Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.199
Filter
1.
BMC Res Notes ; 17(1): 282, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39354559

ABSTRACT

OBJECTIVE: In highly aggressive malignant cancers including breast cancer, vasculogenic mimicry (VM) is the potential of tumor cells to generate a vascular channel network for delivering blood to tumor cells. Detection of genes involved in this process is critical to designing targeted therapy against breast cancer metastasis. In this study, we evaluated the roles of FAK and ILK in the progression of VM in metastatic breast tumor cells. RESULTS: Primary (4T1T), and highly metastatic (4T1B and 4T1L) breast tumor cells were isolated from cancerous mice. The potential of cancer cells to organize themselves into vascular-like structures (VM) has been evaluated with in vitro assessment. The expression of ILK and FAK were examined using real-time polymerase chain reaction. We confirmed the high ability of metastatic tumor cells in vascular-like structure formation. In molecular analysis, our data showed that ILK and FAK expression was significantly elevated in metastatic breast tumor cells. These results indicated that the higher potential of metastatic tumor cells in vascular-like structure formation may be related to higher expression of ILK and FAK. Analysis of molecular features of metastatic tumor cells could be utilized to create a targeted therapeutic strategy against metastasis in breast cancer.


Subject(s)
Breast Neoplasms , Neoplasm Metastasis , Protein Serine-Threonine Kinases , Signal Transduction , Animals , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/genetics , Female , Mice , Cell Line, Tumor , Breast Neoplasms/pathology , Breast Neoplasms/genetics , Breast Neoplasms/blood supply , Breast Neoplasms/metabolism , Neovascularization, Pathologic/pathology , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Mice, Inbred BALB C , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Gene Expression Regulation, Neoplastic
2.
Virulence ; 15(1): 2407847, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39368071

ABSTRACT

Porcine deltacoronavirus (PDCoV) is an emerging porcine enteropathogenic coronavirus that causes acute watery diarrhoea in piglets, resulting in significant economic losses to the global swine industry. However, the underlying mechanism of PDCoV infection is not well defined, which seriously hinders the development of effective drugs and vaccines. Integrins (ITG) are heterodimeric transmembrane glycoproteins that play important roles in the life cycle of many viruses. In the current study, the viral entry pathways of PDCoV were explored and the role of ITGαVß3 was investigated during PDCoV infection. Our results showed that the lysosomal acidification inhibitor bafilomycin-A1 (Baf-A1) significantly reduced PDCoV infection, while exogenous protease facilitated PDCoV infection and even allowed PDCoV entry to bypass the endosomal pathway, suggesting PDCoV entry into cells via the endocytic pathway and the exogenous protease-mediated pathway simultaneously. Furthermore, ITGαVß3 was identified to be involved in PDCoV infection, especially during viral entry stages. PDCoV infection triggers the activation of the focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-serine/threonine-specific protein kinase (AKT) signalling pathway, and this activation is ITGαVß3-dependent, suggesting that the activation of the FAK-PI3K-AKT signalling pathway during PDCoV infection is mediated by ITGαVß3. Our results further demonstrated that PDCoV infection induced the expression of inflammatory cytokines, which was mediated by activation of the ITGαVß3-FAK-PI3K-AKT-nuclear transcription factor-κB (NF-κB) signalling pathway. Overall, the results revealed that ITGαVß3 is an essential host factor for PDCoV infection and can serve as a supplementary receptor to facilitate PDCoV infection, which can help us to explore the molecular mechanism of PDCoV infection.


Identifying the host factors required for entry will be helpful in uncovering the pathogenesis mechanisms and developing antivirals against the emerging coronavirus porcine deltacoronavirus (PDCoV). Herein, we revealed that PDCoV enters cells via the endocytic and exogenous protease-mediated pathways simultaneously. Integrins (ITG) αVß3 is a host factor required for PDCoV infection, especially during virus adhesion, invasion, and release. Most importantly, PDCoV promotes viral infection by activating the ITGαVß3-focal adhesion kinase (FAK)-phosphatidylinositol 3-kinase (PI3K)-serine/threonine-specific protein kinase (AKT) signalling pathway and induces inflammation by activating the ITGαVß3-FAK-PI3K-AKT-NF-κB signalling pathway. Overall, this is the first study to identify ITGαVß3 as an essential factor for PDCoV infection, which can help us to confirm the molecular regulatory mechanism and provide a comprehensive resource for PDCoV infection.


