineffective for a large fraction of patients. This may be due to unclear mechanisms behind its development and maintenance. Studies exploring the role of the gut microbiome have revealed inconsistent evidence of dysbiosis. This article aims to investigate changes in the gut microbiome, particularly, mean differences in the Firmicutes to Bacteroidetes ratio, in adolescent and adult individuals with anorexia nervosa following inpatient treatment. METHODS: Longitudinal studies investigating gut microbiome composition in inpatient populations of anorexia nervosa before and after treatment were systematically reviewed. Additionally, gut microbiome compositions were characterized in three acute anorexia nervosa inpatients early after admission and after 4-12 weeks of treatment. RESULTS: Review results indicated an increase in the Firmicutes to Bacteroidetes ratio in individuals with anorexia nervosa after treatment. These however did not match values of their healthy counterparts. In the case-series samples, the reverse occurred with samples taken 4 weeks after treatment. In the patient who provided an extra sample 12 weeks after treatment, similar results to the studies included in the review were observed. Furthermore, Firmicutes to Bacteroidetes ratio values in the case-series samples were notably higher in the two patients who had chronic anorexia nervosa. DISCUSSION: Differences in methodologies, small sample sizes, and insufficient data limited the generalizability of the outcomes of the reviewed studies. Results suggest a potentially unique microbiome signature in individuals with chronic anorexia nervosa, which may explain different outcomes in this group of patients.


Subject(s)
Anorexia Nervosa , Bacteroidetes , Firmicutes , Gastrointestinal Microbiome , Inpatients , Anorexia Nervosa/microbiology , Anorexia Nervosa/therapy , Humans , Gastrointestinal Microbiome/physiology , Bacteroidetes/isolation & purification , Firmicutes/isolation & purification , Female , Adult , Adolescent , Young Adult , Dysbiosis/microbiology
2.
BMC Microbiol ; 24(1): 342, 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271995

ABSTRACT

PURPOSE: To determine the association of gut microbiome diversity and sight-threatening diabetic retinopathy (STDR) amongst patients with pre-existing diabetes. METHODS: A cross-sectional study was performed, wherein 54 participants selected in total were placed into cases cohort if diagnosed with STDR and those without STDR but had a diagnosis of diabetes mellitus of at least 10-year duration were taken as controls. Statistical analysis comparing the gut microbial alpha diversity between cases and control groups as well as patients differentiated based on previously hypothesized Bacteroidetes/Firmicutes(B/F) ratio with an optimal cut-off 1.05 to identify patients with STDR were performed. RESULTS: Comparing gut microbial alpha diversity did not show any difference between cases and control groups. However, statistically significant difference was noted amongst patients with B/F ratio ≥1.05 when compared to B/F ratio < 1.05; ACE index [Cut-off < 1.05:773.83 ± 362.73; Cut-off > 1.05:728.03 ± 227.37; p-0.016]; Chao1index [Cut-off < 1.05:773.63 ± 361.88; Cut-off > 1.05:728.13 ± 227.58; p-0.016]; Simpson index [Cut-off < 1.05:0.998 ± 0.001; Cut-off > 1.05:0.997 ± 0.001; p-0.006]; Shannon index [Cut-off < 1.05:6.37 ± 0.49; Cut-off > 1.05:6.10 ± 0.43; p-0.003]. Sub-group analysis showed that cases with B/F ratio ≥ 1.05, divided into proliferative diabetic retinopathy (PDR) and clinically significant macular edema (CSME), showed decreased diversity compared to controls (B/F ratio < 1.05). For PDR, all four diversity indices significantly decreased (p < 0.05). However, for CSME, only Shannon and Simpson indices showed significant decrease in diversity (p < 0.05). CONCLUSIONS: Based on clinical diagnosis, decreasing gut microbial diversity was observed among patients with STDR, although not statistically significant. When utilizing B/F ratio, the decreasing gut microbial diversity in STDR patients seems to be associated due to species richness and evenness in PDR when compared to decreasing species richness in CSME.


Subject(s)
Diabetic Retinopathy , Gastrointestinal Microbiome , Humans , Diabetic Retinopathy/microbiology , Male , Female , Cross-Sectional Studies , Middle Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Adult , Bacteroidetes/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/classification , Aged , Case-Control Studies , Biodiversity , Firmicutes/isolation & purification , Firmicutes/classification , Firmicutes/genetics
3.
Bratisl Lek Listy ; 125(10): 605-611, 2024.
Article in English | MEDLINE | ID: mdl-39344763

