Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 14.743
Filter
1.
Nat Commun ; 15(1): 6498, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-39090128

ABSTRACT

The metabotropic glutamate receptors (mGluRs) are neuromodulatory family C G protein coupled receptors which assemble as dimers and allosterically couple extracellular ligand binding domains (LBDs) to transmembrane domains (TMDs) to drive intracellular signaling. Pharmacologically, mGluRs can be targeted at the LBDs by glutamate and synthetic orthosteric compounds or at the TMDs by allosteric modulators. Despite the potential of allosteric compounds as therapeutics, an understanding of the functional and structural basis of their effects is limited. Here we use multiple approaches to dissect the functional and structural effects of orthosteric versus allosteric ligands. We find, using electrophysiological and live cell imaging assays, that both agonists and positive allosteric modulators (PAMs) can drive activation and internalization of group II and III mGluRs. The effects of PAMs are pleiotropic, boosting the maximal response to orthosteric agonists and serving independently as internalization-biased agonists across mGluR subtypes. Motivated by this and intersubunit FRET analyses, we determine cryo-electron microscopy structures of mGluR3 in the presence of either an agonist or antagonist alone or in combination with a PAM. These structures reveal PAM-driven re-shaping of intra- and inter-subunit conformations and provide evidence for a rolling TMD dimer interface activation pathway that controls G protein and beta-arrestin coupling.


Subject(s)
Cryoelectron Microscopy , Receptors, Metabotropic Glutamate , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/chemistry , Receptors, Metabotropic Glutamate/agonists , Allosteric Regulation , Humans , HEK293 Cells , Ligands , Animals , Fluorescence Resonance Energy Transfer , Protein Domains
2.
Nat Commun ; 15(1): 6592, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097611

ABSTRACT

T-box riboswitches are noncoding RNA elements involved in genetic regulation of most Gram-positive bacteria. They regulate amino acid metabolism by assessing the aminoacylation status of tRNA, subsequently affecting the transcription or translation of downstream amino acid metabolism-related genes. Here we present single-molecule FRET studies of the Mycobacterium tuberculosis IleS T-box riboswitch, a paradigmatic translational T-box. Results support a two-step binding model, where the tRNA anticodon is recognized first, followed by interactions with the NCCA sequence. Furthermore, after anticodon recognition, tRNA can transiently dock into the discriminator domain even in the absence of the tRNA NCCA-discriminator interactions. Establishment of the NCCA-discriminator interactions significantly stabilizes the fully bound state. Collectively, the data suggest high conformational flexibility in translational T-box riboswitches; and supports a conformational selection model for NCCA recognition. These findings provide a kinetic framework to understand how specific RNA elements underpin the binding affinity and specificity required for gene regulation.


Subject(s)
Anticodon , Mycobacterium tuberculosis , Nucleic Acid Conformation , RNA, Bacterial , RNA, Transfer , Riboswitch , Riboswitch/genetics , RNA, Transfer/metabolism , RNA, Transfer/genetics , RNA, Transfer/chemistry , Mycobacterium tuberculosis/metabolism , Mycobacterium tuberculosis/genetics , Anticodon/metabolism , Anticodon/genetics , RNA, Bacterial/metabolism , RNA, Bacterial/genetics , RNA, Bacterial/chemistry , Fluorescence Resonance Energy Transfer , Protein Biosynthesis , Gene Expression Regulation, Bacterial , Kinetics
3.
Biosensors (Basel) ; 14(8)2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39194593

ABSTRACT

Dexamethasone (Dex) is a widely used glucocorticoid in medical practice, with applications ranging from allergies and inflammation to cerebral edema and shock. Despite its therapeutic benefits, Dex is classified as a prohibited substance for athletes due to its potential performance-enhancing effects. Consequently, there is a critical need for a convenient and rapid detection platform to enable prompt and accurate testing of this drug. In this study, we propose a label-free Förster Resonance Energy Transfer (FRET) aptasensor platform for Dex detection utilizing conjugated polymers (CPs), cationic conjugated polymers (CCPs), and gene finder probes (GFs). The system operates by exploiting the electrostatic interactions between positively charged CCPs and negatively charged DNA, facilitating sensitive and specific Dex detection. The label-free FRET aptasensor platform demonstrated robust performance in detecting Dex, exhibiting high selectivity and sensitivity. The system effectively distinguished Dex from interfering molecules and achieved stable detection across a range of concentrations in a commonly used sports drink matrix. Overall, the label-free FRET Dex detection system offers a simple, cost-effective, and highly sensitive approach for detecting Dex in diverse sample matrices. Its simplicity and effectiveness make it a promising tool for anti-doping efforts and other applications requiring rapid and accurate Dex detection.