Subject(s)
Coronavirus Infections , Deltacoronavirus , Integrin alphaVbeta3 , NF-kappa B , Proto-Oncogene Proteins c-akt , Signal Transduction , Swine Diseases , Animals , Integrin alphaVbeta3/metabolism , Integrin alphaVbeta3/genetics , Swine , NF-kappa B/metabolism , Swine Diseases/virology , Swine Diseases/immunology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/genetics , Deltacoronavirus/genetics , Coronavirus Infections/virology , Coronavirus Infections/immunology , Coronavirus Infections/metabolism , Coronavirus Infections/veterinary , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Virus Internalization , Inflammation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics
3.
Sci Rep ; 14(1): 23250, 2024 10 06.
Article in English | MEDLINE | ID: mdl-39370419

ABSTRACT

Retained fetal membranes (RFM) is an important reproductive disease in dairy cows, caused by maternal and fetal placental tissue adhesion. The main collagen in maternal and fetal placenta tissues is collagen type IV (COL-IV) and its breakdown is the key to placental expulsion. Focal adhesion kinase (FAK) has been shown to regulate the hydrolysis of Col-IV by affecting the activity of MMP-2 and MMP-9 activity, but the regulation of the mechanisms involved in placenta expulsion in dairy cows after postpartum are still unclear. The aim of this study was to investigate the pathogenic mechanism of RFM by studying the relationship between the FAK signaling pathway and COL-IV regulation. Maternal placental tissues were collected from six healthy and six cows with RFM of similar age, parity, body condition and milk yield at 12 h postpartum. In vitro experiments were performed on bovine endometrial epithelial cells from three groups including a FAK inhibitor group, a FAK activator group and a control group without FAK inhibitor and activator. The abundance of molecules involved in the FAK signaling pathway and COL-IV was detected by immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot. The immunohistochemical results showed that the key molecules of FAK signaling pathway FAK, Src, MMP-2 and MMP-9 and Col-IV were expressed in placental tissues. The expression level of FAK, Src, MMP-2, and MMP-9 were significantly down-regulated (P < 0.05) and the abundances of COL-IV were significantly up-regulated (P < 0.05) in maternal placental tissues of RFM cows compared with healthy cows. In the FAK inhibitor treatment group, the relative expression levels of FAK and other related proteins were significantly down-regulated (P < 0.05) and the relative expression levels of COL-IV were significantly up-regulated (P < 0.05) with the results of the FAK activation group the opposite. These results indicated that FAK in maternal endometrial epithelial cells could regulate the hydrolysis process of Col-IV through the expression of key factors of signaling pathways and promote collagen hydrolysis, which in turn facilitated the process of postpartum placenta expulsion in dairy cows.


Subject(s)
Collagen Type IV , Focal Adhesion Protein-Tyrosine Kinases , Placenta, Retained , Signal Transduction , Animals , Cattle , Female , Pregnancy , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Placenta, Retained/metabolism , Placenta, Retained/veterinary , Collagen Type IV/metabolism , Collagen Type IV/genetics , Extraembryonic Membranes/metabolism , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 2/genetics , Cattle Diseases/metabolism , Placenta/metabolism , Matrix Metalloproteinase 9/metabolism , Matrix Metalloproteinase 9/genetics , Endometrium/metabolism
4.
Sci Rep ; 14(1): 21451, 2024 09 13.
Article in English | MEDLINE | ID: mdl-39271782

ABSTRACT

Based on the joint analysis of multi-omic data and the biological experiments, we demonstrate that FOXF1 inhibits invasion and metastasis of lung adenocarcinoma cells and enhances anti-tumor immunity via regulating MFAP4/FAK signal axis in this study. The levels of FOXF1 and MFAP4 are significantly down-regulated in LUAD, and the increased levels of two genes can improve the clinical prognosis of LUAD patients. Fluorescein reporter gene determination, chromatin immunoprecipitation and gene co-expression analysis indicate that MFAP4 level is positively regulated by transcription factor FOXF1. The function enrichment analysis shows that the levels of FOXF1 and MFAP4 are closely associated with an enrichment of tumor metastasis signatures. FOXF1 can inhibit the migration and invasion of LAUD cells by transcriptionally activating MFAP4 expression. And the overexpression of FOXF1/MFAP4 can reduce focal adhesion kinase (FAK) phosphorylation, while their knockdown result in the opposite effects. The increased levels of FOXF1/MFAP4 enhance the antitumor immunity by increasing the infiltration of dendritic cells and CD4+ T cells, and the interactions between LUAD cells and immune cells, and activating multiple anti-tumor immunity-related pathways. In conclusion, our study reveals the potential function of FOXF1/MFAP4/FAK signal axis in inhibiting metastasis of LUAD cells and modulating anti-tumor immunity of LUAD patients.


Subject(s)
Adenocarcinoma of Lung , Forkhead Transcription Factors , Lung Neoplasms , Neoplasm Invasiveness , Signal Transduction , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Neoplasm Metastasis , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Cell Movement , Mice , Animals , Focal Adhesion Protein-Tyrosine Kinases/metabolism
5.
FASEB J ; 38(17): e70050, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39259535

ABSTRACT

Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.


