Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.492
Filter
1.
Gene ; 932: 148893, 2025 Jan 10.
Article in English | MEDLINE | ID: mdl-39197797

ABSTRACT

Flowers of Crocus sativus L. are immensely important not only for arrangement of floral whorls but more because each floral organ is dominated by a different class of specialized compounds. Dried stigmas of C. sativus flowers form commercial saffron, and are known to accumulate unique apocarotenoids like crocin, picrocrocin and safranal. Inspite of being a high value crop, the molecular mechanism regulating flower development in Crocus remains largely unknown. Moreover, it would be very interesting to explore any co-regulatory mechanism which controls floral architecture and secondary metabolic pathways which exist in specific floral organs. Here we report transcriptome wide identification of MADS box genes in Crocus. A total of 39 full length MADS box genes were identified among which three belonged to type I and 36 to type II class. Phylogeny classified them into 11 sub-clusters. Expression pattern revealed some stigma up-regulated genes among which CstMADS19 encoding an AGAMOUS gene showed high expression. Transient over-expression of CstMADS19 in stigmas of Crocus resulted in increased crocin by enhancing expression of pathway genes. Yeast one hybrid assay demonstrated that CstMADS19 binds to promoters of phytoene synthase and carotenoid cleavage dioxygenase 2 genes. Yeast two hybrid and BiFC assays confirmed interaction of CstMADS19 with CstMADS26 which codes for a SEPALATA gene. Co-overexpression of CstMADS19 and CstMADS26 in Crocus stigmas enhanced crocin content more than was observed when genes were expressed individually. Collectively, these findings indicate that CstMADS19 functions as a positive regulator of stigma based apocarotenoid biosynthesis in Crocus.


Subject(s)
Carotenoids , Crocus , Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Phylogeny , Gene Expression Profiling/methods , Cyclohexenes/metabolism , Transcriptome , Terpenes/metabolism , Glucosides/metabolism , Glucosides/biosynthesis
2.
BMC Plant Biol ; 24(1): 847, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39251901

ABSTRACT

BACKGROUND: Camellia nitidissima is a rare, prized camellia species with golden-yellow flowers. It has a high ornamental, medicinal, and economic value. Previous studies have shown substantial flavonol accumulation in C. nitidissima petals during flower formation. However, the mechanisms underlying the golden flower formation in C. nitidissima remain largely unknown. RESULTS: We performed an integrative analysis of the transcriptome, proteome, and metabolome of the petals at five flower developmental stages to construct the regulatory network underlying golden flower formation in C. nitidissima. Metabolome analysis revealed the presence of 323 flavonoids, and two flavonols, quercetin glycosides and kaempferol glycosides, were highly accumulated in the golden petals. Transcriptome and proteome sequencing suggested that the flavonol biosynthesis-related genes and proteins upregulated and the anthocyanin and proanthocyanidin biosynthesis-related genes and proteins downregulated in the golden petal stage. Further investigation revealed the involvement of MYBs and bHLHs in flavonoid biosynthesis. Expression analysis showed that flavonol synthase 2 (CnFLS2) was highly expressed in the petals, and its expression positively correlated with flavonol content at all flower developmental stages. Transient overexpression of CnFLS2 in the petals increased flavonol content. Furthermore, correlation analysis showed that the jasmonate (JA) pathways positively correlated with flavonol biosynthesis, and exogenous methyl jasmonate (MeJA) treatment promoted CnFLS2 expression and flavonol accumulation. CONCLUSIONS: Our findings showed that the JA-CnFLS2 module regulates flavonol biosynthesis during golden petal formation in C. nitidissima.


Subject(s)
Camellia , Flavonols , Flowers , Plant Proteins , Camellia/genetics , Camellia/metabolism , Camellia/growth & development , Flowers/metabolism , Flowers/genetics , Flowers/growth & development , Flavonols/metabolism , Flavonols/biosynthesis , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Transcriptome , Pigmentation/genetics , Oxylipins/metabolism , Acetates/metabolism , Acetates/pharmacology , Proteome/metabolism , Metabolome , Multiomics , Oxidoreductases
3.
Sci Rep ; 14(1): 20539, 2024 09 04.
Article in English | MEDLINE | ID: mdl-39232009

ABSTRACT

The objective was to evaluate the biosolids as an alternative source of nutrients in the production of chrysanthemums by adding increasing doses to the cultivation substrate. The experimental design was in blocks with 6 treatments and 5 replications. The treatments consisted of the mixture (commercial substrate + biosolid) at the concentrations: 20%, 40%, 60% and 80% of biosolid + two controls (100% of biosolid and 100% of substrate). The experiment was conducted in a greenhouse for 90 days. Physiological parameters, number of flower buds, dry biomass and nutrient accumulation were evaluated. Physiological parameters were evaluated using the Infrared Gas Analyzer. The number of flower buds was evaluated by counting. Biomass was determined after drying the structures and then calculated the accumulation of nutrients. A total of 90 plants were evaluated. Concentrations of up to 40% of biosolid promoted a greater number of flower buds, dry biomass and nutrient accumulation. Concentrations above 60% lower number of buds, biomass increment and nutrient accumulation. It is concluded that the biosolid has potential as an alternative source of nutrients in the cultivation of chrysanthemums, indicating concentrations of up to 40% and the nutrient content of each batch generated must be verified.


