Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 615
Filter
1.
Plant Mol Biol ; 114(4): 83, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972957

ABSTRACT

Consumer trends towards nutrient-rich foods are contributing to global increasing demand for tropical fruit. However, commercial cultivars in the breeding pipeline that are tailored to meet market demand are at risk of possessing reduced fruit flavour qualities. This stems from recurrent prioritised selection for superior agronomic traits and not fruit flavour, which may in turn reduce consumer satisfaction. There is realisation that fruit quality traits, inclusive of flavour, must be equally selected for; but currently, there are limited tools and resources available to select for fruit flavour traits, particularly in tropical fruit species. Although sugars, acids, and volatile organic compounds are known to define fruit flavour, the specific combinations of these, that result in defined consumer preferences, remain unknown for many tropical fruit species. To define and include fruit flavour preferences in selective breeding, it is vital to determine the metabolites that underpin them. Then, objective quantitative analysis may be implemented instead of solely relying on human sensory panels. This may lead to the development of selective genetic markers through integrated omics approaches that target biosynthetic pathways of flavour active compounds. In this review, we explore progress in the development of tools to be able to strategically define and select for consumer-preferred flavour profiles in the breeding of new cultivars of tropical fruit species.


Subject(s)
Fruit , Plant Breeding , Fruit/genetics , Fruit/metabolism , Plant Breeding/methods , Volatile Organic Compounds/metabolism , Taste , Metabolomics/methods , Flavoring Agents/metabolism , Tropical Climate , Multiomics
2.
Food Res Int ; 190: 114628, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945581

ABSTRACT

Aromatic compounds serve as the primary source of floral and fruity aromas in sauce-flavor (Maotai flavor) baijiu, constituting the skeleton components of its flavor profile. Nevertheless, the formation mechanism of these compounds and key aroma-producing enzymes in sauce-flavor Daqu (fermentation agent, SFD) remain elusive. Here, we combined metagenomics, metaproteomics, metabolomics, and key enzyme activity to verify the biosynthesis pathway of aromatic compounds and to identify key enzymes, genes, and characteristic microorganisms in SFD. The results showed that the later period of fermentation was critical for the generation of aromatic compounds in SFD. In-situ verification was conducted on the potential key enzymes and profiles in various metabolites, providing comprehensive evidence for the main synthetic pathways of aromatic compounds in SFD. Notably, our results showed that primary amine oxidase (PrAO) and aldehyde dehydrogenase (ALDH) emerged as two key enzymes promoting aromatic compound synthesis. Additionally, two potential key functional genes regulating aromatics generation were identified during SFD fermentation through correlation analysis between proteins and relevant metabolites, coupled with in vitro amplification test. Furthermore, original functional strains (Aspergillus flavus-C10 and Aspergillus niger-IN2) exhibiting high PrAO and ALDH production were successfully isolated from SFD, thus validating the results of metagenomics and metaproteomics analyses. This study comprehensively elucidates the pathway of aromatic compound formation in SFD at the genetic, proteomic, enzymatic, and metabolomic levels, providing new ideas for the investigation of key flavor substances in baijiu. Additionally, these findings offer valuable insights into the regulatory mechanisms of aromatic compounds generation.


Subject(s)
Fermentation , Flavoring Agents , Flavoring Agents/metabolism , Odorants/analysis , Proteomics , Aspergillus niger/enzymology , Aspergillus niger/genetics , Aspergillus niger/metabolism , Aspergillus flavus/enzymology , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Metagenomics , Metabolomics , Fermented Foods/microbiology
3.
Food Res Int ; 190: 114647, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38945586