Subject(s)
Mechanotransduction, Cellular , Mice, Knockout , Tendons , Animals , Male , Mice , Cells, Cultured , Extracellular Matrix/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesions/metabolism , Mechanotransduction, Cellular/physiology , Mice, Inbred C57BL , Signal Transduction/physiology , Tendons/metabolism , Tendons/physiology , Tendons/cytology , Female
6.
PLoS One ; 19(8): e0304010, 2024.
Article in English | MEDLINE | ID: mdl-39150901

ABSTRACT

M64HCl, which has drug-like properties, is a water-soluble Focal Adhesion Kinase (FAK) activator that promotes murine mucosal healing after ischemic or NSAID-induced injury. Since M64HCl has a short plasma half-life in vivo (less than two hours), it has been administered as a continuous infusion with osmotic minipumps in previous animal studies. However, the effects of more transient exposure to M64HCl on monolayer wound closure remained unclear. Herein, we compared the effects of shorter M64HCl treatment in vitro to continuous treatment for 24 hours on monolayer wound closure. We then investigated how long FAK activation and downstream ERK1/2 activation persist after two hours of M64HCl treatment in Caco-2 cells. M64HCl concentrations immediately after washing measured by mass spectrometry confirmed that M64HCl had been completely removed from the medium while intracellular concentrations had been reduced by 95%. Three-hour and four-hour M64HCl (100 nM) treatment promoted epithelial sheet migration over 24 hours similar to continuous 24-hour exposure. 100nM M64HCl did not increase cell number. Exposing cells twice with 2-hr exposures of M64HCl during a 24-hour period had a similar effect. Both FAK inhibitor PF-573228 (10 µM) and ERK kinase (MEK) inhibitor PD98059 (20 µM) reduced basal wound closure in the absence of M64HCl, and each completely prevented any stimulation of wound closure by M64HCl. Rho kinase inhibitor Y-27632 (20 µM) stimulated Caco-2 monolayer wound closure but no further increase was seen with M64HCl in the presence of Y-27632. M64HCl (100 nM) treatment for 3 hours stimulated Rho kinase activity. M64HCl decreased F-actin in Caco-2 cells. Furthermore, a two-hour treatment with M64HCl (100 nM) stimulated sustained FAK activation and ERK1/2 activation for up to 16 and hours 24 hours, respectively. These results suggest that transient M64HCl treatment promotes prolonged intestinal epithelial monolayer wound closure by stimulating sustained activation of the FAK/ERK1/2 pathway. Such molecules may be useful to promote gastrointestinal mucosal repair even with a relatively short half-life.


Subject(s)
Intestinal Mucosa , Wound Healing , Humans , Wound Healing/drug effects , Caco-2 Cells , Intestinal Mucosa/drug effects , Intestinal Mucosa/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Kinase 1/metabolism , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Cell Movement/drug effects , Pyridines/pharmacology , Animals , Amides/pharmacology
7.
Cell Commun Signal ; 22(1): 393, 2024 Aug 08.
Article in English | MEDLINE | ID: mdl-39118129

ABSTRACT

BACKGROUND: Disruptions in intracellular pH (pHi) homeostasis, causing deviations from the physiological range, can damage renal epithelial cells. However, the existence of an adaptive mechanism to restore pHi to normalcy remains unclear. Early research identified H+ as a critical mediator of ischemic preconditioning (IPC), leading to the concept of acidic preconditioning (AP). This concept proposes that short-term, repetitive acidic stimulation can enhance a cell's capacity to withstand subsequent adverse stress. While AP has demonstrated protective effects in various ischemia-reperfusion (I/R) injury models, its application in kidney injury remains largely unexplored. METHODS: An AP model was established in human kidney (HK2) cells by treating them with an acidic medium for 12 h, followed by a recovery period with a normal medium for 6 h. To induce hypoxia/reoxygenation (H/R) injury, HK2 cells were subjected to hypoxia for 24 h and reoxygenation for 1 h. In vivo, a mouse model of IPC was established by clamping the bilateral renal pedicles for 15 min, followed by reperfusion for 4 days. Conversely, the I/R model involved clamping the bilateral renal pedicles for 35 min and reperfusion for 24 h. Western blotting was employed to evaluate the expression levels of cleaved caspase 3, cleaved caspase 9, NHE1, KIM1, FAK, and NOX4. A pH-sensitive fluorescent probe was used to measure pHi, while a Hemin/CNF microelectrode monitored kidney tissue pH. Immunofluorescence staining was performed to visualize the localization of NHE1, NOX4, and FAK, along with the actin cytoskeleton structure in HK2 cells. Cell adhesion and scratch assays were conducted to assess cell motility. RESULTS: Our findings demonstrated that AP could effectively mitigate H/R injury in HK2 cells. This protective effect and the maintenance of pHi homeostasis by AP involved the upregulation of Na+/H+ exchanger 1 (NHE1) expression and activity. The activity of NHE1 was regulated by dynamic changes in pHi-dependent phosphorylation of Focal Adhesion Kinase (FAK) at Y397. This process was associated with NOX4-mediated reactive oxygen species (ROS) production. Furthermore, AP induced the co-localization of FAK, NOX4, and NHE1 in focal adhesions, promoting cytoskeletal remodeling and enhancing cell adhesion and migration capabilities. CONCLUSIONS: This study provides compelling evidence that AP maintains pHi homeostasis and promotes cytoskeletal remodeling through FAK/NOX4/NHE1 signaling. This signaling pathway ultimately contributes to alleviated H/R injury in HK2 cells.


Subject(s)
Reperfusion Injury , Sodium-Hydrogen Exchanger 1 , Animals , Humans , Male , Mice , Acids/metabolism , Cell Line , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Hydrogen-Ion Concentration , Ischemic Preconditioning , Kidney/metabolism , Kidney/pathology , Mice, Inbred C57BL , NADPH Oxidase 4/metabolism , NADPH Oxidase 4/genetics , Phosphorylation , Reactive Oxygen Species/metabolism , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Sodium-Hydrogen Exchanger 1/metabolism , Sodium-Hydrogen Exchanger 1/genetics
8.
J Cell Sci ; 137(14)2024 07 15.
Article in English | MEDLINE | ID: mdl-39034922

ABSTRACT

Focal adhesion kinase (FAK; encoded by PTK2) was discovered over 30 years ago as a cytoplasmic protein tyrosine kinase that is localized to cell adhesion sites, where it is activated by integrin receptor binding to extracellular matrix proteins. FAK is ubiquitously expressed and functions as a signaling scaffold for a variety of proteins at adhesions and in the cell cytoplasm, and with transcription factors in the nucleus. FAK expression and intrinsic activity are essential for mouse development, with molecular connections to cell motility, cell survival and gene expression. Notably, elevated FAK tyrosine phosphorylation is common in tumors, including pancreatic and ovarian cancers, where it is associated with decreased survival. Small molecule and orally available FAK inhibitors show on-target inhibition in tumor and stromal cells with effects on chemotherapy resistance, stromal fibrosis and tumor microenvironment immune function. Herein, we discuss recent insights regarding mechanisms of FAK activation and signaling, its roles as a cytoplasmic and nuclear scaffold, and the tumor-intrinsic and -extrinsic effects of FAK inhibitors. We also discuss results from ongoing and advanced clinical trials targeting FAK in low- and high-grade serous ovarian cancers, where FAK acts as a master regulator of drug resistance. Although FAK is not known to be mutationally activated, preventing FAK activity has revealed multiple tumor vulnerabilities that support expanding clinical combinatorial targeting possibilities.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Signal Transduction , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Animals , Neoplasms/pathology , Neoplasms/metabolism , Neoplasms/drug therapy , Neoplasms/enzymology , Neoplasms/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Female , Tumor Microenvironment , Ovarian Neoplasms/pathology , Ovarian Neoplasms/metabolism , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/genetics
9.
Eur J Med Chem ; 276: 116678, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39029337

ABSTRACT

Focal adhesion kinase (FAK) is considered as a pivotal intracellular non-receptor tyrosine kinase, and has garnered significant attention as a promising target for anticancer drug development. As of early 2024, a total of 12 drugs targeting FAK have been approved for clinical or preclinical studies worldwide, including three PROTAC degraders. In recent three years (2021-2023), significant progress has been made in designing targeted FAK anticancer agents, including the development of a novel benzenesulfofurazan type NO-releasing FAK inhibitor and the first-in-class dual-target inhibitors simultaneously targeting FAK and HDACs. Given the pivotal role of FAK in the discovery of anticancer drugs, as well as the notable advancements achieved in FAK inhibitors and PROTAC degraders in recent years, this review is underbaked to present a comprehensive overview of the function and structure of FAK. Additionally, the latest findings on the inhibitors and PROTAC degraders of FAK from the past three years, along with their optimization strategies and anticancer activities, were summarized, which might help to provide novel insights for the development of novel targeted FAK agents with promising anticancer potential and favorable pharmacological profiles.


Subject(s)
Antineoplastic Agents , Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Protein Kinase Inhibitors , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Neoplasms/drug therapy , Animals , Molecular Structure
10.
J Chem Inf Model ; 64(15): 6053-6061, 2024 Aug 12.
Article in English | MEDLINE | ID: mdl-39051776

ABSTRACT

Covalent kinase inhibitors (CKIs) have recently garnered considerable attention, yet the rational design of CKIs continues to pose a great challenge. In the discovery of CKIs targeting focal adhesion kinase (FAK), it has been observed that the chemical structure of the linkers plays a key role in achieving covalent targeting of FAK. However, the mechanism behind the observation remains elusive. In this work, we employ a comprehensive suite of advanced computational methods to investigate the mechanism of CKIs covalently targeting FAK. We reveal that the linker of an inhibitor influences the contacts between the warhead and residue(s) and the residence time in active conformation, thereby dictating the inhibitor's capability to bind covalently to FAK. This study reflects the complexity of CKI design and underscores the importance of considering the dynamic interactions and residence times for the successful development of covalent drugs.


Subject(s)
Focal Adhesion Protein-Tyrosine Kinases , Molecular Dynamics Simulation , Protein Binding , Protein Kinase Inhibitors , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/metabolism , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/chemistry , Protein Conformation , Humans
11.
Expert Opin Ther Pat ; 34(8): 593-610, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38946486

ABSTRACT

INTRODUCTION: Focal adhesion kinase (FAK) is a cytoplasmic non-receptor tyrosine kinase over-expressed in various malignancies which is related to various cellular functions such as adhesion, metastasis and proliferation. AREAS COVERED: There is growing evidence that FAK is a promising therapeutic target for designing inhibitors by regulating the downstream pathways of FAK. Some potential FAK inhibitors have entered clinical phase research. EXPERT OPINION: FAK could be an effective target in medicinal chemistry research and there were a variety of FAKIs have been patented recently. Here, we updated an overview of design, synthesis and structure-activity relationship of chemotherapeutic FAK inhibitors (FAKIs) from 2017 until now based on our previous work. We hope our efforts can broaden the understanding of FAKIs and provide new ideas and insights for future cancer treatment from medicinal chemistry point of view.


Subject(s)
Antineoplastic Agents , Drug Design , Focal Adhesion Protein-Tyrosine Kinases , Neoplasms , Patents as Topic , Protein Kinase Inhibitors , Animals , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Chemistry, Pharmaceutical , Drug Development , Focal Adhesion Protein-Tyrosine Kinases/antagonists & inhibitors , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/pathology , Neoplasms/enzymology , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemistry , Structure-Activity Relationship
12.
Cells ; 13(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39056760

ABSTRACT

Thousands struggle with acute and chronic intestinal injury due to various causes. Epithelial intestinal healing is dependent on phenotypic transitions to a mobile phenotype. Focal adhesion kinase (FAK) is a ubiquitous protein that is essential for cell mobility. This phenotype change is mediated by FAK activation and proves to be a promising target for pharmaceutical intervention. While FAK is crucial for intestinal healing, new evidence connects FAK with innate immunity and the importance it plays in macrophage/monocyte chemotaxis, as well as other intracellular signaling cascades. These cascades play a part in macrophage/monocyte polarization, maturation, and inflammation that is associated with intestinal injury. Colony stimulating factors (CSFs) such as macrophage colony stimulating factor (M-CSF/CSF-1) and granulocyte macrophage colony stimulating factor (GM-CSF/CSF-2) play a critical role in maintaining homeostasis within intestinal mucosa by crosstalk capabilities between macrophages and epithelial cells. The communication between these cells is imperative in orchestrating healing upon injury. Diving deeper into these connections may allow us a greater insight into the role that our immune system plays in healing, as well as a better comprehension of inflammatory diseases of the gut.


Subject(s)
Homeostasis , Immunity, Innate , Animals , Humans , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/immunology , Intestines/immunology , Macrophages/metabolism , Macrophages/immunology , Signal Transduction
13.
Biochem Biophys Res Commun ; 725: 150236, 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-38897039

ABSTRACT

BACKGROUND: Macrophage-derived foam cell formation is a hallmark of atherosclerosis and is retained during plaque formation. Strategies to inhibit the accumulation of these cells hold promise as viable options for treating atherosclerosis. Plexin D1 (PLXND1), a member of the Plexin family, has elevated expression in atherosclerotic plaques and correlates with cell migration; however, its role in macrophages remains unclear. We hypothesize that the guidance receptor PLXND1 negatively regulating macrophage mobility to promote the progression of atherosclerosis. METHODS: We utilized a mouse model of atherosclerosis based on a high-fat diet and an ox-LDL- induced foam cell model to assess PLXND1 levels and their impact on cell migration. Through western blotting, Transwell assays, and immunofluorescence staining, we explored the potential mechanism by which PLXND1 mediates foam cell motility in atherosclerosis. RESULTS: Our study identifies a critical role for PLXND1 in atherosclerosis plaques and in a low-migration capacity foam cell model induced by ox-LDL. In the aortic sinus plaques of ApoE-/- mice, immunofluorescence staining revealed significant upregulation of PLXND1 and Sema3E, with colocalization in macrophages. In macrophages treated with ox-LDL, increased expression of PLXND1 led to reduced pseudopodia formation and decreased migratory capacity. PLXND1 is involved in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK. Additionally, FAK inhibitors counteract the ox-LDL-induced migration suppression by modulating the phosphorylation states of FAK, Paxillin and their downstream effectors CDC42 and PAK. CONCLUSION: Our findings indicate that PLXND1 plays a role in regulating macrophage migration by modulating the phosphorylation levels of FAK/Paxillin and downstream CDC42/PAK to promoting atherosclerosis.


Subject(s)
Atherosclerosis , Cell Movement , Foam Cells , Mice, Inbred C57BL , Paxillin , Animals , Paxillin/metabolism , Foam Cells/metabolism , Foam Cells/pathology , Mice , Atherosclerosis/metabolism , Atherosclerosis/pathology , Signal Transduction , Lipoproteins, LDL/metabolism , Male , Nerve Tissue Proteins/metabolism , Nerve Tissue Proteins/genetics , cdc42 GTP-Binding Protein/metabolism , Macrophages/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , Disease Models, Animal , Receptors, Cell Surface/metabolism , Receptors, Cell Surface/genetics , Mice, Knockout , Membrane Glycoproteins , Intracellular Signaling Peptides and Proteins
14.
Sci Rep ; 14(1): 12969, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38839835

ABSTRACT

Schistosomiasis, caused by Schistosoma trematodes, is a significant global health concern, particularly affecting millions in Africa and Southeast Asia. Despite efforts to combat it, the rise of praziquantel (PZQ) resistance underscores the need for new treatment options. Protein kinases (PKs) are vital in cellular signaling and offer potential as drug targets. This study focused on focal adhesion kinase (FAK) as a candidate for anti-schistosomal therapy. Transcriptomic and proteomic analyses of adult S. mekongi worms identified FAK as a promising target due to its upregulation and essential role in cellular processes. Molecular docking simulations assessed the binding energy of FAK inhibitors to Schistosoma FAK versus human FAK. FAK inhibitor 14 and PF-03814735 exhibited strong binding to Schistosoma FAK with minimal binding for human FAK. In vitro assays confirmed significant anti-parasitic activity against S. mekongi, S. mansoni, and S. japonicum, comparable to PZQ, with low toxicity in human cells, indicating potential safety. These findings highlight FAK as a promising target for novel anti-schistosomal therapies. However, further research, including in vivo studies, is necessary to validate efficacy and safety before clinical use. This study offers a hopeful strategy to combat schistosomiasis and reduce its global impact.


Subject(s)
Proteomics , Schistosoma , Schistosomiasis , Transcriptome , Animals , Humans , Proteomics/methods , Schistosoma/drug effects , Schistosoma/genetics , Schistosoma/metabolism , Schistosomiasis/drug therapy , Molecular Docking Simulation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Helminth Proteins/metabolism , Helminth Proteins/genetics , Gene Expression Profiling/methods , Protein Kinase Inhibitors/pharmacology , Proteome/metabolism
15.
Cell Rep ; 43(6): 114297, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38824643

ABSTRACT

The mechanical environment generated through the adhesive interaction of endothelial cells (ECs) with the matrix controls nuclear tension, preventing aberrant gene synthesis and the transition from restrictive to leaky endothelium, a hallmark of acute lung injury (ALI). However, the mechanisms controlling tension transmission to the nucleus and EC-restrictive fate remain elusive. Here, we demonstrate that, in a kinase-independent manner, focal adhesion kinase (FAK) safeguards tension transmission to the nucleus to maintain EC-restrictive fate. In FAK-depleted ECs, robust activation of the RhoA-Rho-kinase pathway increased EC tension and phosphorylation of the nuclear envelope protein, emerin, activating DNMT3a. Activated DNMT3a methylates the KLF2 promoter, impairing the synthesis of KLF2 and its target S1PR1 to induce the leaky EC transcriptome. Repleting FAK (wild type or kinase dead) or inhibiting RhoA-emerin-DNMT3a activities in damaged lung ECs restored KLF2 transcription of the restrictive EC transcriptome. Thus, FAK sensing and control of tension transmission to the nucleus govern restrictive endothelium to maintain lung homeostasis.


Subject(s)
Cell Nucleus , Endothelial Cells , Kruppel-Like Transcription Factors , Transcriptome , rhoA GTP-Binding Protein , Animals , Humans , Mice , Cell Nucleus/metabolism , DNA Methyltransferase 3A , Endothelial Cells/metabolism , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Kruppel-Like Transcription Factors/metabolism , Kruppel-Like Transcription Factors/genetics , Membrane Proteins/metabolism , Membrane Proteins/genetics , Nuclear Proteins/metabolism , Nuclear Proteins/genetics , Phosphorylation , Promoter Regions, Genetic/genetics , rho-Associated Kinases/metabolism , rho-Associated Kinases/genetics , rhoA GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/genetics , Transcriptome/genetics , Male , Female
16.
BMB Rep ; 57(6): 305-310, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38835117

ABSTRACT

T-plastin (PLST), a member of the actin-bundling protein family, plays crucial roles in cytoskeletal structure, regulation, and motility. Studies have shown that the plastin family is associated with the malignant characteristics of cancer, such as circulating tumor cells and metastasis, by inducing epithelialmesenchymal transition (EMT) in various cancer cells. However, the role of PLST in the EMT of human lung cancer cells remains unclear. In this study, we observed that PLST overexpression enhanced cell migratory and invasive abilities, whereas its downregulation resulted in their suppression. Moreover, PLST expression levels were associated with the expression patterns of EMT markers, including E-cadherin, vimentin, and Slug. Furthermore, the phosphorylation levels of focal adhesion kinase (FAK) and AKT serine/threonine kinase (AKT) were dependent on PLST expression levels. These findings indicate that PLST induces the migration and invasion of human lung cancer cells by promoting Slug-mediated EMT via the FAK/AKT signaling pathway. [BMB Reports 2024; 57(6): 305-310].


Subject(s)
Cell Movement , Epithelial-Mesenchymal Transition , Lung Neoplasms , Microfilament Proteins , Proto-Oncogene Proteins c-akt , Signal Transduction , Snail Family Transcription Factors , Humans , Cadherins/metabolism , Cell Line, Tumor , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Microfilament Proteins/metabolism , Neoplasm Invasiveness , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Snail Family Transcription Factors/metabolism
17.
Int J Mol Sci ; 25(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38732165

ABSTRACT

Glioblastoma (GBM), an aggressive form of brain cancer, has a higher incidence in non-Hispanics when compared to the US Hispanic population. Using data from RT-PCR analysis of 21 GBM tissue from Hispanic patients in Puerto Rico, we identified significant correlations in the gene expression of focal adhesion kinase and proline-rich tyrosine kinase (PTK2 and PTK2B) with NGFR (nerve growth factor receptor), PDGFRB (platelet-derived growth factor receptor B), EGFR (epithelial growth factor receptor), and CXCR1 (C-X-C motif chemokine receptor 1). This study further explores these correlations found in gene expression while accounting for sex and ethnicity. Statistically significant (p < 0.05) correlations with an r value > ±0.7 were subsequently contrasted with mRNA expression data acquired from cBioPortal for 323 GBM specimens. Significant correlations in Puerto Rican male patients were found between PTK2 and PTK2B, NGFR, PDGFRB, EGFR, and CXCR1, which did not arise in non-Hispanic male patient data. The data for Puerto Rican female patients showed correlations in PTK2 with PTK2B, NGFR, PDGFRB, and EGFR, all of which did not appear in the data for non-Hispanic female patients. The data acquired from cBioPortal for non-Puerto Rican Hispanic patients supported the correlations found in the Puerto Rican population for both sexes. Our findings reveal distinct correlations in gene expression patterns, particularly involving PTK2, PTK2B, NGFR, PDGFRB, and EGFR among Puerto Rican Hispanic patients when compared to non-Hispanic counterparts.


Subject(s)
Brain Neoplasms , Gene Expression Regulation, Neoplastic , Glioblastoma , Hispanic or Latino , Signal Transduction , Adult , Aged , Female , Humans , Male , Middle Aged , Brain Neoplasms/genetics , Brain Neoplasms/ethnology , ErbB Receptors/genetics , Focal Adhesion Protein-Tyrosine Kinases/genetics , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Glioblastoma/genetics , Glioblastoma/ethnology , Hispanic or Latino/genetics , Puerto Rico , Signal Transduction/genetics
18.
Cells ; 13(10)2024 May 16.
Article in English | MEDLINE | ID: mdl-38786068

ABSTRACT

Induction of the adenosine receptor A2B (A2BAR) expression in diabetic glomeruli correlates with an increased abundance of its endogenous ligand adenosine and the progression of kidney dysfunction. Remarkably, A2BAR antagonism protects from proteinuria in experimental diabetic nephropathy. We found that A2BAR antagonism preserves the arrangement of podocytes on the glomerular filtration barrier, reduces diabetes-induced focal adhesion kinase (FAK) activation, and attenuates podocyte foot processes effacement. In spreading assays using human podocytes in vitro, adenosine enhanced the rate of cell body expansion on laminin-coated glass and promoted peripheral pY397-FAK subcellular distribution, while selective A2BAR antagonism impeded these effects and attenuated the migratory capability of podocytes. Increased phosphorylation of the Myosin2A light chain accompanied the effects of adenosine. Furthermore, when the A2BAR was stimulated, the cells expanded more broadly and more staining of pS19 myosin was detected which co-localized with actin cables, suggesting increased contractility potential in cells planted onto a matrix with a stiffness similar to of the glomerular basement membrane. We conclude that A2BAR is involved in adhesion dynamics and contractile actin bundle formation, leading to podocyte foot processes effacement. The antagonism of this receptor may be an alternative to the intervention of glomerular barrier deterioration and proteinuria in the diabetic kidney disease.


Subject(s)
Cell Adhesion , Diabetes Mellitus, Experimental , Focal Adhesion Protein-Tyrosine Kinases , Podocytes , Proteinuria , Receptor, Adenosine A2B , Animals , Humans , Male , Rats , Adenosine/metabolism , Adenosine/pharmacology , Adenosine A2 Receptor Antagonists/pharmacology , Cell Adhesion/drug effects , Cell Movement/drug effects , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/drug therapy , Focal Adhesion Protein-Tyrosine Kinases/drug effects , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Myosin Light Chains/metabolism , Phosphorylation/drug effects , Podocytes/metabolism , Podocytes/drug effects , Podocytes/pathology , Proteinuria/metabolism , Receptor, Adenosine A2B/drug effects , Receptor, Adenosine A2B/metabolism
19.
Nat Commun ; 15(1): 3741, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702301

ABSTRACT

Targeted therapy is effective in many tumor types including lung cancer, the leading cause of cancer mortality. Paradigm defining examples are targeted therapies directed against non-small cell lung cancer (NSCLC) subtypes with oncogenic alterations in EGFR, ALK and KRAS. The success of targeted therapy is limited by drug-tolerant persister cells (DTPs) which withstand and adapt to treatment and comprise the residual disease state that is typical during treatment with clinical targeted therapies. Here, we integrate studies in patient-derived and immunocompetent lung cancer models and clinical specimens obtained from patients on targeted therapy to uncover a focal adhesion kinase (FAK)-YAP signaling axis that promotes residual disease during oncogenic EGFR-, ALK-, and KRAS-targeted therapies. FAK-YAP signaling inhibition combined with the primary targeted therapy suppressed residual drug-tolerant cells and enhanced tumor responses. This study unveils a FAK-YAP signaling module that promotes residual disease in lung cancer and mechanism-based therapeutic strategies to improve tumor response.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Drug Resistance, Neoplasm , Lung Neoplasms , Signal Transduction , Transcription Factors , YAP-Signaling Proteins , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Signal Transduction/drug effects , Transcription Factors/metabolism , Transcription Factors/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , YAP-Signaling Proteins/metabolism , Cell Line, Tumor , Animals , Drug Resistance, Neoplasm/genetics , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Neoplasm, Residual , Mice , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , ErbB Receptors/metabolism , ErbB Receptors/genetics , Anaplastic Lymphoma Kinase/metabolism , Anaplastic Lymphoma Kinase/genetics , Anaplastic Lymphoma Kinase/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/pharmacology , Xenograft Model Antitumor Assays
20.
Apoptosis ; 29(7-8): 1109-1125, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38796567

ABSTRACT

Podocyte apoptosis or loss is the pivotal pathological characteristic of diabetic kidney disease (DKD). Insulin-like growth factor-binding protein 2 (IGFBP2) have a proinflammatory and proapoptotic effect on diseases. Previous studies have shown that serum IGFBP2 level significantly increased in DKD patients, but the precise mechanisms remain unclear. Here, we found that IGFBP2 levels obviously increased under a diabetic state and high glucose stimuli. Deficiency of IGFBP2 attenuated the urine protein, renal pathological injury and glomeruli hypertrophy of DKD mice induced by STZ, and knockdown or deletion of IGFBP2 alleviated podocytes apoptosis induced by high concentration of glucose or in DKD mouse. Furthermore, IGFBP2 facilitated apoptosis, which was characterized by increase in inflammation and oxidative stress, by binding with integrin α5 (ITGA5) of podocytes, and then activating the phosphorylation of focal adhesion kinase (FAK)-mediated mitochondrial injury, including membrane potential decreasing, ROS production increasing. Moreover, ITGA5 knockdown or FAK inhibition attenuated the podocyte apoptosis caused by high glucose or IGFBP2 overexpression. Taken together, these findings unveiled the insight mechanism that IGFBP2 increased podocyte apoptosis by mitochondrial injury via ITGA5/FAK phosphorylation pathway in DKD progression, and provided the potential therapeutic strategies for diabetic kidney disease.


Subject(s)
Apoptosis , Diabetes Mellitus, Experimental , Diabetic Nephropathies , Insulin-Like Growth Factor Binding Protein 2 , Mitochondria , Podocytes , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Diabetic Nephropathies/genetics , Podocytes/metabolism , Podocytes/pathology , Animals , Mice , Insulin-Like Growth Factor Binding Protein 2/metabolism , Insulin-Like Growth Factor Binding Protein 2/genetics , Humans , Mitochondria/metabolism , Mitochondria/pathology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Experimental/genetics , Male , Focal Adhesion Kinase 1/metabolism , Focal Adhesion Kinase 1/genetics , Oxidative Stress , Integrin alpha5/metabolism , Integrin alpha5/genetics , Mice, Inbred C57BL , Signal Transduction , Phosphorylation , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Focal Adhesion Protein-Tyrosine Kinases/genetics , Mice, Knockout , Integrins
SELECTION OF CITATIONS
SEARCH DETAIL