Subject(s)
Biomass , Chrysanthemum , Flowers , Nutrients , Chrysanthemum/growth & development , Chrysanthemum/metabolism , Nutrients/metabolism , Nutrients/analysis , Flowers/growth & development , Flowers/metabolism
4.
PLoS One ; 19(9): e0297795, 2024.
Article in English | MEDLINE | ID: mdl-39226260

ABSTRACT

Uncertainty in ecosystem restoration can be mitigated by information on drivers of variability in restoration outcomes, especially through experimental study. In southeastern USA pine savannas, efforts to restore the perennial bunchgrass wiregrass (Aristida beyrichiana) often achieve variable outcomes in the first year. Although ecotypic differentiation and competition with other native vegetation are known to influence wiregrass seedling establishment and growth, to our knowledge, no studies have examined interactions between these drivers. We experimentally quantified individual and interactive effects of competition, seed source, and soil type on wiregrass density, size, and flowering culm production in the field. We sowed seeds from dry and wet sites reciprocally into dry and wet soils and weeded half of the plots. We found that competition removal resulted in significantly larger plants and a greater proportion of flowering plants with more culms on average, regardless of seed source or soil type. Seeds sourced from a wet site resulted in more plants per plot than seeds from a dry site, which might have been influenced by the greater number of filled seeds from the wet site. After seedlings become established, competition contributes to variation in growth and reproduction. Although competition removal could help start wiregrass populations, the necessity of mitigation depends on fire management needs.


Subject(s)
Flowers , Seedlings , Soil , Soil/chemistry , Flowers/growth & development , Seedlings/growth & development , Seeds/growth & development , Ecosystem , Poaceae/growth & development , Poaceae/physiology , Conservation of Natural Resources/methods
5.
BMC Plant Biol ; 24(1): 853, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39261760

ABSTRACT

BACKGROUND: Microspore embryogenesis is a process that produces doubled haploids in tissue culture environments and is widely used in cereal plants. The efficient production of green regenerants requires stresses that could be sensed at the level of glycolysis, followed by the Krebs cycle and electron transfer chain. The latter can be affected by Cu(II) ion concentration in the induction media acting as cofactors of biochemical reactions, indirectly influencing the production of glutathione (GSH) and S-adenosyl-L-methionine (SAM) and thereby affecting epigenetic mechanisms involving DNA methylation (demethylation-DM, de novo methylation-DNM). The conclusions mentioned were acquired from research on triticale regenerants, but there is no similar research on barley. In this way, the study looks at how DNM, DM, Cu(II), SAM, GSH, and ß-glucan affect the ability of green plant regeneration efficiency (GPRE). RESULTS: The experiment involved spring barley regenerants obtained through anther culture. Nine variants (trials) of induction media were created by adding copper (CuSO4: 0.1; 5; 10 µM) and silver salts (AgNO3: 0; 10; 60 µM), with varying incubation times for the anthers (21, 28, and 35 days). Changes in DNA methylation were estimated using the DArTseqMet molecular marker method, which also detects cytosine methylation. Phenotype variability in ß-glucans, SAM and GSH induced by the nutrient treatments was assessed using tentative assignments based on the Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy. The effectiveness of green plant regeneration ranged from 0.1 to 2.91 plants per 100 plated anthers. The level of demethylation ranged from 7.61 to 32.29, while de novo methylation reached values ranging from 6.83 to 32.27. The paper demonstrates that the samples from specific in vitro conditions (trials) formed tight groups linked to the factors contributing to the two main components responsible for 55.05% of the variance (to the first component DNM, DM, to the second component GSH, ß-glucans, Cu(II), GPRE). CONCLUSIONS: We can conclude that in vitro tissue culture conditions affect biochemical levels, DNA methylation changes, and GPRE. Increasing Cu(II) concentration in the IM impacts the metabolism and DNA methylation, elevating GPRE. Thus, changing Cu(II) concentration in the IM is fair to expect to boost GPRE.