ABSTRACT

Ethyl hexanoate and ethyl butyrate are indispensable flavor metabolites in strong-flavor Baijiu (SFB), but batch production instability in fermenting grains can reduce the quality of distilled Baijiu. Biofortification of the fermentation process by designing a targeted microbial collaboration pattern is an effective method to stabilize the quality of Baijiu. In this study, we explored the metabolism under co-culture liquid fermentation with Clostridium tyrobutyricum DB041 and Saccharomyces cerevisiae YS219 and investigated the effects of inoculation with two functional microorganisms on physicochemical factors, flavor metabolites, and microbial communities in solid-state simulated fermentation of SFB for the first time. The headspace solid-phase microextraction-gas chromatography-mass spectrometry results showed that ethyl butyrate and ethyl hexanoate significantly increased in fermented grain. High-throughput sequencing analysis showed that Pediococcus, Lactobacillus, Weissella, Clostridium_sensu_stricto_12, and Saccharomyces emerged as the dominant microorganisms at the end of fermentation. Co-occurrence analysis showed that ethyl hexanoate and ethyl butyrate were significantly correlated (|r| > 0.5, P < 0.05) with a cluster of interactions dominated by lactic acid bacteria (Pediococcus, Lactobacillus, Weissella, and Lactococcus), which was driven by the functional C. tyrobutyricum and S. cerevisiae. Mantel test showed that moisture and reducing sugars were the main physicochemical factor affecting microbial collaboration (|r| > 0.7, P < 0.05). Taken together, the collaborative microbial pattern of inoculation with C. tyrobutyricum and S. cerevisiae showed positive results in enhancing typical flavor metabolites and the synergistic effects of microorganisms in SFB.


Subject(s)
Butyrates , Caproates , Clostridium tyrobutyricum , Fermentation , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Clostridium tyrobutyricum/metabolism , Clostridium tyrobutyricum/growth & development , Caproates/metabolism , Butyrates/metabolism , Taste , Flavoring Agents/metabolism , Food Microbiology , Gas Chromatography-Mass Spectrometry , Coculture Techniques , Alcoholic Beverages/microbiology , Solid Phase Microextraction
4.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928118

ABSTRACT

ß C-S lyases (ß-CSLs; EC 4.4.1.8) are enzymes catalyzing the dissociation of ß carbon-sulfur bonds of cysteine S-conjugates to produce odorant metabolites with a free thiol group. These enzymes are increasingly studied for their role in flavor generation in a variety of food products, whether these processes occur directly in plants, by microbial ß-CSLs during fermentation, or in the mouth under the action of the oral microbiota. Microbial ß-CSLs react with sulfur aroma precursors present in beverages, vegetables, fruits, or aromatic herbs like hop but also potentially with some precursors formed through Maillard reactions in cooked foods such as meat or coffee. ß-CSLs from microorganisms like yeasts and lactic acid bacteria have been studied for their role in the release of polyfunctional thiols in wine and beer during fermentation. In addition, ß-CSLs from microorganisms of the human oral cavity were shown to metabolize similar precursors and to produce aroma in the mouth with an impact on retro-olfaction. This review summarizes the current knowledge on ß-CSLs involved in flavor generation with a focus on enzymes from microbial species present either in the fermentative processes or in the oral cavity. This paper highlights the importance of this enzyme family in the food continuum, from production to consumption, and offers new perspectives concerning the utilization of ß-CSLs as a flavor enhancer.


Subject(s)
Fermentation , Flavoring Agents , Humans , Flavoring Agents/metabolism , Carbon-Sulfur Lyases/metabolism , Bacteria/enzymology , Bacteria/metabolism , Taste
5.
Sheng Wu Gong Cheng Xue Bao ; 40(6): 1694-1710, 2024 Jun 25.
Article in Chinese | MEDLINE | ID: mdl-38914486

ABSTRACT

2-phenylethanol (2-PE), an aromatic alcohol with a rose fragrance, is the second most widely used flavoring substance in the world. It is widely used in the cosmetic, food, and pharmaceutical industries. This paper introduces the chemical synthesis methods of 2-PE and the synthetic pathways in plants and microorganisms, summarizes the strategies to improve the microbial synthesis of 2-PE, reviews the research progress in de novo synthesis of 2-PE in microorganisms, and makes an outlook on the research prospects, aiming to provide a theoretical basis for the industrial production of 2-PE.