Subject(s)
Biosensing Techniques , Cations , Dexamethasone , Fluorescence Resonance Energy Transfer , Polymers , Dexamethasone/analysis , Polymers/chemistry , Aptamers, Nucleotide/chemistry , DNA , Humans , Limit of Detection
4.
Methods Mol Biol ; 2831: 209-217, 2024.
Article in English | MEDLINE | ID: mdl-39134852

ABSTRACT

Plasticity of synaptic transmission underlies learning and memory. It is accompanied by changes in the density and size of synapses, collectively called structural plasticity. Therefore, understanding the mechanism of structural plasticity is critical for understanding the mechanism of synaptic plasticity. In this chapter, we describe the procedures and equipment required to image structural plasticity of a single dendritic spine, which hosts excitatory synapses in the central nervous system, and underlying molecular interactions/biochemical reactions using two-photon fluorescence lifetime microscopy (2P-FLIM) in combination with Förster resonance energy transfer (FRET)-based biosensors.


Subject(s)
Dendritic Spines , Fluorescence Resonance Energy Transfer , Microscopy, Fluorescence, Multiphoton , Neuronal Plasticity , Dendritic Spines/metabolism , Dendritic Spines/ultrastructure , Dendritic Spines/physiology , Neuronal Plasticity/physiology , Animals , Fluorescence Resonance Energy Transfer/methods , Microscopy, Fluorescence, Multiphoton/methods , Synapses/metabolism , Synapses/physiology , Mice , Biosensing Techniques/methods
5.
Mikrochim Acta ; 191(9): 561, 2024 08 24.
Article in English | MEDLINE | ID: mdl-39180707

ABSTRACT

A novel "turn-on" aptasensor for kanamycin (Kana) detection based on a new Förster resonance energy transfer (FRET) pair is reported. A new organic small molecule was employed as a high-efficiency quencher for fluorophore. Based on specific interactions between ssDNA and the quencher, an ingenious and amplified strategy was designed. In the absence of the target, the fluorescence of the fluorophore labeled at the end of the aptamer was quenched. After the binding of the aptamer to the target, the fluorescence was recovered and amplified. The proposed aptasensor showed high specificity, selectivity, and stability in complicated systems. With the P3-based strategy, the limit of detection for Kana is estimated to be 10 nM, which is much lower than the maximum allowable concentration in milk. The recoveries of spiked Kana in milk were in the range 99.8 ~ 105.3% (n = 3). Fortunately, this novel method can be easily extended to other antibiotics such as tobramycin by simply replacing the aptamer, showing great potential as a universal platform for selective, sensitive, and rapid detection of hazardous analytes in food samples.


Subject(s)
Anti-Bacterial Agents , Aptamers, Nucleotide , Biosensing Techniques , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Kanamycin , Limit of Detection , Milk , Aptamers, Nucleotide/chemistry , Fluorescence Resonance Energy Transfer/methods , Anti-Bacterial Agents/analysis , Kanamycin/analysis , Milk/chemistry , Animals , Fluorescent Dyes/chemistry , Biosensing Techniques/methods , Food Contamination/analysis , DNA, Single-Stranded/chemistry
6.
J Vis Exp ; (210)2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39185860

ABSTRACT

Members of the LRRC8 protein family form heteromeric ion and osmolyte channels with roles in numerous physiological processes. As volume-regulated anion channels (VRACs)/volume-sensitive outwardly rectifying channels (VSORs), they are activated upon osmotic cell swelling and mediate the extrusion of chloride and organic osmolytes, leading to the efflux of water and hence cell shrinkage. Beyond their role in osmotic volume regulation, VRACs have been implicated in cellular processes such as differentiation, migration, and apoptosis. Through their effect on membrane potential and their transport of various signaling molecules, leucine-rich repeat containing 8 (LRRC8) channels play roles in neuron-glia communication, insulin secretion, and immune response. The activation mechanism has remained elusive. LRRC8 channels, like other ion channels, are typically studied using electrophysiological methods. Here, we describe a method to detect LRRC8 channel activation by measuring intra-complex sensitized-emission Förster resonance energy transfer (SE-FRET) between fluorescent proteins fused to the C-terminal leucine-rich repeat domains of LRRC8 subunits. This method offers the possibility to study channel activation in situ without exchange of the cytosolic environment and during processes such as cell differentiation and apoptosis.


Subject(s)
Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Humans , Membrane Proteins/metabolism , Membrane Proteins/chemistry , HEK293 Cells , Animals
7.
Biosens Bioelectron ; 263: 116615, 2024 Nov 01.
Article in English | MEDLINE | ID: mdl-39106690

ABSTRACT

Circulating tumor DNA (ctDNA) is an emerging biomarker of liquid biopsy for cancer. But it remains a challenge to achieve simple, sensitive and specific detection of ctDNA because of low abundance and single-base mutation. In this work, an excitation/emission-enhanced heterostructure photonic crystal (PC) array synergizing with entropy-driven circuit (EDC) was developed for high-resolution and ultrasensitive analysis of ctDNA. The donor donor-acceptor FÖrster resonance energy transfer ("DD-A" FRET) was integrated in EDC based on the introduction of simple auxiliary strand, which exhibited higher sensitivity than that of traditional EDC. The heterostructure PC array was constructed with the bilayer periodic nanostructures of nanospheres. Because the heterostructure PC has the adjustable dual photonic band gaps (PBGs) by changing nanosphere sizes, and the "DD-A" FRET can offer the excitation and emission peak with enough distance, it helps the successful matches between the dual PBGs of heterostructure PC and the excitation/emission peaks of "DD-A" FRET; thus, the fluorescence from EDC can be enhanced effectively from both of excitation and emission processes on heterostructure PC array. Besides, high-resolution of single-base mutation was obtained through the strict recognition of EDC. Benefiting from the specific spectrum-matched and synergetic amplification of heterostructure PC and EDC with "DD-A" FRET, the proposed array obtained ultrasensitive detection of ctDNA with LOD of 12.9 fM, and achieved the analysis of mutation frequency as low as 0.01%. Therefore, the proposed strategy has the advantages of simple operation, mild conditions (enzyme-free and isothermal), high-sensitivity, high-resolution and high-throughput analysis, showing potential in bioassay and clinical application.


Subject(s)
Biosensing Techniques , Circulating Tumor DNA , Fluorescence Resonance Energy Transfer , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Humans , Circulating Tumor DNA/blood , Circulating Tumor DNA/isolation & purification , Circulating Tumor DNA/genetics , Circulating Tumor DNA/analysis , Photons , Limit of Detection , Entropy , Neoplasms/blood , Biomarkers, Tumor/blood , Nanospheres/chemistry
8.
J Phys Chem B ; 128(32): 7781-7791, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-39106061

ABSTRACT

Much attention has been given to studying the translational diffusion of globular proteins, whereas the translational diffusion of intrinsically disordered proteins (IDPs) is less studied. In this study, we investigate the translational diffusion and how it is affected by the self-association of an IDP, κ-casein, using pulsed-field gradient nuclear magnetic resonance and time-resolved Förster resonance energy transfer. Using the analysis of the shape of diffusion attenuation and the concentration dependence of κ-casein diffusion coefficients and intermolecular interactions, we demonstrate that κ-casein exhibits continuous self-association. When the volume fraction of κ-casein is below 0.08, we observe that κ-casein self-association results in a macroscopic phase separation upon storage at 4 °C. At κ-casein volume fractions above 0.08, self-association leads to the formation of labile gel-like networks without subsequent macroscopic phase separation. Unlike α-casein, which shows a strong concentration dependence and extensive gel-like network formation, only one-third of κ-casein molecules participate in the gel network at a time, resulting in a more dynamic and less extensive structure. These findings highlight the unique association properties of κ-casein, contributing to a better understanding of its behavior under various conditions and its potential role in casein micelle formation.


Subject(s)
Caseins , Fluorescence Resonance Energy Transfer , Intrinsically Disordered Proteins , Caseins/chemistry , Caseins/metabolism , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/metabolism , Diffusion , Nuclear Magnetic Resonance, Biomolecular
9.
Cell Rep ; 43(8): 114634, 2024 Aug 27.
Article in English | MEDLINE | ID: mdl-39154344

ABSTRACT

N-methyl-D-aspartate receptors are ionotropic glutamate receptors that mediate synaptic transmission and plasticity. Variable GluN2 subunits in diheterotetrameric receptors with identical GluN1 subunits set very different functional properties. To understand this diversity, we use single-molecule fluorescence resonance energy transfer (smFRET) to measure the conformations of the ligand binding domain and modulatory amino-terminal domain of the common GluN1 subunit in receptors with different GluN2 subunits. Our results demonstrate a strong influence of the GluN2 subunits on GluN1 rearrangements, both in non-agonized and partially agonized activation intermediates, which have been elusive to structural analysis, and in the fully liganded state. Chimeric analysis reveals structural determinants that contribute to these subtype differences. Our study provides a framework for understanding the conformational landscape that supports highly divergent levels of activity, desensitization, and agonist potency in receptors with different GluN2s and could open avenues for the development of subtype-specific modulators.


Subject(s)
Receptors, N-Methyl-D-Aspartate , Receptors, N-Methyl-D-Aspartate/metabolism , Receptors, N-Methyl-D-Aspartate/chemistry , Receptors, N-Methyl-D-Aspartate/genetics , Humans , Fluorescence Resonance Energy Transfer , Animals , Protein Conformation , HEK293 Cells , Ion Channel Gating , Protein Subunits/metabolism , Protein Subunits/chemistry , Protein Domains
10.
Toxins (Basel) ; 16(8)2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39195751

ABSTRACT

Saxitoxin (STX), an exceptionally potent marine toxin for which no antidote is currently available, is produced by methanogens and cyanobacteria. This poses a significant threat to both shellfish aquaculture and human health. Consequently, the development of a rapid, highly sensitive STX detection method is of great significance. The objective of this research is to create a novel approach for identifying STX. Therefore, amplified luminescent proximity homogeneous assay (AlphaLISA) was established using a direct competition method based on the principles of fluorescence resonance energy transfer and antigen-antibody specific binding. This method is sensitive, rapid, performed without washing, easy to operate, and can detect 8-128 ng/mL of STX in only 10 min. The limit of detection achieved by this method is as low as 4.29 ng/mL with coefficients of variation for the intra-batch and inter-batch analyses ranging from 2.61% to 3.63% and from 7.67% to 8.30%, respectively. In conclusion, our study successfully establishes a simple yet sensitive, rapid, and accurate AlphaLISA method for the detection of STX which holds great potential in advancing research on marine biotoxins.


Subject(s)
Luminescent Measurements , Saxitoxin , Shellfish , Saxitoxin/analysis , Shellfish/analysis , Animals , Luminescent Measurements/methods , Limit of Detection , Food Contamination/analysis , Fluorescence Resonance Energy Transfer
11.
Nat Commun ; 15(1): 7456, 2024 Aug 28.
Article in English | MEDLINE | ID: mdl-39198435

ABSTRACT

Sphingomyelin is a key molecule of sphingolipid metabolism, and its enzymatic breakdown is associated with various infectious diseases. Here, we introduce trifunctional sphingomyelin derivatives that enable the visualization of sphingomyelin distribution and sphingomyelinase activity in infection processes. We demonstrate this by determining the activity of a bacterial sphingomyelinase on the plasma membrane of host cells using a combination of Förster resonance energy transfer and expansion microscopy. We further use our trifunctional sphingomyelin probes to visualize their metabolic state during infections with Chlamydia trachomatis and thereby show that chlamydial inclusions primarily contain the cleaved forms of the molecules. Using expansion microscopy, we observe that the proportion of metabolized molecules increases during maturation from reticulate to elementary bodies, indicating different membrane compositions between the two chlamydial developmental forms. Expansion microscopy of trifunctional sphingomyelins thus provides a powerful microscopy tool to analyze sphingomyelin metabolism in cells at nanoscale resolution.


Subject(s)
Cell Membrane , Chlamydia trachomatis , Sphingomyelin Phosphodiesterase , Sphingomyelins , Sphingomyelins/metabolism , Sphingomyelin Phosphodiesterase/metabolism , Chlamydia trachomatis/metabolism , Humans , Cell Membrane/metabolism , Fluorescence Resonance Energy Transfer/methods , HeLa Cells , Chlamydia Infections/metabolism , Chlamydia Infections/microbiology , Microscopy/methods
12.
Biomolecules ; 14(8)2024 Aug 10.
Article in English | MEDLINE | ID: mdl-39199373

ABSTRACT

Sulfonylureas (SUs) are a class of antidiabetic drugs widely used in the management of diabetes mellitus type 2. They promote insulin secretion by inhibiting the ATP-sensitive potassium channel in pancreatic ß-cells. Recently, the exchange protein directly activated by cAMP (Epac) was identified as a new class of target proteins of SUs that might contribute to their antidiabetic effect, through the activation of the Ras-like guanosine triphosphatase Rap1, which has been controversially discussed. We used human embryonic kidney (HEK) 293 cells expressing genetic constructs of various Förster resonance energy transfer (FRET)-based biosensors containing different versions of Epac1 and Epac2 isoforms, alone or fused to different phosphodiesterases (PDEs), to monitor SU-induced conformational changes in Epac or direct PDE inhibition in real time. We show that SUs can both induce conformational changes in the Epac2 protein but not in Epac1, and directly inhibit the PDE3 and PDE4 families, thereby increasing cAMP levels in the direct vicinity of these PDEs. Furthermore, we demonstrate that the binding site of SUs in Epac2 is distinct from that of cAMP and is located between the amino acids E443 and E460. Using biochemical assays, we could also show that tolbutamide can inhibit PDE activity through an allosteric mechanism. Therefore, the cAMP-elevating capacity due to allosteric PDE inhibition in addition to direct Epac activation may contribute to the therapeutic effects of SU drugs.


Subject(s)
Cyclic AMP , Guanine Nucleotide Exchange Factors , Sulfonylurea Compounds , Humans , Sulfonylurea Compounds/pharmacology , Guanine Nucleotide Exchange Factors/metabolism , HEK293 Cells , Cyclic AMP/metabolism , Fluorescence Resonance Energy Transfer , Phosphodiesterase Inhibitors/pharmacology , Phosphodiesterase Inhibitors/chemistry , Hypoglycemic Agents/pharmacology , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Binding Sites , Cyclic Nucleotide Phosphodiesterases, Type 3/metabolism
13.
Biomolecules ; 14(8)2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39199389

ABSTRACT

Receptor-ligand interactions at cell interfaces initiate signaling cascades essential for cellular communication and effector functions. Specifically, T cell receptor (TCR) interactions with pathogen-derived peptides presented by the major histocompatibility complex (pMHC) molecules on antigen-presenting cells are crucial for T cell activation. The binding duration, or dwell time, of TCR-pMHC interactions correlates with downstream signaling efficacy, with strong agonists exhibiting longer lifetimes compared to weak agonists. Traditional surface plasmon resonance (SPR) methods quantify 3D affinity but lack cellular context and fail to account for factors like membrane fluctuations. In the recent years, single-molecule Förster resonance energy transfer (smFRET) has been applied to measure 2D binding kinetics of TCR-pMHC interactions in a cellular context. Here, we introduce a rigorous mathematical model based on survival analysis to determine exponentially distributed receptor-ligand interaction lifetimes, verified through simulated data. Additionally, we developed a comprehensive analysis pipeline to extract interaction lifetimes from raw microscopy images, demonstrating the model's accuracy and robustness across multiple TCR-pMHC pairs. Our new software suite automates data processing to enhance throughput and reduce bias. This methodology provides a refined tool for investigating T cell activation mechanisms, offering insights into immune response modulation.


Subject(s)
Fluorescence Resonance Energy Transfer , Receptors, Antigen, T-Cell , Single Molecule Imaging , Fluorescence Resonance Energy Transfer/methods , Receptors, Antigen, T-Cell/metabolism , Receptors, Antigen, T-Cell/chemistry , Ligands , Humans , Single Molecule Imaging/methods , Major Histocompatibility Complex , Protein Binding , Kinetics , T-Lymphocytes/metabolism , T-Lymphocytes/immunology
14.
Biomacromolecules ; 25(8): 5222-5232, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39089682

ABSTRACT

Fluorogenic glycomonomers have been used for biological evaluations, and water-soluble and Förster resonance energy transfer (FRET)-sensitive glycopolymers have also been reported. A FRET-sensitive polymer was conveniently prepared from a fluorogenic donor monomer and a fluorogenic acceptor monomer by means of simple radical polymerization in high yield. Continuous fluorospectroscopic monitoring of the polymer in the presence of an enzyme was performed, and the results showed the possible application of the FRET-sensitive glycopolymer for practical use. In addition to the use of aqueous solution phase, the water-soluble and FRET-sensitive glycopolymer was completely captured into an interpenetrating polymer network (IPN) by means of radical polymerization with a combination of acrylamide and bis-acrylamide as used for the cross-linking reagent system. The IPN including the FRET-sensitive glycopolymer was allowed to react with amylases in an aqueous buffer solution at 37 °C, and the enzymatic reaction was continuously and conveniently monitored by means of fluorometric spectroscopy.


Subject(s)
Fluorescence Resonance Energy Transfer , Polymers , Fluorescence Resonance Energy Transfer/methods , Polymers/chemistry , Enzyme Assays/methods , Polymerization , Fluorescent Dyes/chemistry
15.
Proc Natl Acad Sci U S A ; 121(36): e2311711121, 2024 Sep 03.
Article in English | MEDLINE | ID: mdl-39196624

ABSTRACT

Inhibitors of heterotrimeric G proteins are being developed as therapeutic agents. Epitomizing this approach are YM-254890 (YM) and FR900359 (FR), which are efficacious in models of thrombosis, hypertension, obesity, asthma, uveal melanoma, and pain, and under investigation as an FR-antibody conjugate in uveal melanoma clinical trials. YM/FR inhibits the Gq/11/14 subfamily by interfering with GDP (guanosine diphosphate) release, but by an unknown biophysical mechanism. Here, we show that YM inhibits GDP release by stabilizing closure between the Ras-like and α-helical domains of a Gα subunit. Nucleotide-free Gα adopts an ensemble of open and closed configurations, as indicated by single-molecule Förster resonance energy transfer and molecular dynamics simulations, whereas GDP and GTPγS (guanosine 5'-O-[gamma-thio]triphosphate) stabilize distinct closed configurations. YM stabilizes closure in the presence or absence of GDP without requiring an intact interdomain interface. All three classes of mammalian Gα subunits that are insensitive to YM/FR possess homologous but degenerate YM/FR binding sites, yet can be inhibited upon transplantation of the YM/FR binding site of Gq. Novel YM/FR analogs tailored to each class of G protein will provide powerful new tools for therapeutic investigation.


Subject(s)
Guanosine Diphosphate , Guanosine Diphosphate/metabolism , Humans , Molecular Dynamics Simulation , Fluorescence Resonance Energy Transfer , Protein Domains , GTP-Binding Protein alpha Subunits/metabolism , Protein Binding , Peptides, Cyclic , Depsipeptides
16.
Biosens Bioelectron ; 264: 116661, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39142229

ABSTRACT

As a foodborne pathogen capable of causing severe illnesses, early detection of Escherichia coli O157:H7 (E. coli O157:H7) is crucial for ensuring food safety. While Förster resonance energy transfer (FRET) is an efficient and precise detection technique, there remains a need for amplification strategies to detect low concentrations of E. coli O157:H7. In this study, we presented a phage (M13)-induced "one to many" FRET platform for sensitively detecting E. coli O157:H7. The aptamers, which specifically recognize E. coli O157:H7 were attached to magnetic beads as capture probes for separating E. coli O157:H7 from food samples. The peptide O157S, which specifically targets E. coli O157:H7, and streptavidin binding peptide (SBP), which binds to streptavidin (SA), were displayed on the P3 and P8 proteins of M13, respectively, to construct the O157S-M13K07-SBP phage as a detection probe for signal output. Due to the precise distance (≈3.2 nm) between two neighboring N-terminus of P8 protein, the SA-labeled FRET donor and acceptor can be fixed at the Förster distance on the surface of O157S-M13K07-SBP via the binding of SA and SBP, inducing FRET. Moreover, the P8 protein, with ≈2700 copies, enabled multiple FRET (≈605) occurrences, amplifying FRET in each E. coli O157:H7 recognition event. The O157S-M13K07-SBP-based FRET sensor can detect E. coli O157:H7 at concentration as low as 6 CFU/mL and demonstrates excellent performance in terms of selectivity, detection time (≈3 h), accuracy, precision, practical application, and storage stability. In summary, we have developed a powerful tool for detecting various targets in food safety, environmental monitoring, and medical diagnosis.


Subject(s)
Biosensing Techniques , Escherichia coli O157 , Fluorescence Resonance Energy Transfer , Food Microbiology , Escherichia coli O157/isolation & purification , Escherichia coli O157/virology , Fluorescence Resonance Energy Transfer/methods , Biosensing Techniques/methods , Bacteriophage M13/chemistry , Humans , Streptavidin/chemistry , Limit of Detection , Food Contamination/analysis , Aptamers, Nucleotide/chemistry , Escherichia coli Infections/microbiology , Escherichia coli Infections/diagnosis
17.
Biosens Bioelectron ; 262: 116542, 2024 Oct 15.
Article in English | MEDLINE | ID: mdl-38991372

ABSTRACT

Continuous glucose monitors are crucial for diabetes management, but invasive sampling, signal drift and frequent calibrations restrict their widespread usage. Microneedle sensors are emerging as a minimally-invasive platform for real-time monitoring of clinical parameters in interstitial fluid. Herein, a painless and flexible microneedle sensing patch is constructed by a mechanically-strong microneedle base and a thin layer of fluorescent hydrogel sensor for on-site, accurate, and continuous glucose monitoring. The Förster resonance energy transfer (FRET)-based hydrogel sensors are fabricated by facile photopolymerizations of acryloylated FRET pairs and glucose-specific phenylboronic acid. The optimized hydrogel sensor enables quantification of glucose with reversibility, high selectivity, and signal stability against photobleaching. Poly (ethylene glycol diacrylate)-co-polyacrylamide hydrogel is utilized as the microneedle base, facilitating effective skin piercing and biofluid extraction. The integrated microneedle sensor patch displays a sensitivity of 0.029 mM-1 in the (patho)physiological range, a low detection limit of 0.193 mM, and a response time of 7.7 min in human serum. Hypoglycemia, euglycemia and hyperglycemia are continuously monitored over 6 h simulated meal and rest activities in a porcine skin model. This microneedle sensor with high transdermal analytical performance offers a powerful tool for continuous diabetes monitoring at point-of-care settings.


Subject(s)
Biosensing Techniques , Blood Glucose Self-Monitoring , Blood Glucose , Fluorescence Resonance Energy Transfer , Hydrogels , Needles , Wearable Electronic Devices , Humans , Biosensing Techniques/instrumentation , Hydrogels/chemistry , Blood Glucose Self-Monitoring/instrumentation , Blood Glucose/analysis , Animals , Swine , Polyethylene Glycols/chemistry , Limit of Detection , Acrylic Resins/chemistry , Equipment Design , Continuous Glucose Monitoring , Boronic Acids
18.
Sci Adv ; 10(29): eadk4920, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39018397

ABSTRACT

Conformational dynamics of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein (S) mediate exposure of the binding site for the cellular receptor, angiotensin-converting enzyme 2 (ACE2). The N-terminal domain (NTD) of S binds terminal sialic acid (SA) moieties on the cell surface, but the functional role of this interaction in virus entry is unknown. Here, we report that NTD-SA interaction enhances both S-mediated virus attachment and ACE2 binding. Through single-molecule Förster resonance energy transfer imaging of individual S trimers, we demonstrate that SA binding to the NTD allosterically shifts the S conformational equilibrium, favoring enhanced exposure of the ACE2-binding site. Antibodies that target the NTD block SA binding, which contributes to their mechanism of neutralization. These findings inform on mechanisms of S activation at the cell surface.