Subject(s)
DNA Methylation , Glutathione , Hordeum , S-Adenosylmethionine , Tissue Culture Techniques , beta-Glucans , Hordeum/genetics , Hordeum/metabolism , Hordeum/growth & development , Hordeum/drug effects , DNA Methylation/drug effects , Glutathione/metabolism , Tissue Culture Techniques/methods , beta-Glucans/metabolism , S-Adenosylmethionine/metabolism , Flowers/genetics , Flowers/growth & development , Regeneration/drug effects
6.
PLoS One ; 19(9): e0308013, 2024.
Article in English | MEDLINE | ID: mdl-39264914

ABSTRACT

Fraxinus mandshurica Rupr. (F. mandshurica) is a dioecious tree species with important ecological and application values. To delve deeper into the regulatory pathways and genes responsible for male and female flowers in F. mandshurica, we conducted transcriptome sequencing on male and female flowers at four distinct stages. The analysis revealed that the female database generated 38,319,967 reads while the male database generated 43,320,907 reads, resulting in 2930 differentially expressed genes with 1441 were up-regulated and 1489 down-regulated in males compared to females. Following an analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG), four distinct pathways (hormone signal transduction, energy metabolism, flavonoid biosynthesis, and photoperiod) linked to female and male flowers were identified. Subsequently, qRT-PCR verification revealed that FmAUX/IAA, FmEIN3, and FmA-ARR genes in hormone signal transduction pathway are related to female flower development. Meanwhile, FmABF genes in hormone signal transduction pathway, FmGS and FmGDH genes in energy metabolism pathway, FmFLS genes in flavonoid biosynthesis pathway, and FmCaM, FmCRY, and FmPKA genes in photoperiod pathway are related to male flower development. This study was the first to analyze the transcriptome of male and female flowers of F. mandshurica, providing a reference for the developmental pathways and gene expression levels of male and female plants.


Subject(s)
Flowers , Fraxinus , Gene Expression Profiling , Gene Expression Regulation, Plant , Transcriptome , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Fraxinus/genetics , Signal Transduction/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Ontology , Genes, Plant
7.
Sci Rep ; 14(1): 21490, 2024 09 14.
Article in English | MEDLINE | ID: mdl-39277610

ABSTRACT

Increasing crop diversity is a way for agriculture to transition towards a more sustainable and biodiversity-friendly system. Growing buckwheat intercropped with paulownia can contribute not only to mitigating climate change but can also enrich the environment with species of agricultural importance, without causing a decline in pollinators, since buckwheat is pollinated mainly by the honeybee. In a field experiment comparing growing buckwheat with paulownia against a monoculture crop, we investigated differences in flower visitation and beekeeping value, as well as the associated impact on crop yields. We analysed the effect of intercropping on the beekeeping value of buckwheat in terms of bee population size and the sugar mass in buckwheat flowers, nectar mass in buckwheat flowers, the quality of the delivered raw sugar and biometric characteristics. We found significant differences in the number of branches on the main shoot and the total number of branches. Significantly higher parameters were obtained in sites with buckwheat monoculture. The cultivation method variant did not cause differentiation in either the structure elements or the yield itself. Yields ranged from 0.39 (2021) to 1.59 (2023) t·ha-1. The average yield in intercropping was slightly lower (0.02 t·ha-1) than in the monoculture system of buckwheat (0.93 t·ha-1). More flowers per plant per day of observation and more flowers in millions of flowers per hectare per day of observation were observed in the intercropping of buckwheat with paulownia. Based on our experiment, we concluded that growing buckwheat in monoculture significantly increased the number of flowers, resulting in an increase in pollinator density and an increased number of pollinators per unit area.


Subject(s)
Beekeeping , Fagopyrum , Flowers , Pollination , Fagopyrum/growth & development , Animals , Bees/physiology , Flowers/growth & development , Beekeeping/methods , Crops, Agricultural/growth & development , Agriculture/methods
8.
BMC Genomics ; 25(1): 887, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304819

ABSTRACT

Camellia oleifera is an important woody oil tree in China, in which the flowers and fruits appear during the same period. The endogenous hormone changes and transcription expression levels in different parts of the flower tissue (sepals, petals, stamens, and pistils), flower buds, leaves, and seeds of Changlin 23 high-yield (H), Changlin low-yield (L), and control (CK) C. oleifera groups were studied. The abscisic acid (ABA) content in the petals and stamens in the L group was significantly higher than that in the H and CK groups, which may be related to flower and fruit drops. The high N6-isopentenyladenine (iP) and indole acetic acid (IAA) contents in the flower buds may be associated with a high yield. Comparative transcriptome analysis showed that the protein phosphatase 2C (PP2C), jasmonate-zim-domain protein (JAZ), and WRKY-related differentially expressed genes (DEGs) may play an important role in determining leaf color. Gene set enrichment analysis (GSEA) comparison showed that jasmonic acid (JA) and cytokinin play an important role in determining the pistil of the H group. In this study, endogenous hormone and transcriptome analyses were carried out to identify the factors influencing the large yield difference in C. oleifera in the same year, which provides a theoretical basis for C. oleifera in the future.