ABSTRACT

BACKGROUND: Human milk oligosaccharide (HMO) is a unique component of breastmilk. To date, no study has investigated the correlation between HMO and infant nutritional status particularly through the lens of gut microbiota. Therefore, our study aims to investigate the relationships between 2'-Fucosyllactose (2'-FL) in HMO and Firmicutes/Bacteroidetes (F/B) ratio among stunted infants. METHODS: A case-control study was conducted among 103 mother-infant pairs in Malang City, Indonesia. The quantification of 2'-FL HMO was assessed using High-Performance Liquid Chromatography (HPLC). The F/B ratio was analyzed with real-time poly-chain reaction (RT-PCR). For bivariate analysis, we employed the Spearman correlation and Mann‒Whitney tests, while for multivariate analysis, we utilized multiple linear regression. RESULTS: The findings showed that the stunted nutritional status was detected in 49 out of 103 infants. In this group, 40.81% of mothers of infants with a stunted nutritional status had a secretor-positive status, while all mothers of infants with appropriate nutritional status tested positive for the secretor status (100%). However, the association between maternal secretor status and infant nutritional status was not statistically significant (p>0.05). The average levels of 2'-FL HMO in breast milk were lower in the group with stunted infants compared to non-stunted infants (1.21 mg/L vs 1.40 mg/L). The regression analysis revealed a significant association of 2'-FL HMO levels with the presence of Bacteroidetes and value of the F/B ratio (p>0.05). CONCLUSIONS: The breast milk component 2'-FL HMO significantly influences the gut microbiota of stunted infants. Future research aimed at elucidating the mechanisms by which 2'-FL HMO modulates infant gut microbiota should consider not only concentration and specific bacterial taxa but also intake levels (Tab. 2, Fig. 1, Ref. 37). Text in PDF www.elis.sk Keywords: 2'-fucosyllactose, human milk, oligosaccharide, firmicutes, bacteroidetes, stunting, infant.


Subject(s)
Bacteroidetes , Firmicutes , Milk, Human , Oligosaccharides , Humans , Milk, Human/chemistry , Milk, Human/microbiology , Indonesia , Female , Oligosaccharides/analysis , Oligosaccharides/metabolism , Case-Control Studies , Infant , Bacteroidetes/isolation & purification , Firmicutes/isolation & purification , Trisaccharides/analysis , Male , Adult , Nutritional Status , Gastrointestinal Microbiome , Infant, Newborn
4.
Front Cell Infect Microbiol ; 14: 1439476, 2024.
Article in English | MEDLINE | ID: mdl-39119296

ABSTRACT

Objective: Sclerodermus wasps are important biocontrol agents of a class of wood borers. Bacterial symbionts influence the ecology and biology of their hosts in a variety of ways, including the formation of life-long beneficial or detrimental parasitic infections. However, only a few studies have explored the species and content of the symbionts in the Sclerodermus species. Methods: Here, a high-throughput sequencing study of the V3-V4 region of the 16S ribosomal RNA gene revealed a high level of microbial variety in four Sclerodermus waps, and their diversities and functions were also predicted. Results: The three most prevalent phyla of microorganisms in the sample were Firmicutes, Bacteroides, and Proteus. The KEEG pathways prediction results indicated that the three pathways with the highest relative abundances in the S. sichuanensis species were translation, membrane transport, and nucleotide metabolism. These pathways differed from those observed in S. guani, S. pupariae, and S. alternatusi, which exhibited carbohydrate metabolism, membrane transport, and amino acid metabolism, respectively. Bacteroides were found to be abundant in several species, whereas Wolbachia was the most abundant among S. sichuanensis, with a significant negative correlation between temperature and carriage rate. Conclusions: These results offer insights into the microbial communities associated with the bethylid wasps, which is crucial for understanding how to increase the reproductive capacity of wasps, enhance their parasitic effects, and lower cost in biocontrol.


Subject(s)
RNA, Ribosomal, 16S , Symbiosis , Wasps , Animals , Wasps/microbiology , Wasps/physiology , China , RNA, Ribosomal, 16S/genetics , High-Throughput Nucleotide Sequencing , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Biological Control Agents , Coleoptera/microbiology , Phylogeny , Microbiota , Bacteroides/genetics , Bacteroides/isolation & purification , Bacteroides/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/classification , Wolbachia/genetics , Wolbachia/isolation & purification , Wolbachia/classification , Wolbachia/physiology , Biodiversity
5.
Microb Pathog ; 195: 106887, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39186965

ABSTRACT

This study investigated the impact of wheat processing methods (wheat flour vs wheat pellets) on the growth performance, serum biochemical parameters, and rumen microbiome composition in sheep. Results indicated that feeding of wheat flour resulted in significantly higher terminal weight and average daily gain (P < 0.05) and lower cholesterol and ALP04 levels (P < 0.05) in sheep compared to those fed wheat pellets. Analysis of 16s rDNA high-throughput sequencing data revealed significantly higher microbial richness (Chao1 index) in the rumen of sheep fed wheat flour (P < 0.05), even though the phylum-level composition dominated by Firmicutes, Bacteroidetes, and Proteobacteria was similar in both groups of sheep. Notably, sheep fed wheat flour were found to have a significantly higher relative abundance of Bacteroidetes (P < 0.05). At the genus level, Succinivibrionaceae_UCG-001 and Prevotella_1 were significantly more abundant in the rumen of sheep fed wheat flour (P < 0.05). Correlation analysis identified that both terminal weight and average daily gain were positively correlated with ruminal abundance of Bacteroidetes and Prevotella_1, while ALP04 was negatively correlated with the abundance of these taxa. Functional prediction using PICRUSt2 indicated enrichment of pathways related to the ABC-type glycerol-3-phosphate transport system, and periplasmic components in both wheat flour and pellet fed sheep. Overall, these findings suggest that dietary wheat flour modulates rumen microbiota composition, and improves growth performance in sheep.