Subject(s)
Phenylethyl Alcohol , Phenylethyl Alcohol/metabolism , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemical synthesis , Industrial Microbiology , Flavoring Agents/chemical synthesis , Flavoring Agents/metabolism , Bacteria/metabolism , Plants/metabolism
6.
Food Res Int ; 188: 114483, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823869

ABSTRACT

The Monascus-fermented cheese (MC) is a unique cheese product that undergoes multi-strain fermentation, imparting it with distinct flavor qualities. To clarify the role of microorganisms in the formation of flavor in MC, this study employed SPME (arrow)-GC-MS, GC-O integrated with PLS-DA to investigate variations in cheese flavors represented by volatile flavor compounds across 90-day ripening periods. Metagenomic datasets were utilized to identify taxonomic and functional changes in the microorganisms. The results showed a total of 26 characteristic flavor compounds in MC at different ripening periods (VIP>1, p < 0.05), including butanoic acid, hexanoic acid, butanoic acid ethyl ester, hexanoic acid butyl ester, 2-heptanone and 2-octanone. According to NR database annotation, the genera Monascus, Lactococcus, Aspergillus, Lactiplantibacillus, Staphylococcus, Flavobacterium, Bacillus, Clostridium, Meyerozyma, and Enterobacter were closely associated with flavor formation in MC. Ester compounds were linked to Monascus, Meyerozyma, Staphylococcus, Lactiplantibacillus, and Bacillus. Acid compounds were linked to Lactococcus, Lactobacillus, Staphylococcus, and Bacillus. The production of methyl ketones was closely related to the genera Monascus, Staphylococcus, Lactiplantibacillus, Lactococcus, Bacillus, and Flavobacterium. This study offers insights into the microorganisms of MC and its contribution to flavor development, thereby enriching our understanding of this fascinating dairy product.


Subject(s)
Cheese , Fermentation , Food Microbiology , Metagenomics , Monascus , Taste , Volatile Organic Compounds , Cheese/microbiology , Cheese/analysis , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Monascus/metabolism , Monascus/genetics , Monascus/growth & development , Metagenomics/methods , Gas Chromatography-Mass Spectrometry , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Flavoring Agents/metabolism
7.
Food Res Int ; 188: 114507, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823882

ABSTRACT

The microorganisms of the pit mud (PM) of Nongxiangxing baijiu (NXXB) have an important role in the synthesis of flavor substances, and they determine attributes and quality of baijiu. Herein, we utilize metagenomics and genome-scale metabolic models (GSMMs) to investigate the microbial composition, metabolic functions in PM microbiota, as well as to identify microorganisms and communities linked to flavor compounds. Metagenomic data revealed that the most prevalent assembly of bacteria and archaea was Proteiniphilum, Caproicibacterium, Petrimonas, Lactobacillus, Clostridium, Aminobacterium, Syntrophomonas, Methanobacterium, Methanoculleus, and Methanosarcina. The important enzymes ofPMwere in bothGH and GT familymetabolism. A total of 38 high-quality metagenome-assembled genomes (MAGs) were obtained, including those at the family level (n = 13), genus level (n = 17), and species level (n = 8). GSMMs of the 38 MAGs were then constructed. From the GSMMs, individual and community capabilities respectively were predicted to be able to produce 111 metabolites and 598 metabolites. Twenty-three predicted metabolites were consistent with the metabonomics detected flavors and served as targets. Twelve sub-community of were screened by cross-feeding of 38 GSMMs. Of them, Methanobacterium, Sphaerochaeta, Muricomes intestini, Methanobacteriaceae, Synergistaceae, and Caloramator were core microorganisms for targets in each sub-community. Overall, this study of metagenomic and target-community screening could help our understanding of the metabolite-microbiome association and further bioregulation of baijiu.