Subject(s)
Camellia , Gene Expression Profiling , Plant Growth Regulators , Transcriptome , Camellia/genetics , Camellia/metabolism , Plant Growth Regulators/metabolism , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Gene Expression Regulation, Plant , Abscisic Acid/metabolism , Cyclopentanes/metabolism , Oxylipins/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism
9.
Nat Commun ; 15(1): 7796, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242635

ABSTRACT

Epigenetic modifications are crucial for plant development. EFD (Exine Formation Defect) encodes a SAM-dependent methyltransferase that is essential for the pollen wall pattern formation and male fertility in Arabidopsis. In this study, we find that the expression of DRM2, a de novo DNA methyltransferase in plants, complements for the defects in efd, suggesting its potential de novo DNA methyltransferase activity. Genetic analysis indicates that EFD functions through HB21, as the knockout of HB21 fully restores fertility in efd mutants. DNA methylation and histone modification analyses reveal that EFD represses the transcription of HB21 through epigenetic mechanisms. Additionally, we demonstrate that HB21 directly represses the expression of genes crucial for pollen formation and anther dehiscence, including CalS5, RPG1/SWEET8, CYP703A2 and NST2. Collectively, our findings unveil a double negative regulatory cascade mediated by epigenetic modifications that coordinates anther development, offering insights into the epigenetic regulation of this process.


Subject(s)
Arabidopsis Proteins , Arabidopsis , DNA Methylation , Epigenesis, Genetic , Flowers , Gene Expression Regulation, Plant , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Pollen/growth & development , Pollen/genetics , Pollen/metabolism , Methyltransferases/metabolism , Methyltransferases/genetics , Mutation , Plants, Genetically Modified
10.
Int J Mol Sci ; 25(17)2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39273285

ABSTRACT

Tomato plants favor warmth, making them particularly susceptible to cold conditions, especially their reproductive development. Therefore, understanding how pollen reacts to cold stress is vital for selecting and improving cold-resistant tomato varieties. The programmed cell death (PCD) in the tapetum is particularly susceptible to cold temperatures which could hinder the degradation of the tapetal layer in the anthers, thus affecting pollen development. However, it is not clear yet how genes integral to tapetal degradation respond to cold stress. Here, we report that SlHB8, working upstream of the conserved genetic module DYT1-TDF1-AMS-MYB80, is crucial for regulating cold tolerance in tomato anthers. SlHB8 expression increases in the tapetum when exposed to low temperatures. CRISPR/Cas9-generated SlHB8-knockout mutants exhibit improved pollen cold tolerance due to the reduced temperature sensitivity of the tapetum. SlHB8 directly upregulates SlDYT1 and SlMYB80 by binding to their promoters. In normal anthers, cold treatment boosts SlHB8 levels, which then elevates the expression of genes like SlDYT1, SlTDF1, SlAMS, and SlMYB80; however, slhb8 mutants do not show this gene activation during cold stress, leading to a complete blockage of delayed tapetal programmed cell death (PCD). Furthermore, we found that SlHB8 can interact with both SlTDF1 and SlMYB80, suggesting the possibility that SlHB8 might regulate tapetal PCD at the protein level. This study sheds light on molecular mechanisms of anther adaptation to temperature fluctuations.


Subject(s)
Cold Temperature , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Cold-Shock Response/genetics , Cell Death/genetics , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Pollen/genetics , Pollen/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
11.
Yi Chuan ; 46(9): 727-736, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39275872

ABSTRACT

Asteraceae is a large class of eudicots with complex capitulum, and little is known regarding the molecular regulation mechanism of flower development. APETALA1(AP1) belongs to the MADS-box gene family and plays a key role in plant floral induction and floral organ development. In this study, the bioinformatics and tissue-specific expression of AP1 homologous gene SvAP1-5 in Senecio vulgaris were analyzed. Based on VIGS technology, SvAP1-5 gene silencing plants were created, and SvAP1-5 was overexpressed in Solanum nigrum. The results of bioinformatics analysis showed that SvAP1-5 gene had typical MADS-box and K-box structure, and contains FUL motif and paleoAP1 motif at the C-terminal. SvAP1-5 belongs to the euFUL branch of AP1 gene. qRT-PCR results showed that SvAP1-5 was expressed in bracts, petals and carpels, and was highly expressed in carpels. Compared with the control group, SvAP1-5 gene silencing resulted in irregular petal dehiscence, increased stigma division, and carpel dysplasia. The fruit development of SvAP1-5 overexpressing S.nigrum plants was abnormal, and the hyperplastic tissue similar to fruit appeared. In summary, SvAP1-5 gene may be involved in the development of petals and carpels and plays an important role during the development of S.vulgaris.