Subject(s)
Angiotensin-Converting Enzyme 2 , N-Acetylneuraminic Acid , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , N-Acetylneuraminic Acid/metabolism , N-Acetylneuraminic Acid/chemistry , Binding Sites , Single Molecule Imaging , COVID-19/virology , COVID-19/metabolism , Allosteric Regulation , Virus Internalization , Fluorescence Resonance Energy Transfer , Protein Domains , Virus Attachment
19.
Elife ; 122024 Jul 24.
Article in English | MEDLINE | ID: mdl-39046447

ABSTRACT

The Arabidopsis thaliana FLAGELLIN-SENSITIVE2 (FLS2), a typical receptor kinase, recognizes the conserved 22 amino acid sequence in the N-terminal region of flagellin (flg22) to initiate plant defense pathways, which was intensively studied in the past decades. However, the dynamic regulation of FLS2 phosphorylation at the plasma membrane after flg22 recognition needs further elucidation. Through single-particle tracking, we demonstrated that upon flg22 treatment the phosphorylation of Ser-938 in FLS2 impacts its spatiotemporal dynamics and lifetime. Following Förster resonance energy transfer-fluorescence lifetime imaging microscopy and protein proximity indexes assays revealed that flg22 treatment increased the co-localization of GFP-tagged FLS2/FLS2S938D but not FLS2S938A with AtRem1.3-mCherry, a sterol-rich lipid marker, indicating that the phosphorylation of FLS2S938 affects FLS2 sorting efficiency to AtRem1.3-associated nanodomains. Importantly, we found that the phosphorylation of Ser-938 enhanced flg22-induced FLS2 internalization and immune responses, demonstrating that the phosphorylation may activate flg22-triggered immunity through partitioning FLS2 into functional AtRem1.3-associated nanodomains, which fills the gap between the FLS2S938 phosphorylation and FLS2-mediated immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Flagellin , Protein Kinases , Single Molecule Imaging , Phosphorylation , Arabidopsis Proteins/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Arabidopsis/genetics , Arabidopsis/immunology , Protein Kinases/metabolism , Protein Kinases/genetics , Flagellin/metabolism , Flagellin/pharmacology , Plant Immunity , Fluorescence Resonance Energy Transfer , Cell Membrane/metabolism
20.
Luminescence ; 39(7): e4827, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39048529

ABSTRACT

Chemiluminescence resonance energy transfer (CRET) efficiency can be enhanced by confining CRET donors and acceptors within nanoscale spaces. However, this enhanced efficiency is often affected by uncertainties stemming from the random distribution of CRET donors and acceptors in such confined environments. In this study, a novel confined nanospace was created through the surfactant modification of carbon dots (CDs) exhibiting aggregation-induced emission (AIE) characteristics. Hydrophobic CRET donors could be effectively confined within this nanospace. The distance between the CRET donors and acceptors could be controlled by anchoring the AIE-CDs as the CRET acceptors, resulting in significantly improved CRET efficiency. Furthermore, this AIE-CDs-based CRET system was successfully applied to the detection of hydrogen peroxide (H2O2) in rainwater, showcasing its potential for practical applications.


Subject(s)
Carbon , Hydrogen Peroxide , Luminescence , Quantum Dots , Surface-Active Agents , Carbon/chemistry , Surface-Active Agents/chemistry , Quantum Dots/chemistry , Hydrogen Peroxide/chemistry , Luminescent Measurements , Fluorescence Resonance Energy Transfer , Energy Transfer
SELECTION OF CITATIONS
SEARCH DETAIL