Subject(s)
Bacteria , Metagenomics , Microbiota , Bacteria/genetics , Bacteria/metabolism , Bacteria/classification , Archaea/genetics , Archaea/metabolism , Archaea/classification , Flavoring Agents/metabolism , Metagenome
8.
Food Microbiol ; 122: 104565, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839213

ABSTRACT

To evaluate the effects of bioaugmentation fermentation inoculated with one ester-producing strain (Wickerhamomyces anomalus ZX-1) and two strains of lactic acid bacteria (Lactobacillus plantarum CGMCC 24035 and Lactobacillus acidophilus R2) for improving the flavor of persimmon vinegar, microbial community, flavor compounds and metabolites were analyzed. The results of microbial diversity analysis showed that bioaugmentation fermentation significantly increased the abundance of Lactobacillus, Saccharomyces, Pichia and Wickerhamomyces, while the abundance of Acetobacter, Apiotrichum, Delftia, Komagataeibacter, Kregervanrija and Aspergillus significantly decreased. After bioaugmentation fermentation, the taste was softer, and the sensory irritancy of acetic acid was significantly reduced. The analysis of HS-SPME-GC-MS and untargeted metabolomics based on LC-MS/MS showed that the contents of citric acid, lactic acid, malic acid, ethyl lactate, methyl acetate, isocitrate, acetoin and 2,3-butanediol were significantly increased. By multivariate analysis, 33 differential metabolites were screened out to construct the correlation between the differential metabolites and microorganisms. Pearson correlation analysis showed that methyl acetate, ethyl lactate, betaine, aconitic acid, acetoin, 2,3-butanediol and isocitrate positively associated with Wickerhamomyces and Lactobacillus. The results confirmed that the quality of persimmon vinegar was improved by bioaugmentation fermentation.


Subject(s)
Acetic Acid , Diospyros , Fermentation , Microbiota , Acetic Acid/metabolism , Diospyros/microbiology , Diospyros/metabolism , Saccharomycetales/metabolism , Taste , Flavoring Agents/metabolism , Lactobacillus plantarum/metabolism , Food Microbiology , Lactobacillus acidophilus/metabolism , Lactobacillus acidophilus/growth & development , Bacteria/metabolism , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics
9.
Food Microbiol ; 122: 104569, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839228

ABSTRACT

Huangjiu is a spontaneously fermented alcoholic beverage, that undergoes intricate microbial compositional changes. This study aimed to unravel the flavor and quality formation mechanisms based on the microbial metabolism of Huangjiu. Here, metagenome techniques, chemometrics analysis, and headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) metabolomics combined with microbial metabolic network were employed to investigate the distinctions and relationship between the microbial profiles and the quality characteristics, flavor metabolites, functional metabolic patterns of Huangjiu across three regions. Significant variations (P < 0.05) were observed in metabolic rate of physicochemical parameters and biogenic amine concentration among three regions. 8 aroma compounds (phenethyl acetate, phenylethyl alcohol, isobutyl alcohol, ethyl octanoate, ethyl acetate, ethyl hexanoate, isoamyl alcohol, and diethyl succinate) out of 448 volatile compounds were identified as the regional chemical markers. 25 dominant microbial genera were observed through metagenomic analysis, and 13 species were confirmed as microbial markers in three regions. A metabolic network analysis revealed that Saccharomycetales (Saccharomyces), Lactobacillales (Lactobacillus, Weissella, and Leuconostoc), and Eurotiales (Aspergillus) were the predominant populations responsible for substrate, flavor (mainly esters and phenylethyl alcohol) metabolism, Lactobacillales and Enterobacterales were closely linked with biogenic amine. These findings provide scientific evidence for regional microbial contributions to geographical characteristics of Huangjiu, and perspectives for optimizing microbial function to promote Huangjiu quality.


Subject(s)
Bacteria , Fermentation , Gas Chromatography-Mass Spectrometry , Metabolic Networks and Pathways , Metagenomics , Oryza , Volatile Organic Compounds , Wine , Wine/analysis , Wine/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Oryza/microbiology , Oryza/chemistry , Oryza/metabolism , China , Taste , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Metabolomics/methods , Odorants/analysis , Microbiota , Solid Phase Microextraction , Biogenic Amines/analysis , Biogenic Amines/metabolism , East Asian People
10.
J Biotechnol ; 390: 13-27, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38761886