Subject(s)
Animal Feed , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Rumen , Triticum , Animals , Rumen/microbiology , Sheep , RNA, Ribosomal, 16S/genetics , Cholesterol/blood , Cholesterol/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Flour , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/classification , Prevotella/genetics , Prevotella/isolation & purification , Alkaline Phosphatase/blood , Alkaline Phosphatase/metabolism , Diet/veterinary , Firmicutes/genetics , Firmicutes/classification , Firmicutes/isolation & purification
6.
Antonie Van Leeuwenhoek ; 117(1): 94, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954064

ABSTRACT

The Aeolian archipelago is known worldwide for its volcanic activity and hydrothermal emissions, of mainly carbon dioxide and hydrogen sulfide. Hydrogen, methane, and carbon monoxide are minor components of these emissions which together can feed large quantities of bacteria and archaea that do contribute to the removal of these notorious greenhouse gases. Here we analyzed the metagenome of samples taken from the Levante bay on Vulcano Island, Italy. Using a gene-centric approach, the hydrothermal vent community appeared to be dominated by Proteobacteria, and Sulfurimonas was the most abundant genus. Metabolic reconstructions highlight a prominent role of formaldehyde oxidation and the reverse TCA cycle in carbon fixation. [NiFe]-hydrogenases seemed to constitute the preferred strategy to oxidize H2, indicating that besides H2S, H2 could be an essential electron donor in this system. Moreover, the sulfur cycle analysis showed a high abundance and diversity of sulfate reduction genes underpinning the H2S production. This study covers the diversity and metabolic potential of the microbial soil community in Levante bay and adds to our understanding of the biogeochemistry of volcanic ecosystems.


Subject(s)
Bacteroidetes , Epsilonproteobacteria , Firmicutes , Proteobacteria , Soil Microbiology , Ecosystem , Italy , Soil/chemistry , Metagenome , Proteobacteria/genetics , Proteobacteria/isolation & purification , Proteobacteria/metabolism , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/metabolism , Epsilonproteobacteria/genetics , Epsilonproteobacteria/isolation & purification , Epsilonproteobacteria/metabolism , Methane/metabolism , Oxidation-Reduction , Carbon/metabolism , Hydrogenase/analysis , Nitrogen/metabolism , Sulfur/metabolism , Iron/metabolism , Arsenic/metabolism
7.
BMC Pediatr ; 24(1): 450, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-38997672

ABSTRACT

BACKGROUND: Neonatal and early-life gut microbiome changes are associated with altered cardiometabolic and immune development. In this study, we explored Cesarean delivery effects on the gut microbiome in our high-risk, under-resourced Bronx, NY population. RESULTS: Fecal samples from the Bronx MomBa Health Study (Bronx MomBa Health Study) were categorized by delivery mode (vaginal/Cesarean) and analyzed via 16 S rRNA gene sequencing at four timepoints over the first two years of life. Bacteroidota organisms, which have been linked to decreased risk for obesity and type 2 diabetes, were relatively reduced by Cesarean delivery, while Firmicutes organisms were increased. Organisms belonging to the Enterococcus genus, which have been tied to aberrant immune cell development, were relatively increased in the Cesarean delivery microbiomes. CONCLUSION: Due to their far-reaching impact on cardiometabolic and immune functions, Cesarean deliveries in high-risk patient populations should be carefully considered.


Subject(s)
Cesarean Section , Feces , Gastrointestinal Microbiome , Humans , Cesarean Section/adverse effects , Female , Infant, Newborn , Feces/microbiology , New York City/epidemiology , Pregnancy , Infant , Male , RNA, Ribosomal, 16S/genetics , Firmicutes/isolation & purification , Enterococcus/isolation & purification , Bacteroidetes/isolation & purification
8.
Diagn Microbiol Infect Dis ; 110(1): 116285, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39018935

ABSTRACT

Parvimonas micra, a gram-positive anaerobic bacterium, has garnered increased attention due to its role in infective endocarditis. We present a challenging prosthetic valve endocarditis caused by Parvimonas micra in a patient with a complex cardiac history involving multiple surgeries. The case highlights the difficulties in diagnosis and treatment, emphasizing the importance of advanced diagnostic techniques, including metagenomics next-generation sequencing (mNGS). Additionally, it underscores the need for heightened vigilance regarding oral symptoms and the potential risk of bacteremia in post-valvular surgery patients. This report contributes to a better understanding of Parvimonas micra-associated endocarditis and its unique characteristics.