Subject(s)
Flowers , Gene Expression Regulation, Plant , MADS Domain Proteins , Plant Proteins , Senecio , Flowers/genetics , Flowers/growth & development , Senecio/genetics , Senecio/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , MADS Domain Proteins/genetics , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Gene Silencing
12.
Int J Mol Sci ; 25(17)2024 Sep 05.
Article in English | MEDLINE | ID: mdl-39273554

ABSTRACT

Auxin response factors(ARFs) are a class of transcription factors that regulate the expression of auxin response genes and play a crucial role in plant growth and development. Florigen plays a crucial role in the process of flowering. However, the process by which auxin regulates the accumulation of florigen remains largely unclear. This study found that the expression of ZmARF16 in maize increases during flowering, and the genetic transformation of ZmARF16 accelerates the flowering process in Arabidopsis and maize. Furthermore, ZmARF16 was found to be positively correlated with the transcription of the ZCN12 gene. Similarly, the FT-like gene ZCN12 in maize rescues the late flowering phenotype of the FT mutation in Arabidopsis. Moreover, ZCN12 actively participates in the accumulation of florigen and the flowering process. Further research revealed that ZmARF16 positively responds to the auxin signal, and that the interaction between ZmARF16 and the ZCN12 promoter, as well as the subsequent promotion of ZCN12 gene expression, leads to early flowering. This was confirmed through a yeast one-hybrid and dual-luciferase assay. Therefore, the study provides evidence that the ZmARF16-ZCN12 module plays a crucial role in regulating the flowering process of maize.


Subject(s)
Arabidopsis , Florigen , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Zea mays , Flowers/genetics , Flowers/metabolism , Flowers/growth & development , Zea mays/genetics , Zea mays/metabolism , Zea mays/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Transcription Factors/metabolism , Transcription Factors/genetics , Florigen/metabolism , Indoleacetic Acids/metabolism , Promoter Regions, Genetic , Plants, Genetically Modified
13.
Theor Appl Genet ; 137(10): 228, 2024 Sep 20.
Article in English | MEDLINE | ID: mdl-39304588

ABSTRACT

KEY MESSAGE: A major QTL, qLF2.1, for flowering time in tomatoes, was fine mapped to chromosome 2 within a 51.37-kb interval, and the SlJMJ14 gene was verified as the causal gene by knockout. Tomato flowering time is an important agronomic trait that affects yield, fruit quality, and environmental adaptation. In this study, the high-generation inbred line 19108 with a late-flowering phenotype was selected for the mapping of the gene that causes late flowering. In the F2 population derived from 19108 (late flowering) × MM (early flowering), we identified a major late-flowering time quantitative trait locus (QTL) using QTL-seq, designated qLF2.1. This QTL was fine mapped to a 51.37-kb genomic interval using recombinant analysis. Through functional analysis of homologous genes, Solyc02g082400 (SlJMJ14), encoding a histone demethylase, was determined to be the most promising candidate gene. Knocking out SlJMJ14 in MM resulted in a flowering time approximately 5-6 days later than that in the wild-type plants. These results suggest that mutational SlJMJ14 is the major QTL for the late-flowering phenotype of the 19108 parental line.


Subject(s)
Chromosome Mapping , Flowers , Phenotype , Quantitative Trait Loci , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Chromosome Mapping/methods , Genes, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant
14.
BMC Genomics ; 25(1): 879, 2024 Sep 19.
Article in English | MEDLINE | ID: mdl-39300396