ABSTRACT

Industrial biotechnology and biocatalysis can provide very effective synthetic tools to increase the sustainability of the production of fine chemicals, especially flavour and fragrance (F&F) ingredients, the market demand of which has been constantly increasing in the last years. One of the most important transformations in F&F chemistry is the reduction of CC bonds, typically carried out with metal-catalysed hydrogenations or hydride-based reagents. Its biocatalytic counterpart is a competitive alternative, showcasing a range of advantages such as excellent chemo-, regio- and stereoselectivity, ease of implementation, mild reaction conditions and modest environmental impact. In the present review, the application of biocatalysed alkene reductions (from microbial fermentations with wild-type strains to engineered isolated ene-reductase enzymes) to synthetic processes useful for the F&F industry will be described, highlighting not only the exquisite stereoselectivity achieved, but also the overall improvement when chirality is not involved. Multi-enzymatic cascades involving CC bioreductions are also examined, which allow much greater chemical complexity to be built in one-pot biocatalytic systems.


Subject(s)
Biocatalysis , Flavoring Agents , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Perfume/chemistry , Biotechnology/methods , Alkenes/metabolism , Alkenes/chemistry , Oxidation-Reduction
11.
Food Chem ; 454: 139795, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810450

ABSTRACT

Pelodiscus sinensis is an aquatic product with a long growth cycle in pond culture and high nutritional value meat. The flavor compounds, nutrients, and lipidome were investigated to explore the edible value changes of turtle meat aged 3 to 6 years (Y3 to Y6). Typically, P. sinensis meat is rich in high-quality protein (EAAI ≥81.22, AAS ≥86.47). Y6 has the highest level of Se, protein, amino acids, and high unsaturated fatty acids, including EPA + DHA. Y5 has the most delicious amino acids, polyunsaturated fatty acids, and key odorant content. The stronger flavor of Y5 may be mainly related to C18:2n6t and C18:2n6c. Further, triacylglycerols (TAG) and phosphatidylcholine (PC) were significant changes in Y5. Additionally, PI (16:0/18:1) was identified as the potential biomarker. These results provided available information on P. sinensis marketing age and revealed the potential impact of nutrients on the formation of VOCs.


Subject(s)
Flavoring Agents , Lipidomics , Turtles , Animals , Male , Turtles/metabolism , Turtles/growth & development , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Nutritive Value , Nutrients/analysis , Nutrients/metabolism , Taste , Amino Acids/analysis , Amino Acids/metabolism , Amino Acids/chemistry , Ponds/chemistry , Meat/analysis
12.
Food Chem ; 454: 139732, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38815327

ABSTRACT

The spine grapes (Vitis davidii Foëx.) are wild grape species that grow in southern China, and can be used for table grapes, juicing and winemaking. To systematically investigate the flavor profiles of spine grapes, flavonoids and volatile compounds were detected in five spine grape varieties (Seputao, Ziqiu, Miputao, Tianputao and Baiputao) using HPLC-QqQ-MS/MS and GC-MS. The content of flavonoids highly depended on the variety, such as the total concentrations of anthocyanins (91.43-328.85 mg/kg FW) and flavonols (33.90 to 83.16 mg/kg FW). The volatile compounds with higher odor active value were selected to describe the aroma of spine grapes. Hexanal, (E)-2-hexenal and (E, Z)-2,6-nonadienal contributed to the higher herbaceous flavor to Baiputao and Ziqiu. ß-Damascenone and (E)-2-nonenal gave Baiputao a flavor with more floral, fruity and earthy. Their characteristic flavor compounds were subsequently revealed using multivariate statistical analysis. The results helped producers to further develop and utilize the spine grapes.


Subject(s)
Flavonoids , Flavoring Agents , Fruit , Gas Chromatography-Mass Spectrometry , Metabolomics , Vitis , Volatile Organic Compounds , Vitis/chemistry , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/analysis , China , Flavoring Agents/chemistry , Flavoring Agents/analysis , Flavoring Agents/metabolism , Fruit/chemistry , Flavonoids/analysis , Flavonoids/chemistry , Taste , Odorants/analysis , Chromatography, High Pressure Liquid , Tandem Mass Spectrometry , Humans
13.
J Agric Food Chem ; 72(19): 11002-11012, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38700031