Subject(s)
Endocarditis, Bacterial , Firmicutes , Gram-Positive Bacterial Infections , Heart Valve Prosthesis , Prosthesis-Related Infections , Humans , Endocarditis, Bacterial/microbiology , Endocarditis, Bacterial/diagnosis , Endocarditis, Bacterial/drug therapy , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/diagnosis , Prosthesis-Related Infections/drug therapy , Heart Valve Prosthesis/adverse effects , Heart Valve Prosthesis/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/drug therapy , Firmicutes/isolation & purification , Firmicutes/genetics , Male , Anti-Bacterial Agents/therapeutic use , High-Throughput Nucleotide Sequencing , Middle Aged
9.
Front Cell Infect Microbiol ; 14: 1436547, 2024.
Article in English | MEDLINE | ID: mdl-39027136

ABSTRACT

Introduction: In this study, the seasonal differences in the intestinal microbiota of Chinese mitten crab (Eriocheir sinensis) larvae were investigated at different sites in the intertidal zone of the Yangtze River Estuary. Methods: 16S rRNA high-throughput sequencing technology was used to compare and analyze the microbial community structure in the intestines of juvenile crab from different seasons. Results: The results showed that the main microbial phyla in all seasons and sites were Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria, which accounted for 97.1% of the total microbiota. Composition analysis revealed that the relative abundance of Proteobacteria decreased from summer to winter at each station, whereas Bacteroidetes showed the opposite trend. Alpha diversity analysis showed that species richness increased from summer to winter at the upstream site (P < 0.05), but decreased at the downstream site (P < 0.05), with no significant differences observed in other comparisons. Biomarker species analysis showed that juvenile crab exhibited a more specialized microbial community in summer compared with autumn and winter. Co-occurrence network analysis revealed that microbial interaction network complexity was lower in autumn compared with summer and autumn. Functional prediction analysis showed that the microbial community only exhibited seasonal differences in amino acid biosynthesis, cofactor, prosthetic group, electron carrier, and vitamin biosynthesis, aromatic compound degradation, nucleotide and nucleoside degradation, and tricarboxylic acid cycle pathways. Discussion: The results indicated that the microbiota did not significantly differ among sites, and seasonal variation was a main factor influencing the differences in intestinal microbiota of Chinese mitten juvenile crab. Moreover, the microbial community was more complex in summer compared with autumn and winter.


Subject(s)
Brachyura , Estuaries , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Seasons , Animals , Brachyura/microbiology , RNA, Ribosomal, 16S/genetics , China , High-Throughput Nucleotide Sequencing , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Phylogeny , Biodiversity , Larva/microbiology , Bacteroidetes/classification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Proteobacteria/genetics , Proteobacteria/classification , Proteobacteria/isolation & purification , Firmicutes/genetics , Firmicutes/classification , Firmicutes/isolation & purification , DNA, Bacterial/genetics , Rivers/microbiology
10.
Front Cell Infect Microbiol ; 14: 1416884, 2024.
Article in English | MEDLINE | ID: mdl-39055980

ABSTRACT

Background: Parvimonas micra (P. micra) has been identified as a pathogen capable of causing lung abscesses; however, its identification poses challenges due to the specialized culture conditions for anaerobic bacterial isolation. Only a few cases of lung abscesses caused by P. micra infection have been reported. Therefore, we describe the clinical characteristics of lung abscesses due to P. micra based on our case series. Methods: A retrospective analysis was conducted on eight patients who were diagnosed with lung abscesses attributed to P. micra. Detection of P. micra was accomplished through target next-generation sequencing (tNGS). A systematic search of the PubMed database using keywords "lung abscess" and "Parvimonas micra/Peptostreptococcus micros" was performed to review published literature pertaining to similar cases. Results: Among the eight patients reviewed, all exhibited poor oral hygiene, with four presenting with comorbid diabetes. Chest computed tomography (CT) showed high-density mass shadows with necrosis and small cavities in the middle. Bronchoscopic examination revealed purulent sputum and bronchial mucosal inflammation. Thick secretions obstructed the airway, leading to the poor drainage of pus, and the formation of local abscesses leading to irresponsive to antibiotic therapy, which finally protracted recovery time. P. micra was successfully identified in bronchoalveolar lavage fluid (BALF) samples from all eight patients using tNGS; in contrast, sputum and BALF bacterial cultures yielded negative results, with P. micra cultured from only one empyema sample. Following appropriate antibiotic therapy, seven patients recovered. In previously documented cases, favorable outcomes were observed in 77.8% of individuals treated with antibiotics and 22.2% were cured after surgical interventions for P. micra lung abscesses. Conclusions: This study enriches our understanding of the clinical characteristics associated with lung abscesses attributed to P. micra. Importantly, tNGS has emerged as a rapid and effective diagnostic test in scenarios where traditional sputum cultures are negative. Encouragingly, patients with lung abscesses caused by P. micra infection exhibit a favorable prognosis with effective airway clearance and judicious anti-infective management.


Subject(s)
High-Throughput Nucleotide Sequencing , Lung Abscess , Humans , Lung Abscess/microbiology , Lung Abscess/diagnosis , Middle Aged , Male , Female , Aged , Retrospective Studies , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Tomography, X-Ray Computed , Firmicutes/genetics , Firmicutes/isolation & purification , Adult , Anti-Bacterial Agents/therapeutic use
11.
PeerJ ; 12: e17450, 2024.
Article in English | MEDLINE | ID: mdl-38860210

ABSTRACT

Background: Spodoptera frugiperda, the fall armyworm is a destructive invasive pest, and S. litura the tobacco cutworm, is a native species closely related to S. frugiperda. The gut microbiota plays a vital role in insect growth, development, metabolism and immune system. Research on the competition between invasive species and closely related native species has focused on differences in the adaptability of insects to the environment. Little is known about gut symbiotic microbe composition and its role in influencing competitive differences between these two insects. Methods: We used a culture-independent approach targeting the 16S rRNA gene of gut bacteria of 5th instar larvae of S. frugiperda and S. litura. Larvae were reared continuously on maize leaves for five generations. We analyzed the composition, abundance, diversity, and metabolic function of gut microbiomes of S. frugiperda and S. litura larvae. Results: Firmicutes, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in both species. Enterococcus, ZOR0006, Escherichia, Bacteroides, and Lactobacillus were the genera with the highest abundance in S. frugiperda. Enterococcus, Erysipelatoclostridium, ZOR0006, Enterobacter, and Bacteroides had the highest abundance in S. litura. According to α-diversity analysis, the gut bacterial diversity of S. frugiperda was significantly higher than that of S. litura. KEGG analysis showed 15 significant differences in metabolic pathways between S. frugiperda and S. litura gut bacteria, including transcription, cell growth and death, excretory system and circulatory system pathways. Conclusion: In the same habitat, the larvae of S. frugiperda and S. litura showed significant differences in gut bacterial diversity and community composition. Regarding the composition and function of gut bacteria, the invasive species S. frugiperda may have a competitive advantage over S. litura. This study provides a foundation for developing control strategies for S. frugiperda and S. litura.


Subject(s)
Gastrointestinal Microbiome , Larva , RNA, Ribosomal, 16S , Spodoptera , Animals , Gastrointestinal Microbiome/genetics , Spodoptera/microbiology , Spodoptera/genetics , Larva/microbiology , RNA, Ribosomal, 16S/genetics , Proteobacteria/genetics , Proteobacteria/isolation & purification , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Bacteria/genetics , Bacteria/classification , Lactobacillus/genetics , Lactobacillus/isolation & purification , Enterococcus/genetics , Bacteroides/genetics , Symbiosis
12.
Obes Surg ; 34(8): 2835-2843, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38913272

ABSTRACT

BACKGROUND: Bariatric surgery, a significant intervention for obesity, may influence weight loss through changes in gut microbiota, particularly the Firmicutes and Bacteroidetes. This study explores these potential shifts and their metabolic implications. MATERIALS: We conducted a cross-sectional study involving patients who had undergone bariatric surgery. Stool samples were collected at baseline, 3 months, and 6 months post-operation. We performed DNA extraction and quantified the bacterial phyla Firmicutes and Bacteroidetes to assess changes in the gut microbiota over time. RESULTS: Our research revealed a significant alteration in the gut microbiota following bariatric surgery. In diabetic individuals, there was a marked increase in the average number of Firmicutes bacteria at both 3 and 6 months post-operation, compared to pre-surgery levels. In contrast, non-diabetic subjects experienced a notable decrease in Firmicutes during the same timeframe. Regarding Bacteroidetes bacteria, the trend was reversed; diabetic patients showed a significant reduction, while non-diabetics exhibited an increase after the surgery. These findings highlight the dynamic changes in gut microbiota composition associated with bariatric surgery and its potential link to metabolic changes post-operation. CONCLUSION: These findings suggest that obesity alters the gut's microbial composition. The observed bacterial fluctuations, particularly in the dominant Firmicutes and Bacteroidetes groups, are likely contributors to the weight loss experienced post-surgery. This alteration in gut bacteria underscores the complex interplay between microbiota and metabolic health, highlighting potential avenues for therapeutic intervention.


Subject(s)
Bacteroidetes , Bariatric Surgery , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Obesity, Morbid , Weight Loss , Humans , Diabetes Mellitus, Type 2/microbiology , Gastrointestinal Microbiome/physiology , Cross-Sectional Studies , Female , Male , Adult , Middle Aged , Obesity, Morbid/surgery , Obesity, Morbid/microbiology , Bacteroidetes/isolation & purification , Feces/microbiology , Firmicutes/isolation & purification
13.
Microb Pathog ; 193: 106726, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38848931

ABSTRACT

Gut bacterial dysbiosis has been linked to several gastrointestinal diseases, including deadly colorectal cancer (CRC), a leading cause of mortality in cancer patients. However, perturbation in gut bacteriome during colon cancer (CC, devoid of colorectal malignancy) remains poorly explored. Here, 16S rRNA gene amplicon sequencing was carried out for fecal DNA samples targeted to hypervariable V3-V4 region by employing MiSeq platform to explore the gut bacterial community shift in CC patients. While alpha diversity indices predicted high species richness and diversity, beta diversity showed marked gut bacterial compositional dissimilarity in CC versus healthy controls (HC, n = 10 each). We observed a significant (p < 0.05, Wilcoxon Rank-Sum test) emergence of low-abundant anaerobic taxa, including Parvimonas and Peptostreptococcus, in addition to Subdoligranulum, Coprococcus, Holdemanella, Solobacterium, Bilophila, Blautia, Dorea, Moryella and several unidentified taxa, mainly affiliated to Firmicutes, in CC patients. In addition, we also traced the emergence of putative probiotic taxon Slackia, belonging to Actinomycetota, in CC patients. The emergence of anaerobic Firmicutes in CC is accompanied by a significant (p < 0.05) decline in the Klebsiella, as determined through linear discriminant analysis effect size (LEfSe) and heat tree analyses. Shifts in core microbiome and variation in network correlation were also witnessed. Taken together, this study highlighted a significant and consistent emergence of rare anaerobic Firmicutes suggesting possible anaerobiosis driving gut microbial community shift, which could be exploited in designing diagnostic and therapeutic tools targeted to CC.


Subject(s)
Colonic Neoplasms , Dysbiosis , Feces , Firmicutes , Gastrointestinal Microbiome , Klebsiella , RNA, Ribosomal, 16S , Humans , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/genetics , Colonic Neoplasms/microbiology , Klebsiella/genetics , Klebsiella/isolation & purification , Klebsiella/classification , Feces/microbiology , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/classification , Dysbiosis/microbiology , Male , Female , DNA, Bacterial/genetics , Middle Aged , Aged , Phylogeny , Anaerobiosis
14.
PLoS One ; 19(5): e0302522, 2024.
Article in English | MEDLINE | ID: mdl-38758940

ABSTRACT

Paddlefish has high economic and ecological value. In this study, microbial diversity and community structure in intestine, stomach, and mouth of paddlefish were detected using high-throughput sequencing. The results showed that the diversity and richness indices decreased along the digestive tract, and significantly lower proportion of those were observed in intestine. Firmicutes, Bacteroidetes and Proteobacteria were the dominant phyla. In top 10 phyla, there was no significant difference in mouth and stomach. But compared with intestine, there were significant differences in 8 of the 10 phyla, and Firmicutes and Bacteroidetes increased significantly, while Proteobacteria decreased significantly. There was no dominant genus in mouth and stomach, but Clostridium_sensu_stricto_1 and uncultured_bacterium_o_Bacteroidales was predominant in intestine. In conclusion, the species and abundance of microbiota in the mouth and stomach of paddlefish were mostly the same, but significantly different from those in intestine. Moreover, there was enrichment of the dominant bacteria in intestine.


Subject(s)
Fishes , Gastrointestinal Microbiome , Animals , Fishes/microbiology , Gastrointestinal Tract/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Mouth/microbiology , Stomach/microbiology , Proteobacteria/isolation & purification , Proteobacteria/genetics , High-Throughput Nucleotide Sequencing , Intestines/microbiology , Bacteroidetes/isolation & purification , Bacteroidetes/genetics , Firmicutes/isolation & purification , Firmicutes/genetics , Firmicutes/classification , RNA, Ribosomal, 16S/genetics , Biodiversity
15.
J Microbiol Biotechnol ; 34(6): 1214-1221, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38783719

ABSTRACT

The accumulating evidence substantiates the indispensable role of gut microbiota in modulating the pathogenesis of type 2 diabetes. Uncovering the intricacies of the mechanism is imperative in aiding disease control efforts. Revealing key bacterial species, their metabolites and/or metabolic pathways from the vast array of gut microorganisms can significantly contribute to precise treatment of the disease. With a high prevalence of type 2 diabetes in Inner Mongolia, China, we recruited volunteers from among the Mongolian population to investigate the relationship between gut microbiota and the disease. Fecal samples were collected from the Volunteers of Mongolia with Type 2 Diabetes group and a Control group, and detected by metagenomic analysis and untargeted metabolomics analysis. The findings suggest that Firmicutes and Bacteroidetes phyla are the predominant gut microorganisms that exert significant influence on the pathogenesis of type 2 diabetes in the Mongolian population. In the disease group, despite an increase in the quantity of most gut microbial metabolic enzymes, there was a concomitant weakening of gut metabolic function, suggesting that the gut microbiota may be in a compensatory state during the disease stage. ß-Tocotrienol may serve as a pivotal gut metabolite produced by gut microorganisms and a potential biomarker for type 2 diabetes. The metabolic biosynthesis pathways of ubiquinone and other terpenoid quinones could be the crucial mechanism through which the gut microbiota regulates type 2 diabetes. Additionally, certain Clostridium gut species may play a pivotal role in the progression of the disease.


Subject(s)
Bacteria , Diabetes Mellitus, Type 2 , Feces , Gastrointestinal Microbiome , Humans , Diabetes Mellitus, Type 2/microbiology , Feces/microbiology , Middle Aged , Male , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/metabolism , Mongolia , Female , China , Adult , Metabolomics , Firmicutes/isolation & purification , Metagenomics , Bacteroidetes/isolation & purification , Bacteroidetes/metabolism , Bacteroidetes/genetics , Metabolic Networks and Pathways , Aged
16.
Clin Nutr ; 42(2): 116-128, 2023 02.
Article in English | MEDLINE | ID: mdl-36527826

ABSTRACT

BACKGROUND: Gut dysbiosis and associated bile acid (BA) metabolism play an important role in the pathogenesis of Crohn's disease (CD). We investigated the impacts of the exclusive enteral nutrition treatment (EEN) on the gut microbiome (GM) and BAs metabolism for patients with CD. METHODS: Targeted metabolomics analysis and metagenomics analysis were performed in feces to investigate the BA and GM changes of patients before and after 2-months EEN therapy. The Pediatric Crohn's Disease Activity Index (PCDAI) and fecal calprotectin were used to evaluate the severity and mucosal inflammation of CD. RESULTS: A total of 27 newly diagnosed pediatric patients with CD and 27 healthy controls were recruited in this study. Both GM structure and the secondary BA metabolism were significantly impaired in patients, which could return towards normal levels after EEN treatment. The most abundant taxa Firmicutes and 11 BAs were found closely associated with the PCDAI score and fecal calprotectin. Meanwhile, the close interactions between Firmicute bacteria and BAs might contribute to the remission of CD after EEN treatment. The qPCR data further confirmed that the relative expressions of Firmicutes phylum, and genus Flavonifractor and Clostridium V were improved after EEN treatment. CONCLUSIONS: Firmicutes bacteria and the balance of primary and secondary BA compositions in the gut were closely associated with the health status of CD disease indicated by the PCDAI score and fecal calprotectin. Understanding the recovery process of gut microbiome and BA metabolism will help us to explore the potential mechanisms of EEN therapy.


Subject(s)
Bile Acids and Salts , Crohn Disease , Enteral Nutrition , Gastrointestinal Microbiome , Child , Humans , Bile Acids and Salts/metabolism , Crohn Disease/diet therapy , Crohn Disease/etiology , Crohn Disease/metabolism , Crohn Disease/microbiology , Firmicutes/isolation & purification , Leukocyte L1 Antigen Complex/analysis , Remission Induction , Dysbiosis/complications , Dysbiosis/metabolism , Dysbiosis/microbiology , Feces/chemistry , Feces/microbiology
17.
Sci Rep ; 12(1): 2006, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132164

ABSTRACT

Characterization of the microbial community is essential for understanding the symbiotic relationships between microbes and host insects. Chrysomya megacephala is a vital resource, a forensic insect, a pollinator, and a vector for enteric bacteria, protozoa, helminths, and viruses. However, research on its microbial community is incomprehensive, particularly at the pupal stage, which comprises approximately half of the entire larval development stage and is important entomological evidence in forensic medicine. For the first time, this study investigated the bacterial communities of C. megacephala pupae at different ages using third-generation sequencing technology. The results showed that C. megacephala has a diverse and dynamic bacterial community. Cluster analysis at ≥ 97% similarity produced 154 operational taxonomic units (OTUs) that belonged to 10 different phyla and were distributed into 15 classes, 28 orders, 50 families, 88 genera, and 130 species. Overall, the number of bacterial OTUs increased with the development of pupae, and the relative abundance of Wolbachia in the Day5 group was significantly lower than that in the other groups. Within the pupal stage, Proteobacteria, Firmicutes, and Bacteroidetes were the dominant phyla of bacteria. At the genus level, Wolbachia and Ignatzschineria coexisted, a rarely known feature. In addition, we found Erysipelothrix rhusiopathiae, the etiological agent of swine erysipelas, which is rarely identified in insects. This study enriches the understanding of the microbial community of C. megacephala and provides a reference for better utilization and control of C. megacephala.


Subject(s)
Calliphoridae/microbiology , Microbiota , Pupa/microbiology , Sequence Analysis, RNA/methods , Animals , Bacteroidetes/genetics , Bacteroidetes/isolation & purification , Bacteroidetes/physiology , Erysipelothrix/genetics , Erysipelothrix/isolation & purification , Firmicutes/genetics , Firmicutes/isolation & purification , Firmicutes/physiology , Forensic Entomology , Gammaproteobacteria/genetics , Gammaproteobacteria/isolation & purification , Gammaproteobacteria/physiology , Microbiota/genetics , Microbiota/physiology , Proteobacteria/genetics , Proteobacteria/isolation & purification , Proteobacteria/physiology , RNA, Bacterial/genetics , RNA, Ribosomal, 16S/genetics , Symbiosis , Wolbachia/genetics , Wolbachia/isolation & purification , Wolbachia/physiology
18.
Article in English | MEDLINE | ID: mdl-35133260

ABSTRACT

Three novel strains of Gram-stain-negative, obligately anaerobic, spore-forming straight or slightly curved rods with pointed ends occurring singly or in pairs were isolated from the faeces of healthy human children. The strains were characterized by mesophilic fermentative metabolism and production of acetate, ethanol and H2 as the end metabolic products. Strains ASD3451 and ASD5720T were motile, fermented lactose and raffinose, and weakly fermented maltose. Strain ASD4241T was non-motile and did not ferment the carbohydrates listed above but fermented starch. Strains ASD3451 and ASD5720T shared average nucleotide identity higher than 98.5 % with each other, while ASD4241T had only 88.5-89 % identity to them. Based on phylogenetic and chemotaxonomic analyses, we propose Diplocloster agilis gen. nov., sp. nov. (ASD5720T=JCM 34353T=VKM B-3497T) and Diplocloster modestus sp. nov. (ASD4241T=JCM 34351T=VKM B-3498T) within the family Lachnospiraceae.


Subject(s)
Feces/microbiology , Firmicutes/classification , Phylogeny , Anaerobiosis , Bacterial Typing Techniques , Base Composition , Child , DNA, Bacterial/genetics , Fatty Acids/chemistry , Firmicutes/isolation & purification , Humans , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
19.
Article in English | MEDLINE | ID: mdl-35085065

ABSTRACT

Two recently reported bacterial strains that were identified as the dominant caproate-producing bacteria in pit clay, were further characterized to determine their phylogeny and taxonomy. The two strains, designated as LBM19010T and JNU-WLY1368, were short rod-shaped, Gram-stain-positive, non-motile and strictly anaerobic. Analysis of the 16S rRNA gene sequences revealed that strains LBM19010T and JNU-WLY1368 shared a 16S rRNA gene sequence similarity of 99.93 % and belonged to a recent proposed genus Caproicibacterium in the family Oscillospiraceae. The proposed type strain, LBM19010T, showed the highest 16S rRNA gene sequence similarity to Caproicibacterium amylolyticum LBM18003T (96.34%), followed by Caproiciproducens galactitolivorans JCM 30532T (94.14 %). The pairwise average nucleotide identity and average amino acid identity values between strains LBM19010T and LBM18003T were 74.84 and 76.18 %, respectively. Growth of strain LBM19010T occurred at pH 4.5-7.5 (optimum, pH 5.0-5.5), 20-40 °C (optimum, 35 °C) and with 0-1 % (w/v) NaCl (optimum, 0 %). Strains LBM19010T and JNU-WLY1368 were both able to ferment several hexoses, disaccharides, starch and lactate but not pentoses. Caproate and butyrate were the major end-products from glucose. The predominant cellular fatty acids (>10 %) of strain LBM19010T were C16 : 0 (56.3 %), C14 : 0 DMA (19.5 %) and C14 : 0 (14.9 %). The identified polar lipids of strain LBM19010T were diphosphatidylglycerol, phosphatidylglycerol, three unidentified phospholipids and nine unidentified glycolipids. Based on phylogenetic, phenotypic and chemotaxonomic evidence, strains LBM19010T and JNU-WLY1368 belong to a novel species of the genus Caproicibacterium, for which the name Caproicibacterium lactatifermentans sp. nov. is proposed. The type strain is LBM19010T (=GDMCC 1.1627T=JCM 33782T).


Subject(s)
Clay , Firmicutes/classification , Odorants , Phylogeny , Alcoholic Beverages , Bacterial Typing Techniques , Base Composition , China , DNA, Bacterial/genetics , Fatty Acids/chemistry , Firmicutes/isolation & purification , Glycolipids/chemistry , Phospholipids/chemistry , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA
20.
Sci Rep ; 12(1): 1415, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082330

ABSTRACT

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Subject(s)
Gastric Bypass/methods , Gastrointestinal Microbiome/physiology , Gluconeogenesis/physiology , Intestines/metabolism , Metabolome , Stomach/metabolism , Actinobacteria/classification , Actinobacteria/genetics , Actinobacteria/isolation & purification , Animals , DNA, Bacterial/genetics , Enterobacteriaceae/classification , Enterobacteriaceae/genetics , Enterobacteriaceae/isolation & purification , Enterococcaceae/classification , Enterococcaceae/genetics , Enterococcaceae/isolation & purification , Fatty Acids, Volatile/metabolism , Firmicutes/classification , Firmicutes/genetics , Firmicutes/isolation & purification , Intestines/microbiology , Male , Mice , Mice, Inbred C57BL , Phylogeny , Proteobacteria/classification , Proteobacteria/genetics , Proteobacteria/isolation & purification , Stomach/microbiology , Stomach/surgery
SELECTION OF CITATIONS
SEARCH DETAIL