ABSTRACT

BACKGROUND: The correlation between heading date and flowering time significantly regulates grain filling and seed formation in barley and other crops, ultimately determining crop productivity. In this study, the transcriptome, hormone content detection, and metabolome analysis were performed systematically to analyze the regulatory mechanism of heading time in highland barley under different light conditions. The heading date of D18 (winter highland barley variety, Dongqing18) was later than that of K13 (vernal highland barley variety) under normal growth conditions or long-day (LD) treatment, while this situation will reverse with short-day (SD) treatment. RESULTS: The circadian rhythm plant, plant hormone signaling transduction, starch and sucrose metabolism, and photosynthesis-related pathways are significantly enriched in barley under SD and LD to influence heading time. In the plant circadian rhythm pathway, the key genes GI (Gigantea), PRR (Pesudoresponseregulator), FKF1 (Flavin-binding kelch pepeat F-Box 1), and FT (Flowering locus T) are identified as highly expressed in D18SD3 and K13SD2, while they are significantly down-regulated in K13SD3. These genes play an important role in regulating the heading date of D18 earlier than that of K13 under SD conditions. In photosynthesis-related pathways, a-b binding protein and RBS were highly expressed in K13LD3, while NADP-dependent malic enzyme, phosphoenolpyruvate carboxylase, fructose-bisphosphate aldolase, and triosephosphate isomerase were significantly expressed in D18SD3. In the starch and sucrose metabolism pathway, 41 DEGs (differentially expressed genes) and related metabolites were identified as highly expressed and accumulated in D18SD3. The DEGs SAUR (Small auxin-up RNA), ARF (Auxin response factor), TIR1 (Transport inhibitor response 1), EIN3 (Ethylene-insensitive 3), ERS1 (Ethylene receptor gene), and JAZ1 (Jasmonate ZIM-domain) in the plant hormone pathway were significantly up-regulated in D18SD3. Compared with D18LD3, the content of N6-isopentenyladenine, indole-3-carboxylic acid, 1-aminocyclopropanecarboxylic acid, trans-zeatin, indole-3-carboxaldehyde, 1-O-indol-3-ylacetylglucose, and salicylic acid in D18SD3 also increased. The expression levels of vernalization genes (HvVRN1, HvVRN2, and HvVRN3), photoperiod genes (PPD), and PPDK (Pyruvate phosphate dikinase) that affect photosynthetic efficiency in barley are also analyzed, which play important regulatory roles in barley heading date. The WGCNA analysis of the metabolome data and circadian regulatory genes identified the key metabolites and candidate genes to regulate the heading time of barley in response to the photoperiod. CONCLUSION: These studies will provide a reference for the regulation mechanism of flowering and the heading date of highland barley.


Subject(s)
Gene Expression Regulation, Plant , Hordeum , Photoperiod , Plant Growth Regulators , Hordeum/genetics , Hordeum/metabolism , Hordeum/growth & development , Plant Growth Regulators/metabolism , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Photosynthesis , Circadian Rhythm/genetics , Flowers/genetics , Flowers/metabolism , Flowers/growth & development
15.
Planta ; 260(4): 98, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39292428

ABSTRACT

MAIN CONCLUSION: The key genetic variation underlying the evo-devo of ICS in Solanaceae may be further pinpointed using an integrated strategy of forward and reverse genetics studies under the framework of phylogeny. The calyx of Physalis remains persistent throughout fruit development. Post-flowering, the fruiting calyx is inflated rapidly to encapsulate the berry, giving rise to a "Chinese lantern" structure called inflated calyx syndrome (ICS). It is unclear how this novelty arises. Over the past 2 decades, the role of MADS-box genes in the evolutionary development (evo-devo) of ICS has mainly been investigated within Solanaceae. In this review, we analyze the main achievements, challenges, and new progress. ICS acts as a source for fruit development, provides a microenvironment to protect fruit development, and assists in long-distance fruit dispersal. ICS is a typical post-floral trait, and the onset of its development is triggered by specific developmental signals that coincide with fertilization. These signals can be replaced by exogenous gibberellin and cytokinin application. MPF2-like heterotopic expression and MBP21-like loss have been proposed to be two essential evolutionary events for ICS origin, and manipulating the related MADS-box genes has been shown to affect the ICS size, sepal organ identity, and/or male fertility, but not completely disrupt ICS. Therefore, the core genes or key links in the ICS biosynthesis pathways may have undergone secondary mutations during evolution, or they have not yet been pinpointed. Recently, we have made some encouraging progress in acquiring lantern mutants in Physalis floridana. In addition to technological innovation, we propose an integrated strategy to further analyze the evo-devo mechanisms of ICS in Solanaceae using forward and reverse genetics studies under the framework of phylogeny.