ABSTRACT

Due to the increasing demand for natural food ingredients, including taste-active compounds, enzyme-catalyzed conversions of natural substrates, such as flavonoids, are promising tools to align with the principles of Green Chemistry. In this study, a novel O-methyltransferase activity was identified in the mycelium of Lentinula edodes, which was successfully applied to generate the taste-active flavonoids hesperetin, hesperetin dihydrochalcone, homoeriodictyol, and homoeriodictyol dihydrochalcone. Furthermore, the mycelium-mediated OMT activity allowed for the conversion of various catecholic substrates, yielding their respective (iso-)vanilloids, while monohydroxylated compounds were not converted. By means of a bottom-up proteomics approach, three putative O-methyltransferases were identified, and subsequently, synthetic, codon-optimized genes were heterologously expressed in Escherichia coli. The purified enzymes confirmed the biocatalytic O-methylation activity against targeted flavonoids containing catechol motifs.


Subject(s)
Biocatalysis , Catechol O-Methyltransferase , Flavonoids , Fungal Proteins , Shiitake Mushrooms , Shiitake Mushrooms/enzymology , Shiitake Mushrooms/genetics , Shiitake Mushrooms/chemistry , Shiitake Mushrooms/metabolism , Catechol O-Methyltransferase/genetics , Catechol O-Methyltransferase/metabolism , Catechol O-Methyltransferase/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Flavonoids/chemistry , Flavonoids/metabolism , Flavoring Agents/metabolism , Flavoring Agents/chemistry , Mycelium/enzymology , Mycelium/genetics , Mycelium/chemistry , Mycelium/metabolism , Substrate Specificity
14.
Food Chem ; 453: 139664, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38761739

ABSTRACT

Salt is important for food flavor, but excessive sodium intake leads to adverse health consequences. Thus, salty and saltiness-enhancing peptides are developed for sodium-reduction products. This review elucidates saltiness perception process and analyses correlation between the peptide structure and saltiness-enhancing ability. These peptides interact with taste receptors to produce saltiness perception, including ENaC, TRPV1, and TMC4. This review also outlines preparation, isolation, purification, characterization, screening, and assessment techniques of these peptides and discusses their potential applications. These peptides are from various sources and produced through enzymatic hydrolysis, microbial fermentation, or Millard reaction and then separated, purified, identified, and screened. Sensory evaluation, electronic tongue, bioelectronic tongue, and cell and animal models are the primary saltiness assessment approaches. These peptides can be used in sodium-reduction food products to produce "clean label" items, and the peptides with biological activity can also serve as functional ingredients, making them very promising for food industry.


Subject(s)
Peptides , Taste , Peptides/chemistry , Humans , Animals , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Sodium Chloride, Dietary/analysis , Sodium Chloride, Dietary/metabolism
15.
Food Res Int ; 183: 114196, 2024 May.
Article in English | MEDLINE | ID: mdl-38760131

ABSTRACT

Baijiu production has relied on natural inoculated Qu as a starter culture, causing the unstable microbiota of fermentation grains, which resulted in inconsistent product quality across batches. Therefore, revealing the core microbes and constructing a synthetic microbiota during the fermentation process was extremely important for stabilizing product quality. In this study, the succession of the microbial community was analyzed by high-throughput sequencing technology, and ten core microbes of Xiaoqu light-aroma Baijiu were obtained by mathematical statistics, including Acetobacter, Bacillus, Lactobacillus, Weissella, Pichia,Rhizopus, Wickerhamomyces, Issatchenkia, Saccharomyces, and Kazachstania. Model verification showed that the core microbiota significantly affected the composition of non-core microbiota (P < 0.01) and key flavor-producing enzymes (R > 0.8, P < 0.01), thus significantly affecting the flavor of base Baijiu. Simulated fermentation validated that the core microbiota can reproduce the fermentation process and quality of Xiaoqu light-aroma Baijiu. The succession of bacteria was mainly regulated by acidity and ethanol, while the fungi, especially non-Saccharomyces cerevisiae, were mainly regulated by the initial dominant bacteria (Acetobacter, Bacillus, and Weissella). This study will play an important role in the transformation of Xiaoqu light-aroma Baijiu fermentation from natural fermentation to controlled fermentation and the identification of core microbes in other fermented foods.


