Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 964
Filter
3.
Ecotoxicol Environ Saf ; 280: 116524, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38838464

ABSTRACT

BACKGROUND: Organophosphate esters (OPEs) and Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with common exposure sources, leading to their widespread presence in human body. However, evidence on co-exposure to OPEs and PFAS and its impact on cardiovascular-kidney-liver-metabolic biomarkers remains limited. METHODS: In this cross-sectional study, 467 adults were enrolled from January to May 2022 during physical visits in Shijiazhuang, Hebei province. Eleven types of OPEs and twelves types of PFAS were detected, among which eight OPEs and six PFAS contaminants were detected in more than 60% of plasma samples. Seventeen biomarkers were assessed to comprehensively evaluate the cardiovascular-kidney-liver-metabolic function. Multiple linear regression, multipollutant models with sparse partial least squares, and Bayesian kernel machine regression (BKMR) models were applied to examine the associations of individual OPEs and PFAS and their mixtures with organ function and metabolism, respectively. RESULTS: Of the over 400 exposure-outcome associations tested when modelling, we observed robust results across three models that perfluorohexanoic acid (PFHxS) was significantly positively associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and indirect bilirubin (IBIL). Perfluorononanoic acid was significantly associated with decreased AST/ALT and increased very-low-density lipoprotein cholesterol levels. Besides, perfluorodecanoic acid was correlated with increased high lipoprotein cholesterol and perfluoroundecanoic acid was consistently associated with lower glucose level. BKMR analysis showed that OPEs and PFAS mixtures were positively associated with IBIL and TBIL, among which PFHxS was the main toxic chemicals. CONCLUSIONS: Our findings suggest that exposure to OPEs and PFAS, especially PFHxS and PFNA, may disrupt organ function and metabolism in the general population, providing insight into the potential pathophysiological mechanisms of OPEs and PFAS co-exposure and chronic diseases.


Subject(s)
Biomarkers , Environmental Pollutants , Esters , Fluorocarbons , Kidney , Liver , Organophosphates , Humans , Biomarkers/blood , Female , Male , Cross-Sectional Studies , Adult , Fluorocarbons/blood , Fluorocarbons/toxicity , China , Middle Aged , Environmental Pollutants/blood , Liver/drug effects , Kidney/drug effects , Organophosphates/toxicity , Environmental Exposure/statistics & numerical data , Caproates , Young Adult , Aged , East Asian People
4.
Environ Health ; 23(1): 55, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858670

ABSTRACT

BACKGROUND: Several legacy and emerging per- and polyfluoroalkyl substances (PFAS) have been regulated around the world. There is growing concern over the proliferation of alternative PFAS, as well as PFAS precursors. Biomonitoring data for PFAS are critical for assessing exposure and human health risk. METHODS: We collected serum samples from 289 adult female participants in a 2018-2021 follow-up study of the Maternal-Infant Research on Environmental Chemicals (MIREC) Canadian pregnancy cohort. Samples were analyzed for 40 PFAS using ultra-performance liquid chromatography-tandem mass spectrometry. For those compounds with > 50% detection, as well as the sum of these compounds, we describe serum concentrations and patterns of exposure according to sociodemographic and obstetrical history characteristics. RESULTS: 17 out of 40 PFAS were detected in > 50% of samples with 7 of these detected in > 97% of samples. Median [95th percentile] concentrations (µg/L) were highest for PFOS (1.62 [4.56]), PFOA (0.69 [1.52]), PFNA (0.38 [0.81]), and PFHxS (0.33 [0.92]). Geometric mean concentrations of PFOA and PFHxS were approximately 2-fold lower among those with more children (≥ 3 vs. 1), greater number of children breastfed (≥ 3 vs. ≤ 1), longer lifetime duration of breastfeeding (> 4 years vs. ≤ 9 months), and shorter time since last pregnancy (≤ 4 years vs. > 8 years). We observed similar patterns for PFOS, PFHpS, and the sum of 17 PFAS, though the differences between groups were smaller. Concentrations of PFOA were higher among "White" participants, while concentrations of N-MeFOSE, N-EtFOSE, 7:3 FTCA, and 4:2 FTS were slightly higher among participants reporting a race or ethnicity other than "White". Concentrations of legacy, alternative, and precursor PFAS were generally similar across levels of age, education, household income, body mass index, and menopausal status. CONCLUSIONS: We report the first Canadian biomonitoring data for several alternative and precursor PFAS. Our findings suggest that exposure to PFAS, including several emerging alternatives, may be widespread. Our results are consistent with previous studies showing that pregnancy and breastfeeding are excretion pathways for PFAS.


Subject(s)
Environmental Pollutants , Fluorocarbons , Humans , Female , Fluorocarbons/blood , Adult , Environmental Pollutants/blood , Canada , Biological Monitoring , Pregnancy , Young Adult , Cohort Studies
5.
Sci Total Environ ; 941: 173767, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38844220

ABSTRACT

Epidemiologic studies have reported the relationships between perfluoroalkyl substances (PFASs) and breast cancer incidence, yet the underlying mechanisms are not well understood. This study aimed to elucidate the mediation role of mitochondrial DNA copy number (mtDNAcn) in the relationships between PFASs exposure and breast cancer risk. We conducted a case-cohort study within the Dongfeng-Tongji cohort, involving 226 incident breast cancer cases and a random sub-cohort (n = 990). Their plasma concentrations of six PFASs [including perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroheptanoic acid (PFHpA), perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS)], and peripheral blood levels of mtDNAcn, were detected at baseline by using ultraperformance liquid chromatography-tandem mass spectrometry and quantitative real-time PCR, respectively. Linear regression and Barlow-weighted Cox models were employed separately to assess the relationships of mtDNAcn with PFASs and breast cancer risk. Mediation analysis was further conducted to quantify the mediating effects of mtDNAcn on PFAS-breast cancer relationships. We observed increased blood mtDNAcn levels among participants with the highest PFNA and PFHpA exposure [Q4 vs. Q1, ß(95%CI) = 0.092(0.022, 0.162) and 0.091(0.022, 0.160), respectively], while no significant associations were observed of PFOA, PFDA, PFOS, or PFHxS with mtDNAcn. Compared to participants within the lowest quartile subgroup of mtDNAcn, those with the highest mtDNAcn levels exhibited a significantly increased risk of breast cancer and postmenopausal breast cancer [Q4 vs. Q1, HR(95%CI) = 3.34(1.80, 6.20) and 3.71(1.89, 7.31)]. Furthermore, mtDNAcn could mediate 14.6 % of the PFHpA-breast cancer relationship [Indirect effect, HR(95%CI) = 1.02(1.00, 1.05)]. Our study unveiled the relationships of PFNA and the short-chain PFHpA with mtDNAcn and the mediation role of mtDNAcn in the PFHpA-breast cancer association. These findings provided insights into the potential biological mechanisms linking PFASs to breast cancer risk.


Subject(s)
Breast Neoplasms , DNA, Mitochondrial , Environmental Pollutants , Fluorocarbons , Fluorocarbons/blood , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Humans , Female , Middle Aged , Prospective Studies , Environmental Pollutants/blood , Incidence , Alkanesulfonic Acids/blood , Caprylates/blood , Adult , DNA Copy Number Variations , Environmental Exposure/statistics & numerical data , China/epidemiology , Cohort Studies , Case-Control Studies
6.
Environ Res ; 252(Pt 4): 119072, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729411

ABSTRACT

BACKGROUND: Per- and poly-fluorinated compounds (PFAS) and heavy metals constitute two classes of environmental exposures with known immunotoxicant effects. In this pilot study, we aimed to evaluate the impact of exposure to heavy metals and PFAS on COVID-19 severity. We hypothesized that elevated plasma-PFAS concentrations and urinary heavy metal concentrations would be associated with increased odds of ICU admission in COVID-19 hospitalized individuals. METHODS: Using the University of Southern California Clinical Translational Sciences Institute (SC-CTSI) biorepository of hospitalized COVID-19 patients, urinary concentrations of 15 heavy metals and urinary creatinine were measured in n = 101 patients and plasma concentrations of 13 PFAS were measured in n = 126 patients. COVID-19 severity was determined based on whether a patient was admitted to the ICU during hospitalization. Associations of metals and PFAS with ICU admission were assessed using logistic regression models, controlling for age, sex, ethnicity, smoking status, and for metals, urinary dilution. RESULTS: The average age of patients was 55 ± 14.2 years. Among SC-CTSI participants with urinary measurement of heavy metals and blood measures of PFAS, 54.5% (n = 61) and 54.8% (n = 80) were admitted to the ICU, respectively. For heavy metals, we observed higher levels of Cd, Cr, and Cu in ICU patients. The strongest associations were with Cadmium (Cd). After accounting for covariates, each 1 SD increase in Cd resulted in a 2.00 (95% CI: 1.10-3.60; p = 0.03) times higher odds of admission to the ICU. When including only Hispanic or Latino participants, the effect estimates between cadmium and ICU admission remained similar. Results for PFAS were less consistent, with perfluorodecanesulfonic acid (PFDS) exhibiting a positive but non-significant association with ICU admission (Odds ratio, 95% CI: 1.50, 0.97-2.20) and perfluorodecanoic acid (PFDA) exhibiting a negative association with ICU admission (0.53, 0.31-0.88). CONCLUSIONS: This study supports the hypothesis that environmental exposures may impact COVID-19 severity.


Subject(s)
COVID-19 , Environmental Exposure , Environmental Pollutants , Hispanic or Latino , Metals, Heavy , Humans , Middle Aged , Male , Female , Hispanic or Latino/statistics & numerical data , Environmental Pollutants/urine , Environmental Pollutants/blood , Aged , Adult , Environmental Exposure/adverse effects , Environmental Exposure/analysis , Metals, Heavy/urine , Metals, Heavy/blood , Risk Factors , Pilot Projects , Fluorocarbons/blood , Fluorocarbons/urine , Hospitalization/statistics & numerical data , Intensive Care Units/statistics & numerical data , SARS-CoV-2
7.
Environ Sci Technol ; 58(23): 9954-9966, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38804966

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) strongly bind to proteins and lipids in blood, which govern their accumulation and distribution in organisms. Understanding the plasma binding mechanism and species differences will facilitate the quantitative in vitro-to-in vivo extrapolation and improve risk assessment of PFAS. We studied the binding mechanism of 16 PFAS to bovine serum albumin (BSA), trout, and human plasma using solid-phase microextraction. Binding of anionic PFAS to BSA and human plasma was found to be highly concentration-dependent, while trout plasma binding was linear for the majority of the tested PFAS. At a molar ratio of PFAS to protein ν < 0.1 molPFAS/molprotein, the specific protein binding of anionic PFAS dominated their human plasma binding. This would be the scenario for physiological conditions (ν < 0.01), whereas in in vitro assays, PFAS are often dosed in excess (ν > 1) and nonspecific binding becomes dominant. BSA was shown to serve as a good surrogate for human plasma. As trout plasma contains more lipids, the nonspecific binding to lipids affected the affinities of PFAS for trout plasma. Mass balance models that are parameterized with the protein-water and lipid-water partitioning constants (chemical characteristics), as well as the protein and lipid contents of the plasma (species characteristics), were successfully used to predict the binding to human and trout plasma.


Subject(s)
Blood Proteins , Fluorocarbons , Protein Binding , Species Specificity , Trout , Animals , Humans , Fluorocarbons/metabolism , Fluorocarbons/blood , Blood Proteins/metabolism , Cattle , Trout/metabolism , Serum Albumin, Bovine/metabolism , Serum Albumin, Bovine/chemistry
8.
Environ Res ; 256: 119221, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38795951

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) constitutes a group of highly persistent man-made substances. Recent evidence indicates that PFAS negatively impact the immune system. However, it remains unclear how different PFAS are associated with alterations in circulating leukocyte subpopulations. More detailed knowledge of such potential associations can provide better understanding into mechanisms of PFAS immunotoxicity in humans. In this exploratory study, associations of serum levels of common PFAS (perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonic acid (PFHxS)) and immune cell profiles of peripheral blood mononuclear cells, both with and without immunostimulation, were investigated. High-dimensional single cell analysis by mass cytometry was done on blood leukocytes from fifty participants in the Norwegian human biomonitoring EuroMix study. Different PFAS were associated with changes in various subpopulations of natural killer (NK), T helper (Th), and cytotoxic T (Tc) cells. Broadly, PFAS concentrations were related to increased frequencies of NK cells and activated subpopulations of NK cells. Additionally, increased levels of activated T helper memory cell subpopulations point to Th2/Th17 and Treg-like skewed profiles. Finally, PFAS concentrations were associated with decreased frequencies of T cytotoxic cell subpopulations with CXCR3+ effector memory (EM) phenotypes. Several of these observations point to biologically plausible mechanisms that may contribute to explaining the epidemiological reports of immunosuppression by PFAS. Our results suggest that PFAS exposures even at relatively low levels are associated with changes in immune cell subpopulations, a finding which should be explored more thoroughly in a larger cohort. Additionally, causal relationships should be confirmed in experimental studies. Overall, this study demonstrates the strength of profiling by mass cytometry in revealing detailed changes in immune cells at a single cell level.


Subject(s)
Fluorocarbons , Killer Cells, Natural , Humans , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , Adult , Female , Middle Aged , Environmental Pollutants/toxicity , Environmental Pollutants/blood , Environmental Exposure , T-Lymphocytes, Helper-Inducer/drug effects , T-Lymphocytes, Helper-Inducer/immunology , Norway , Alkanesulfonic Acids/toxicity , Alkanesulfonic Acids/blood , Aged
9.
Environ Res ; 254: 119131, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38759771

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) include thousands of manufactured compounds with growing public health concerns due to their potential for widespread human exposure and adverse health outcomes. While PFAS contamination remains a significant concern, especially from ingestion of contaminated food and water, determinants of the variability in PFAS exposure among regional and statewide populations in the United States remains unclear. OBJECTIVES: The objective of this study was to leverage The Survey of the Health of Wisconsin (SHOW), the only statewide representative cohort in the US, to assess and characterize the variability of PFAS exposure in a general population. METHODS: This study sample included a sub-sample of 605 adult participants from the 2014-2016 tri-annual statewide representative sample. Geometric means for PFOS, PFOA, PFNA, PFHxS, PFPeS, PFHpA, and a summed measure of 38 analyzed serum PFAS were presented by demographic, diet, behavioral, and residential characteristics. Multivariate linear regression was used to determine significant predictors of serum PFAS after adjustment. RESULTS: Overall, higher serum concentrations of long-chain PFAS were observed compared with short-chain PFAS. Older adults, males, and non-Hispanic White individuals had higher serum PFAS compared to younger adults, females, and non-White individuals. Eating caught fish in the past year was associated with elevated levels of several PFAS. DISCUSSION: This is among the first studies to characterize serum PFAS among a representative statewide sample in Wisconsin. Both short- and long-chain serum PFAS were detectable for six prominent PFAS. Age and consumption of great lakes fish were the most significant predictors of serum PFAS. State-level PFAS biomonitoring is important for identifying high risk populations and informing state public health standards and interventions, especially among those not living near known contamination sites.


Subject(s)
Environmental Exposure , Environmental Pollutants , Fluorocarbons , Humans , Wisconsin , Fluorocarbons/blood , Fluorocarbons/analysis , Female , Male , Adult , Middle Aged , Aged , Environmental Pollutants/blood , Environmental Pollutants/analysis , Young Adult , Adolescent
10.
J Hazard Mater ; 473: 134645, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38762989

ABSTRACT

While seafood is recognized for its beneficial effects on glycemic control, concerns over elevated levels of per- and polyfluoroalkyl substances (PFASs) may deter individuals from its consumption. This study aims to elucidate the relationship between seafood intake, PFASs exposure, and the odds of diabetes. Drawing from the China National Human Biomonitoring data (2017-2018), we assessed the impact of PFASs on the prevalence of prediabetes and diabetes across 10851 adults, including 5253 individuals (48.1%) reporting seafood consumption. Notably, seafood consumers exhibited PFASs levels nearly double those of non-consumers. Multinomial logistic regression identified significant positive associations between serum PFASs concentrations and prediabetes (T3 vs. T1: ORPFOA: 1.64 [1.08-2.49], ORPFNA: 1.59 [1.19-2.13], ORPFDA: 1.56 [1.13-2.17], ORPFHxS: 1.58 [1.18-2.12], ORPFHpS: 1.73 [1.24-2.43], ORPFOS: 1.51 [1.15-1.96], OR6:2 Cl-PFESA: 1.58 [1.21-2.07]). Significant positive association were also found between PFHpS, PFOS, and diabetes. RCS curves indicated significant non-linear relationships between log-transformed PFOA, PFUnDA, PFOS, 6:2 Cl-PFESA, and FBG levels. Subgroup analyses revealed that seafood consumption significantly mitigated the associations between PFASs burdens and prediabetes/diabetes. These findings suggest a protective role of dietary seafood against the adverse effects of PFASs exposure on glycemic disorders, offering insights for dietary interventions aimed at mitigating diabetes risks associated with PFASs.


Subject(s)
Diabetes Mellitus , Fluorocarbons , Prediabetic State , Seafood , Humans , Seafood/analysis , Prediabetic State/epidemiology , Prediabetic State/blood , Male , Cross-Sectional Studies , Middle Aged , Female , Adult , China/epidemiology , Fluorocarbons/blood , Diabetes Mellitus/epidemiology , Food Contamination/analysis , Aged , Diet , Young Adult
11.
J Pharm Biomed Anal ; 246: 116203, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38759320

ABSTRACT

The ubiquity of perfluoroalkyl substances has raised concerns about the unintended consequences of PFAS exposure on human health. In the present study, an eco-friendly ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method was developed for the simultaneous determination of 17 PFAS in human serum and semen samples. QuEChERS salts MgSO4:NaCl 4:1 (w/w) were used for the extraction. The separation of analytes was performed on an ACQUITY BEH C18 column (100 × 2.1 mm, 1.7 µm), using water:methanol 95:5 and methanol as mobile phases A and B, respectively, both containing 2 mM ammonium acetate. Multiple reaction monitoring (MRM) in negative ion mode was used, selecting two transitions for each analyte, except for perfluorobutanoic acid (PFBA) and perfluoropentanoic acid (PFPeA). The analytical method was validated according to the Organization of Scientific Area Committees (OSAC) for Forensic Sciences guidelines and AGREE approach software was used to evaluate the greenness of the method. The developed procedure was applied to the analysis of 10 paired human serum and semen samples, proving the suitability in high throughput laboratories due to the easy preparation and the reduced volume of toxic solvents. Moreover, it allows to perform further investigation on the correlation between serum and semen PFAS concentration, focusing on male reproductive system correlated pathologies, such as male infertility.


Subject(s)
Fluorocarbons , Semen , Tandem Mass Spectrometry , Humans , Tandem Mass Spectrometry/methods , Fluorocarbons/blood , Fluorocarbons/analysis , Chromatography, High Pressure Liquid/methods , Male , Semen/chemistry , Green Chemistry Technology/methods , Reproducibility of Results , Environmental Pollutants/blood , Environmental Pollutants/analysis , Limit of Detection , Liquid Chromatography-Mass Spectrometry
12.
Chemosphere ; 360: 142363, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768789

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are synthetic chemicals linked to adverse pregnancy outcomes. Although their underlying biological mechanisms are not fully understood, evidence suggests PFAS may disrupt endocrine functions and contribute to oxidative stress (OS) and inflammation. OBJECTIVE: We examined associations between early pregnancy PFAS exposure and OS biomarkers, exploring potential effect modifications by fetal sex and maternal race. METHODS: We used data from 469 LIFECODES participants with measured plasma PFAS (median 10 weeks gestation) and repeated measures (median 10, 18, 26, and 35 weeks gestation) of urinary OS biomarkers [8-iso-prostaglandin-F2α (8-isoprostane) and 8-hydroxydeoxyguanosine (8-OHdG)]. Protein damage biomarkers (chlorotyrosine, dityrosine, and nitrotyrosine) were additionally measured in plasma from a subset (N = 167) during the third visit. Associations between each PFAS and OS biomarkers were examined using linear mixed-effects models and multivariable linear regressions, adjusting for potential confounders, including maternal age, race, education level, pre-pregnancy BMI, insurance status, and parity. Effect modifications were evaluated by including an interaction term between each PFAS and fetal sex or maternal race in the models. RESULTS: We observed significant positive associations between PFOS and 8-isoprostane, with a 9.68% increase in 8-isoprostane levels (95% CI: 0.10%, 20.18%) per interquartile range increase in PFOS. In contrast, PFUA was negatively associated [9.32% (95% CI: -17.68%, -0.11%)], while there were suggestive positive associations for MPAH and PFOA with 8-isoprostane. The associations of several PFAS with 8-OHdG varied by fetal sex, showing generally positive trends in women who delivered females, but negative or null in those who delivered males. No significant effect modification by maternal race was observed. CONCLUSIONS: This study provides evidence linking PFAS exposure to OS during pregnancy, with potential sex-specific effects of certain PFAS on 8-OHdG. Further research should explore additional OS/inflammatory biomarkers and assess the modifying effects of dietary and behavioral patterns across diverse populations.


Subject(s)
8-Hydroxy-2'-Deoxyguanosine , Biomarkers , Dinoprost , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Oxidative Stress , Humans , Female , Fluorocarbons/blood , Oxidative Stress/drug effects , Pregnancy , Adult , Maternal Exposure/statistics & numerical data , Maternal Exposure/adverse effects , Biomarkers/blood , Environmental Pollutants/blood , Dinoprost/analogs & derivatives , Dinoprost/blood , Male , Young Adult , Alkanesulfonic Acids/blood
13.
Reprod Toxicol ; 127: 108612, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38782143

ABSTRACT

The increasing global prevalence of gestational diabetes mellitus (GDM) has been hypothesized to be associated with maternal exposure to environmental chemicals. Here, among 420 women participating in the Alberta Pregnancy Outcomes and Nutrition (APrON) cohort study, we examined associations between GDM and second trimester blood or urine concentrations of endocrine disrupting chemicals (EDCs): bisphenol-A (BPA), bisphenol-S (BPS), twelve phthalate metabolites, eight perfluoroalkyl acids (PFAAs), and eleven trace elements. Fifteen (3.57%) of the women were diagnosed with GDM, and associations between the environmental chemical exposures and GDM diagnosis were examined using multiple logistic and LASSO regression analyses in single- and multi-chemical exposure models, respectively. In single chemical exposure models, BPA and mercury were associated with increased odds of GDM, while a significant inverse association was observed for zinc. Double-LASSO regression analysis selected mercury (AOR: 1.51, CI: 1.12-2.02), zinc (AOR: 0.017, CI: 0.0005-0.56), and perfluoroundecanoic acid (PFUnA), a PFAAs, (AOR: 0.43, CI: 0.19-0.94) as the best predictors of GDM. The combined data for this Canadian cohort suggest that second trimester blood mercury was a robust predictor of GDM diagnosis, whereas blood zinc and PFUnA were protective factors. Research into mechanisms that underlie the associations between mercury, zinc, PFUnA, and the development of GDM is needed.


Subject(s)
Benzhydryl Compounds , Diabetes, Gestational , Endocrine Disruptors , Environmental Pollutants , Fluorocarbons , Maternal Exposure , Phenols , Phthalic Acids , Female , Humans , Pregnancy , Fluorocarbons/blood , Diabetes, Gestational/epidemiology , Diabetes, Gestational/blood , Phenols/blood , Phenols/urine , Adult , Benzhydryl Compounds/blood , Benzhydryl Compounds/urine , Phthalic Acids/urine , Phthalic Acids/blood , Endocrine Disruptors/blood , Endocrine Disruptors/urine , Maternal Exposure/adverse effects , Environmental Pollutants/blood , Cohort Studies , Trace Elements/blood , Trace Elements/urine , Alkanesulfonic Acids/blood , Young Adult , Sulfones
14.
Environ Int ; 188: 108756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38795657

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are widely used in industry and have been linked to various adverse health effects. Communities adjacent to sites where PFAS are manufactured, stored, or used may be at elevated risk. In these impacted communities, significant exposure often occurs through contaminated drinking water, yet less is known about the role of other pathways such as residential exposure through house dust. We analyzed a paired serum and house dust dataset from the Agency for Toxic Substances and Disease Registry's PFAS Exposure Assessments, which sampled eight United States communities with a history of drinking water contamination due to aqueous film forming foam (AFFF) use at nearby military bases. We found that serum PFAS levels of residents were significantly positively associated with the dust PFAS levels in their homes, for three of seven PFAS analyzed, when accounting for site and participant age. We also found that increased dust PFAS levels were associated with a shift in the relative abundance of PFAS in serum towards those chemicals not strongly linked to AFFF contamination, which may suggest household sources. Additionally, we analyzed participant responses to exposure questionnaires to identify factors associated with dust PFAS levels. Dust PFAS levels for some analytes were significantly elevated in households where participants were older and had lived at the home longer, cleaned less frequently, used stain resistant products, and had carpeted living rooms. Our results suggest that residential exposure to PFAS via dust or other indoor pathways may contribute to overall exposure and body burden, even in communities impacted by AFFF contamination of drinking water, and the magnitude of this exposure may also be influenced by demographic, behavioral, and housing factors.


Subject(s)
Dust , Environmental Exposure , Dust/analysis , Humans , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Adult , Middle Aged , Female , Male , Biological Monitoring , United States , Fluorocarbons/blood , Fluorocarbons/analysis , Young Adult , Housing , Drinking Water/chemistry , Aged , Adolescent , Environmental Monitoring/methods , Environmental Pollutants/blood , Environmental Pollutants/analysis
15.
Environ Sci Technol ; 58(19): 8264-8277, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38691655

ABSTRACT

Prenatal per- and poly-fluoroalkyl substances (PFAS) exposure may influence gestational outcomes through bioactive lipids─metabolic and inflammation pathway indicators. We estimated associations between prenatal PFAS exposure and bioactive lipids, measuring 12 serum PFAS and 50 plasma bioactive lipids in 414 pregnant women (median 17.4 weeks' gestation) from three Environmental influences on Child Health Outcomes Program cohorts. Pairwise association estimates across cohorts were obtained through linear mixed models and meta-analysis, adjusting the former for false discovery rates. Associations between the PFAS mixture and bioactive lipids were estimated using quantile g-computation. Pairwise analyses revealed bioactive lipid levels associated with PFDeA, PFNA, PFOA, and PFUdA (p < 0.05) across three enzymatic pathways (cyclooxygenase, cytochrome p450, lipoxygenase) in at least one combined cohort analysis, and PFOA and PFUdA (q < 0.2) in one linear mixed model. The strongest signature revealed doubling in PFOA corresponding with PGD2 (cyclooxygenase pathway; +24.3%, 95% CI: 7.3-43.9%) in the combined cohort. Mixture analysis revealed nine positive associations across all pathways with the PFAS mixture, the strongest signature indicating a quartile increase in the PFAS mixture associated with PGD2 (+34%, 95% CI: 8-66%), primarily driven by PFOS. Bioactive lipids emerged as prenatal PFAS exposure biomarkers, deepening insights into PFAS' influence on pregnancy outcomes.


Subject(s)
Fluorocarbons , Lipids , Humans , Female , Pregnancy , Lipids/blood , Fluorocarbons/blood , Child Health , Cohort Studies , Cross-Sectional Studies , Adult , Environmental Pollutants/blood , Environmental Exposure , Maternal Exposure , Child
16.
Environ Int ; 187: 108720, 2024 May.
Article in English | MEDLINE | ID: mdl-38718676

ABSTRACT

BACKGROUND: Prenatal exposure to per- and polyfluoroalkyl substances (PFASs) influences neurodevelopment. Thyroid homeostasis disruption is thought to be a possible underlying mechanism. However, current epidemiological evidence remains inconclusive. OBJECTIVES: This study aimed to explore the effects of prenatal PFAS exposure on the intelligence quotient (IQ) of school-aged children and assess the potential mediating role of fetal thyroid function. METHODS: The study included 327 7-year-old children from the Sheyang Mini Birth Cohort Study (SMBCS). Cord serum samples were analyzed for 12 PFAS concentrations and 5 thyroid hormone (TH) levels. IQ was assessed using the Wechsler Intelligence Scale for Children-Chinese Revised (WISC-CR). Generalized linear models (GLM) and Bayesian Kernel Machine Regression (BKMR) were used to evaluate the individual and combined effects of prenatal PFAS exposure on IQ. Additionally, the impact on fetal thyroid function was examined using a GLM, and a mediation analysis was conducted to explore the potential mediating roles of this function. RESULTS: The molar sum concentration of perfluorinated carboxylic acids (ΣPFCA) in cord serum was significantly negatively associated with the performance IQ (PIQ) of 7-year-old children (ß = -6.21, 95 % confidence interval [CI]: -12.21, -0.21), with more pronounced associations observed among girls (ß = -9.57, 95 % CI: -18.33, -0.81) than in boys. Negative, albeit non-significant, cumulative effects were noted when considering PFAS mixture exposure. Prenatal exposure to perfluorooctanoic acid, perfluorononanoic acid, and perfluorooctanesulfonic acid was positively associated with the total thyroxine/triiodothyronine ratio. However, no evidence supported the mediating role of thyroid function in the link between PFAS exposure and IQ. CONCLUSIONS: Increased prenatal exposure to PFASs negatively affected the IQ of school-aged children, whereas fetal thyroid function did not serve as a mediator in this relationship.


Subject(s)
Environmental Pollutants , Fluorocarbons , Intelligence , Prenatal Exposure Delayed Effects , Thyroid Gland , Humans , Female , Prenatal Exposure Delayed Effects/chemically induced , Child , Pregnancy , Fluorocarbons/toxicity , Fluorocarbons/blood , Male , Intelligence/drug effects , Thyroid Gland/drug effects , Environmental Pollutants/blood , Environmental Pollutants/toxicity , Birth Cohort , Cohort Studies , Thyroid Hormones/blood , Intelligence Tests , China , Maternal Exposure/adverse effects , Fetal Blood/chemistry , Alkanesulfonic Acids/blood , Alkanesulfonic Acids/toxicity
17.
Environ Int ; 187: 108719, 2024 May.
Article in English | MEDLINE | ID: mdl-38718677

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) have been shown to penetrate the blood-brain barrier (BBB) and accumulate in human brain. The BBB transmission and accumulation efficiency of PFAS, as well as the potential health risks from human co-exposure to legacy and emerging PFAS due to differences in transport efficiency, need to be further elucidated. In the present pilot study, 23 plasma samples from glioma patients were analyzed for 17 PFAS. The concentrations of PFAS in six paired brain tissue and plasma samples were used to calculate the BBB transmission efficiency of PFAS (RPFAS). This RPFAS analysis was conducted with utmost care and consideration amid the limited availability of valuable paired samples. The results indicated that low molecular weight PFAS, including short-chain and emerging PFAS, may have a greater potential for accumulation in brain tissue than long-chain PFAS. As an alternative to perfluorooctane sulfonic acid (PFOS), 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) exhibited brain accumulation potential similar to that of PFOS, suggesting it may not be a suitable substitute concerning health risk in brain. The BBB transmission efficiencies of perfluorooctanoic acid, PFOS, and 6:2 Cl-PFESA showed similar trends with age, which may be an important factor influencing the entry of exogenous compounds into the brain. A favorable link between perfluorooctane sulfonamide (FOSA) and the development and/or progression of glioma may be implicated by a strong positive correlation (r2 = 0.94; p < 0.01) between RFOSA and Ki-67 (a molecular marker of glioma). However, a causal relationship between RFOSA and glioma incidence were not established in the present study. The present pilot study conducted the first examination of BBB transmission efficiency of PFAS from plasma to brain tissue and highlighted the importance of reducing and/or controlling exposure to PFAS.


Subject(s)
Blood-Brain Barrier , Fluorocarbons , Humans , Blood-Brain Barrier/metabolism , Pilot Projects , Fluorocarbons/blood , Middle Aged , Female , Adult , Male , Glioma , Aged , Environmental Pollutants/blood , Environmental Exposure , Alkanesulfonic Acids/blood , Brain/metabolism
18.
Sci Total Environ ; 932: 173085, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38729377

ABSTRACT

The presence of perfluoroalkyl and polyfluoroalkyl substances (PFAS) in various everyday products has raised concerns about their potential impact on prostate health. This study aimed to investigate the effects of different types of PFAS on prostate health, including PFDeA, PFOA, PFOS, PFHxS, and PFNA. To assess the relationship between PFAS exposure and prostate injury, machine learning algorithms were employed to analyze prostate-specific antigen (PSA) metrics. The analysis revealed a linear and positive dose-dependent association between PFOS and the ratio of free PSA to total PSA (f/tPSA). Non-linear dose-response relationships were observed between the other four types of PFAS and the f/tPSA ratio. Additionally, the analysis showed a positive association between the mixture of PFAS and prostate hyperplasia, with PFNA having the highest impact followed by PFOS. These findings suggest that elevated serum levels of PFDeA, PFOA, PFOS, and PFNA are linked to prostate hyperplasia. Therefore, this study utilized advanced machine learning techniques to uncover potential hazardous effects of PFAS exposure on prostate health, specifically the positive association between PFAS and prostate hyperplasia.


Subject(s)
Fluorocarbons , Prostatic Hyperplasia , Male , Fluorocarbons/blood , Humans , Environmental Exposure/statistics & numerical data , Environmental Pollutants/blood , Machine Learning , Alkanesulfonic Acids/blood , Prostate-Specific Antigen/blood
19.
Sci Total Environ ; 933: 173157, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38740209

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are related to various adverse health outcomes, and food is a common source of PFAS exposure. Dietary sources of PFAS have not been adequately explored among U.S. pregnant individuals. We examined associations of dietary factors during pregnancy with PFAS concentrations in maternal plasma and human milk in the New Hampshire Birth Cohort Study. PFAS concentrations, including perfluorohexane sulfonate (PFHxS), perfluorooctane sulfonate (PFOS), perfluorooctanoate (PFOA), perfluorononanoate (PFNA), and perfluorodecanoate (PFDA), were measured in maternal plasma collected at ∼28 gestational weeks and human milk collected at ∼6 postpartum weeks. Sociodemographic, lifestyle and reproductive factors were collected from prenatal questionnaires and diet from food frequency questionnaires at ∼28 gestational weeks. We used adaptive elastic net (AENET) to identify important dietary variables for PFAS concentrations. We used multivariable linear regression to assess associations of dietary variables selected by AENET models with PFAS concentrations. Models were adjusted for sociodemographic, lifestyle, and reproductive factors, as well as gestational week of blood sample collection (plasma PFAS), postpartum week of milk sample collection (milk PFAS), and enrollment year. A higher intake of fish/seafood, eggs, coffee, or white rice during pregnancy was associated with higher plasma or milk PFAS concentrations. For example, every 1 standard deviation (SD) servings/day increase in egg intake during pregnancy was associated with 4.4 % (95 % CI: 0.6, 8.4), 3.3 % (0.1, 6.7), and 10.3 % (5.6, 15.2) higher plasma PFOS, PFOA, and PFDA concentrations respectively. Similarly, every 1 SD servings/day increase in white rice intake during pregnancy was associated with 7.5 % (95 % CI: -0.2, 15.8) and 12.4 % (4.8, 20.5) greater milk PFOS and PFOA concentrations, respectively. Our study suggests that certain dietary factors during pregnancy may contribute to higher PFAS concentrations in maternal plasma and human milk, which could inform interventions to reduce PFAS exposure for both birthing people and offspring.


Subject(s)
Alkanesulfonic Acids , Diet , Environmental Pollutants , Fluorocarbons , Milk, Human , Humans , Fluorocarbons/blood , Fluorocarbons/analysis , Milk, Human/chemistry , Female , Diet/statistics & numerical data , Environmental Pollutants/blood , Environmental Pollutants/analysis , New Hampshire , Alkanesulfonic Acids/analysis , Alkanesulfonic Acids/blood , Adult , Birth Cohort , Maternal Exposure/statistics & numerical data , Pregnancy , Caprylates/blood , Caprylates/analysis , Cohort Studies , Dietary Exposure/statistics & numerical data , Dietary Exposure/analysis , Decanoic Acids/blood , Decanoic Acids/analysis
20.
Int J Hyg Environ Health ; 259: 114387, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38703464

ABSTRACT

BACKGROUND: In the past, perfluorooctanoic acid (PFOA) was produced and applied as an emulsifier in a fluoropolymer production plant in the Altötting district, southern Bavaria (Germany). This chemical was released directly into the environment, resulting in the contamination of the local drinking water. During a human biomonitoring (HBM) survey in 2018, increased median PFOA blood serum levels, compared to a normally exposed control group with no known source of PFOA exposure from Munich, Germany, were detected in the resident population (23.18 µg/l in the general population, 20.71 µg/l in the children's group). The follow-up study aimed to investigate whether purification of the drinking water as the main PFOA exposure source has been successful in reducing internal PFOA exposure and to estimate the association of internal PFOA exposure with possible influencing factors. METHODS: Only individuals who had already participated in the HBM study in 2018 were included. For the determination of the PFOA serum concentration, 5 ml of blood was drawn from each participating person. Blood samples were collected in the period from June to August 2022. Furthermore, information on sociodemographic characteristics, health status, dietary behaviour and other lifestyle factors were collected by means of a self-administered questionnaire. To examine the association of PFOA blood serum levels with possible influencing factors, such as age, gender and consumption of fish and game meat, a logistic regression model with a PFOA value > 10 µg/l as outcome was used. RESULTS: A total of 764 individuals participated in the follow-up study in 2022. Analyses were performed separately for the general population (n = 559), women of reproductive age (15-49 years old) (n = 120), and children under 12 years old (n = 30). Median PFOA blood levels have decreased by 56.9% in the general population, by 59.8% in the group of women of reproductive age and by 73.4% in the group of children under 12 years old. In the general population, a higher probability of a PFOA value > 10 µg/l was found for those aged 40-59 years (Odds ratio (OR) = 2.33 (95%CI: 1.23 to 4.43, p = 0.01) and those aged 60 years and older (OR = 5.32, 95%CI: 2.78 to 10.19, p < 0.001). CONCLUSIONS: In all study groups, the median PFOA serum levels decreased as expected after a half-life of four years, which confirms that contamination via drinking water has ceased. Furthermore, our study identified age as a significant predictor of internal PFOA exposure, while no influence was found for the consumption of fish and game meat. Further investigations are needed to quantify in a more detailed way the influence of dietary habits on PFOA exposure.


Subject(s)
Biological Monitoring , Caprylates , Environmental Exposure , Fluorocarbons , Humans , Caprylates/blood , Fluorocarbons/blood , Germany , Female , Male , Adult , Middle Aged , Child , Adolescent , Young Adult , Environmental Exposure/analysis , Child, Preschool , Aged , Follow-Up Studies , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/analysis , Infant , Environmental Pollutants/blood , Drinking Water/chemistry , Chemical Industry
SELECTION OF CITATIONS
SEARCH DETAIL
...