Subject(s)
Fruit , Solanaceae , Fruit/genetics , Fruit/growth & development , Solanaceae/genetics , Solanaceae/physiology , Solanaceae/growth & development , Phylogeny , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Gene Expression Regulation, Plant , Biological Evolution , Physalis/genetics , Physalis/growth & development , Physalis/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Evolution, Molecular , Gibberellins/metabolism , East Asian People
16.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1843-1849, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233413

ABSTRACT

Graphene oxide (GO) is a novel nanomaterial being applied in different fields, but was less used as foliar fertilizer in agriculture. We conducted a pot experiment to analyze the effects of foliar spraying GO from 0 (control), 50 (T1), 100 (T2), 150 (T3) and 200 mg·L-1 (T4) on the morphogenesis and carbon and nitrogen metabolism of kidney bean plants during the initiation of flowering to clarify the physiological effects of foliar spraying GO. The results showed that dry matter accumulation, the content of photosynthetic pigments, soluble sugars of T1 to T4 treatments, were significantly increased by 40.7%-43.4%, 10.4%-80.7%, 6.4%-9.1% in kidney bean plants compared with CK treatment, respectively. T3 treatment performed the best. Meanwhile, the activities of sucrose phosphate synthase, acid converting enzyme and neutral converting enzyme of T3 and T4 treatments were increased by 25.7%-45.5%, 17.4%-28.6%, and 14.7%-20.1%, and the activities of nitrate reductase, glutamine synthetase, and glutamate synthetase of T2 and T3 treatments were increased by 8.1%-15.2%, 11.5%-25.0%, and 89.7%-93.1%, respectively. In conclusion, foliar spraying of appropriate GO in early flowering stage of kidney bean could increase the content of photosynthetic pigments, improve the level of photosynthetic carbon and nitrogen metabolism, and increase dry matter accumulation. T3 treatment (150 mg·L-1) was the most effective in this study.


Subject(s)
Carbon , Flowers , Graphite , Nitrogen , Phaseolus , Nitrogen/metabolism , Graphite/metabolism , Carbon/metabolism , Phaseolus/growth & development , Phaseolus/metabolism , Phaseolus/drug effects , Flowers/metabolism , Flowers/growth & development , Flowers/drug effects , Fertilizers , Photosynthesis/drug effects
17.
Ying Yong Sheng Tai Xue Bao ; 35(7): 1968-1978, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39233427

ABSTRACT

Pollination is one of the important ecosystem services related to sustainable development of human society. However, the population diversity and abundance of wild bees, important pollinators, have been significantly reduced by climate change, agricultural intensification, and landscape transformation. Re-establishment of pollinator habitat by planting nectar-producing plants is an important way to maintain pollination service. In this study, we investigated the status of wild bees and the traits of flowering plants in 22 apple orchards during flowering stage in Changping District, Beijing in 2019. We analyzed the response of wild bee diversity to the flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in apple orchards, aiming to provide guidance for the selection of nectar-producing plants to establish the habitat of wild bees. A total of 3517 wild bees were captured during the apple flowering season, representing 49 species, 13 genera, and 5 families. We identified 21 flowering plants species that shared a similar flo-wering period with apple, exhibiting a range of 5 colors and 9 inflorescence types. The Shannon diversity index, evenness index, and social bee richness of wild bee community were positively correlated with flowering plant richness. The total wild bee community richness, social bee richness, underground nesting bee richness were positively correlated with the richness of flowering plant color, but Halictidae bee abundance was negatively correlated with the richness of flowering plant color. The Shannon diversity index and evenness index of wild bee community were positively correlated with the richness of inflorescence types. Megachilidae bee richness was negative correlated with the white flower coverage. Megachilidae bee richness, social bee abundance, and ground nesting bee richness were positively correlated with the purple flower coverage. There was no significant correlation between wild bees and flowering plant richness, flower color richness, inflorescence type richness, flowering plant coverage, herbaceous layer coverage and different flower color coverage in other communities of different families, lifestyles and nesting types. Maintaining diverse ground flowering plants with various traits in orchards is important to improve the diversity of wild bees. In particular, increasing the coverage of purple flower during apple flowering period is helpful to promote the diversity of Megachilidae bee, social bees, and ground nesting bees.


Subject(s)
Biodiversity , Flowers , Malus , Pollination , Bees/physiology , Bees/growth & development , Bees/classification , Malus/growth & development , Malus/classification , Animals , Flowers/growth & development , Ecosystem , China
18.
BMC Plant Biol ; 24(1): 826, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39227784