Subject(s)
Bacteria , Fermentation , Food Microbiology , Microbiota , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/classification , Fungi/metabolism , Fungi/isolation & purification , Alcoholic Beverages/microbiology , High-Throughput Nucleotide Sequencing , Taste , Flavoring Agents/metabolism
16.
Food Res Int ; 187: 114315, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763628

ABSTRACT

Paojiao, a typical Chinese traditional fermented pepper, is favored by consumers for its unique flavor profile. Microorganisms, organic acids, amino acids, and volatile compounds are the primary constituents influencing the development of paojiao's flavor. To elucidate the key flavor compounds and core microorganisms of Qicaipaojiao (QCJ), this study conducted a comprehensive analysis of the changes in taste substances (organic acids and amino acids) and volatile flavor compounds during QCJ fermentation. Key flavor substances in QCJ were identified using threshold aroma value and odor activity value and the core microorganisms of QCJ were determined based on the correlation between dominant microorganisms and the key flavor substances. During QCJ fermentation, 16 key taste substances (12 free amino acids and 4 organic acids) and 12 key aroma substances were identified. The fermentation process involved 10 bacteria and 7 fungal genera, including Lactiplantibacillus, Leuconostoc, Klebsiella, Pichia, Wickerhamomyces, and Candida. Correlation analysis revealed that the core functional microorganisms encompassed representatives from 8 genera, including 5 bacterial genera (Lactiplantibacillus, Weissella, Leuconostoc, Klebsiella, and Kluyvera) and 3 fungal genera (Rhodotorula, Phallus, and Pichia). These core functional microorganisms exhibited significant correlations with approximately 70 % of the key flavor substances (P < 0.05). This study contributes to an enhanced understanding of flavor formation mechanisms and offers valuable insight into flavor quality control in food fermentation processes.


Subject(s)
Bacteria , Capsicum , Fermentation , Odorants , Taste , Volatile Organic Compounds , Capsicum/microbiology , Volatile Organic Compounds/analysis , Volatile Organic Compounds/metabolism , Odorants/analysis , Bacteria/metabolism , Bacteria/classification , Food Microbiology , Fungi/metabolism , Fungi/classification , Amino Acids/analysis , Amino Acids/metabolism , Fermented Foods/microbiology , Fermented Foods/analysis , Metabolic Networks and Pathways , Flavoring Agents/metabolism , Flavoring Agents/analysis
17.
Food Res Int ; 187: 114405, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38763659

ABSTRACT

Sojae semen praeparatum (SSP), a fermented product known for its distinctive flavor and medicinal properties, undergoes a complex fermentation process due to the action of various microorganisms. Despite its widespread use, the effect of these microorganisms on the flavor compounds and functional components of SSP remains poorly understood. This study aimed to shed light on this aspect by identifying 20 metabolites as potential key flavor substances in SSP. Moreover, glycine and lysine were identified as crucial flavor substances. Additionally, 24 metabolites were identified as key functional components. The dominant microorganisms involved in the fermentation process were examined, revealing six genera of fungi and 12 genera of bacteria. At the species level, 16 microorganisms were identified as dominant through metagenome sequencing. Spearman correlation analysis demonstrated a strong association between dominant microorganisms and both flavor substances and functional components. Furthermore, the study validated the significance of four core functional microorganisms in improving the flavor and quality of SSP. This comprehensive exploration of functional microorganisms of SSP on key flavor substances/functional components during SSP fermentation. The study findings serve as a valuable reference for enhancing the overall flavor and quality of SSP.


Subject(s)
Bacteria , Fermentation , High-Throughput Nucleotide Sequencing , Metabolomics , Bacteria/metabolism , Bacteria/genetics , Bacteria/classification , Flavoring Agents/metabolism , Taste , Fungi/metabolism , Fungi/genetics , Food Microbiology , Fermented Foods/microbiology , Lysine/metabolism
18.
Sci Rep ; 14(1): 12254, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806593

ABSTRACT

Migration of nib Cd to the testa during fermentation can be achieved with high temperatures (> 45 °C) and low nib pH values (< 5.0) using spontaneous fermentation. However, this low pH can lead to low flavor quality. This study used three controlled temperature fermentation treatments on three cacao genotypes (CCN 51, ICS 95, and TCS 01) to test its effects on the nib pH, the migration of nib Cd to the testa, and the liquor flavor quality. All treatments were effective in reducing the total nib Cd concentration. Nevertheless, the treatment with the higher mean temperature (44.25 °C) and acidification (pH 4.66) reached the highest mean nib Cd reductions throughout fermentation, a 1.37 factor in TCS 01, promoting the development of fine-flavor cocoa sensorial notes. In unfermented beans, the Cd concentration of nibs was higher than that of the testa, and the Cd migration proceeded down the total concentration gradient. However, Cd migration was observed against the concentration gradient (testa Cd > nib Cd) from the fourth day. Cd migration could increase by extensive fermentation until the sixth day in high temperatures and probably by the adsorbent capacity of the testa. Genotype-by-treatment interactions were present for the nib Cd reduction, and a universal percentage of decrease of Cd for each genotype with fermentation cannot be expected. Selecting genotypes with highly adsorbent testa combined with controlled temperatures would help reduce the Cd concentration in the cacao raw material, improving its safety and quality.


Subject(s)
Cacao , Cadmium , Fermentation , Cacao/metabolism , Hydrogen-Ion Concentration , Cadmium/metabolism , Taste , Hot Temperature , Flavoring Agents/metabolism , Temperature
19.
Food Chem ; 452: 139584, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38735110

ABSTRACT

Rosehips are a prominent source of numerous bioactive compounds. However, despite their extensive potential, the metabolic profiles among different rosehip species have not been fully elucidated. In this study, 523 secondary metabolites from rosehips of 12 Rosa species were identified using ultra-high-performance liquid chromatography-tandem mass spectrometry. They were primarily composed of flavonoids and phenolic acids. A K-means analysis revealed the characteristic metabolites in different rosehips. For example, R. persica contained a more abundant supply of phenolic acids, while R. roxburghii harbored a richer array of terpenoids. A total of 73 key active ingredients were screened from traditional Chinese medicine databases, and they indicated that R. persica is more promising for use in functional foods or health supplements compared with the other fruits. Moreover, a differential analysis identified 47 compounds as potential contributors to the astringent taste of rosehips, including ellagic acid 4-O-glucoside and cadaverine. This study provides valuable information to develop new functional foods of rosehips and improve the quality of their fruits.


Subject(s)
Fruit , Metabolomics , Rosa , Taste , Rosa/chemistry , Rosa/metabolism , Chromatography, High Pressure Liquid , Fruit/chemistry , Fruit/metabolism , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/analysis , Tandem Mass Spectrometry , Flavonoids/analysis , Flavonoids/metabolism , Humans , Hydroxybenzoates/analysis , Hydroxybenzoates/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism
20.
Food Chem ; 452: 139546, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38744137

ABSTRACT

The purpose of the study was to illustrate the roles of three primary indexes, namely sunlight, ventilation and stirring, in the 'bask in sunlight and dewed at night' technique on the quality of shrimp paste, through a laboratory-scale design. The results showed that changes in the post-ripening fermentation conditions, especially sunlight, was instrumental in the physicochemical properties of the shrimp paste. E-nose and SPME-GC-MS were employed to assess the volatile flavor of post-ripening fermentation. A total of 29 key volatile aroma components played a crucial role in the development of post-ripening flavor in shrimp paste with or without sunlight. Lipidomic analysis revealed that sunlight promoted the oxidative degradation of FA, resulting in the production of a diverse range of flavor compounds that imparted the unique aroma of shrimp paste. The findings of this study will establish a theoretical basic for better control of the post-ripening fermentation of traditional shrimp paste.


Subject(s)
Fermentation , Flavoring Agents , Sunlight , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/chemistry , Volatile Organic Compounds/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Penaeidae/chemistry , Penaeidae/growth & development , Penaeidae/metabolism , Penaeidae/microbiology , Shellfish/analysis , Shellfish/microbiology , Odorants/analysis , Gas Chromatography-Mass Spectrometry , Food Handling
SELECTION OF CITATIONS
SEARCH DETAIL
...