ABSTRACT

BACKGROUND: In alfalfa (Medicago sativa), the coexistence of interfertile subspecies (i.e. sativa, falcata and coerulea) characterized by different ploidy levels (diploidy and tetraploidy) and the occurrence of meiotic mutants capable of producing unreduced (2n) gametes, have been efficiently combined for the establishment of new polyploids. The wealth of agronomic data concerning forage quality and yield provides a thorough insight into the practical benefits of polyploidization. However, many of the underlying molecular mechanisms regarding gene expression and regulation remained completely unexplored. In this study, we aimed to address this gap by examining the transcriptome profiles of leaves and reproductive tissues, corresponding to anthers and pistils, sampled at different time points from diploid and tetraploid Medicago sativa individuals belonging to progenies produced by bilateral sexual polyploidization (dBSP and tBSP, respectively) and tetraploid individuals stemmed from unilateral sexual polyploidization (tUSP). RESULTS: Considering the crucial role played by anthers and pistils in the reduced and unreduced gametes formation, we firstly analyzed the transcriptional profiles of the reproductive tissues at different stages, regardless of the ploidy level and the origin of the samples. By using and combining three different analytical methodologies, namely weighted-gene co-expression network analysis (WGCNA), tau (τ) analysis, and differentially expressed genes (DEGs) analysis, we identified a robust set of genes and transcription factors potentially involved in both male sporogenesis and gametogenesis processes, particularly in crossing-over, callose synthesis, and exine formation. Subsequently, we assessed at the same floral stage, the differences attributable to the ploidy level (tBSP vs. dBSP) or the origin (tBSP vs. tUSP) of the samples, leading to the identification of ploidy and parent-specific genes. In this way, we identified, for example, genes that are specifically upregulated and downregulated in flower buds in the comparison between tBSP and dBSP, which could explain the reduced fertility of the former compared to the latter materials. CONCLUSIONS: While this study primarily functions as an extensive investigation at the transcriptomic level, the data provided could represent not only a valuable original asset for the scientific community but also a fully exploitable genomic resource for functional analyses in alfalfa.


Subject(s)
Medicago sativa , RNA-Seq , Medicago sativa/genetics , Transcriptome , Ploidies , Gene Expression Regulation, Plant , Genes, Plant , Reproduction/genetics , Flowers/genetics , Flowers/growth & development , Gene Expression Profiling
19.
Int J Mol Sci ; 25(17)2024 Aug 29.
Article in English | MEDLINE | ID: mdl-39273306

ABSTRACT

Land plants grow throughout their life cycle via the continuous activity of stem cell reservoirs contained within their apical meristems. The shoot apical meristem (SAM) of Arabidopsis and other land plants responds to a variety of environmental cues, yet little is known about the response of meristems to seasonal changes in day length, or photoperiod. Here, the vegetative and reproductive growth of Arabidopsis wild-type and clavata3 (clv3) plants in different photoperiod conditions was analyzed. It was found that SAM size in wild-type Arabidopsis plants grown in long-day (LD) conditions gradually increased from embryonic to reproductive development. clv3 plants produced significantly more leaves as well as larger inflorescence meristems and more floral buds than wild-type plants in LD and short-day (SD) conditions, demonstrating that CLV3 signaling limits vegetative and inflorescence meristem activity in both photoperiods. The clv3 phenotypes were more severe in SDs, indicating a greater requirement for CLV3 restriction of SAM function when the days are short. In contrast, clv3 floral meristem size and carpel number were unchanged between LD and SD conditions, which shows that the photoperiod does not affect the regulation of floral meristem activity through the CLV3 pathway. This study reveals that CLV3 signaling specifically restricts vegetative and inflorescence meristem activity in both LD and SD photoperiods but plays a more prominent role during short days.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Meristem , Photoperiod , Signal Transduction , Meristem/metabolism , Meristem/growth & development , Meristem/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis/growth & development , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Flowers/growth & development , Flowers/genetics , Flowers/metabolism
20.
Physiol Plant ; 176(5): e14496, 2024.
Article in English | MEDLINE | ID: mdl-39223912

ABSTRACT

The Arabidopsis SUPERMAN (SUP) gene and its orthologs in eudicots are crucial in regulating the number of reproductive floral organs. In Medicago truncatula, in addition to this function, a novel role in controlling meristem activity during compound inflorescence development was assigned to the SUP-ortholog (MtSUP). These findings led us to investigate whether the role of SUP genes in inflorescence development was legume-specific or could be extended to other eudicots. To assess that, we used Solanum lycopersicum as a model system with a cymose complex inflorescence and Arabidopsis thaliana as the best-known example of simple inflorescence. We conducted a detailed comparative expression analysis of SlSUP and SUP from vegetative stages to flower transition. In addition, we performed an exhaustive phenotypic characterisation of two different slsup and sup mutants during the plant life cycle. Our findings reveal that SlSUP is required for precise regulation of the meristems that control shoot and inflorescence architecture in tomato. In contrast, in Arabidopsis, SUP performs no meristematic function, but we found a role of SUP in floral transition. Our findings suggest that the functional divergence of SUP-like genes contributed to the modification of inflorescence architecture during angiosperm evolution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Gene Expression Regulation, Plant , Inflorescence , Meristem , Solanum lycopersicum , Inflorescence/genetics , Inflorescence/growth & development , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/physiology , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Solanum lycopersicum/physiology , Meristem/genetics , Meristem/growth & development , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Mutation/genetics , Phenotype , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL