Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 730
Filter
1.
Food Microbiol ; 122: 104561, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38839224

ABSTRACT

The current study aimed to determine if the 3D-printing speed and temperature would impact the transferability of foodborne pathogens from the stainless-steel (SS) food cartridge to the 3D-printed food ink. Staphylococcus aureus and Escherichia coli were inoculated onto the interior surface of the SS food cartridges. Subsequently, a model food ink was extruded with a recommended macronutrient contribution of 55.8, 23.7, and 20.5% of carbohydrates, proteins, and fat, respectively. The impact of 3D-printing temperatures and speeds on transfer rates was analysed using a Two-Way ANOVA. S. aureus was transferred more from the cartridge to the food ink with a population of 3.39, 2.98, and 3.09 log CFU/g compared to 2.03, 2.06, and 2.00 log CFU/g for E. coli at 2000, 3000, and 4000 mm/s printing speed, respectively, at 25 °C. A Kruskal-Wallis Test was employed to investigate the effect of different speeds and temperatures on the transferability of S. aureus and E. coli. Speed was the main factor affecting S. aureus transferability, while temperature (25 and 50 °C) had the greatest impact on E. coli transferability. This research seeks to advance the understanding of 3D-printing parameters in pathogen transferability and help the food industry move towards this technology's quick and safe adoption.


Subject(s)
Escherichia coli , Food Microbiology , Printing, Three-Dimensional , Staphylococcus aureus , Temperature , Staphylococcus aureus/growth & development , Escherichia coli/growth & development , Stainless Steel , Food Handling/instrumentation , Food Handling/methods , Food Contamination/analysis , Colony Count, Microbial
2.
Food Chem ; 454: 139813, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38810460

ABSTRACT

Microbubbles (MBs) were incorporated into calcium chloride solution as a novel freezing medium for immersion freezing of grape tomato. The effects of MB size (39, 43, 48 µm mean diameter), entrapped gas (air, N2, CO2) and freezing temperature (-10, -15, -20 °C) on the freezing behavior and quality attributes of tomato were investigated. MBs increased the nucleation temperature from -7.4 to -3.5 °C and reduced the onset time of nucleation from 5.8 to 2.9 min at freezing temperature of -20 °C, which facilitated the formation of small ice crystals within tomato. MB-assisted freezing reduced the drip loss by 13.7-17.0% and improved the firmness of tomato, particularly when MB size and freezing temperature decreased. Freezing tomato with air-MBs did not compromise its nutritional quality, using N2- and CO2-MBs even increased its lycopene content, by 31% and 23%, respectively. The results proved the preservation effect of MBs on fruit during immersion freezing. This study can benefit the fruit and vegetable industry by providing an efficient freezing technology for producing frozen products with high sensory and nutritional quality.


Subject(s)
Food Preservation , Freezing , Fruit , Microbubbles , Solanum lycopersicum , Solanum lycopersicum/chemistry , Fruit/chemistry , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/instrumentation , Lycopene/chemistry , Nutritive Value
3.
J Agric Food Chem ; 72(20): 11629-11639, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38739462

ABSTRACT

Blueberries (Vaccinium section Cyanococcus) have a wealth of bioactive compounds, including anthocyanins and other antioxidants, that offer significant health benefits. Preserving these compounds and maintaining the sensory and nutritional qualities of blueberry products such as juice during cold market storage is critical to meet consumer expectations for nutritious, safe, and minimally processed food. In this study, we compared the effects of two preservation processing techniques, high-temperature short-time (HTST) and continuous flow high-pressure homogenization (CFHPH), on blueberry juice quality during storage at 4 °C. Our findings revealed that inlet temperature (Tin) of CFHPH processing at 4 °C favored anthocyanin retention, whereas Tin at 22 °C favored ascorbic acid retention. After 45 days of storage, CFHPH (300 MPa, 1.5 L/min, 4 °C) juice retained up to 54% more anthocyanins compared to control at 0 day. In contrast, HTST treatment (95 °C, 15 s) initially increased anthocyanin concentrations but led to their subsequent degradation over time, while also significantly degrading ascorbic acid. Furthermore, CFHPH (300 MPa, 4 °C) juice had significantly lower polyphenol oxidase activity (>80% less than control), contributing to the overall quality of the juice. This innovative processing technique has the potential to improve commercial blueberry juice, and help meet the rising demand for healthy and appealing food choices.


Subject(s)
Anthocyanins , Ascorbic Acid , Blueberry Plants , Cold Temperature , Food Storage , Fruit and Vegetable Juices , Fruit , Anthocyanins/chemistry , Anthocyanins/analysis , Blueberry Plants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Fruit and Vegetable Juices/analysis , Fruit/chemistry , Pressure , Food Preservation/methods , Food Preservation/instrumentation , Food Handling/methods , Food Handling/instrumentation , Antioxidants/chemistry , Antioxidants/analysis
4.
Food Chem ; 453: 139704, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-38788639

ABSTRACT

This study investigated the effects of ultrasound-assisted dry-curing (UADC) on water holding capacity (WHC) and tenderness of pork at different powers and times, and the mechanism was discussed by considering the functional and structural properties of salt-soluble proteins (SSP). The results showed the application of appropriate UADC treatments (300 W, 60 min) have disruptively affected the muscle structure and decreased the size of the SSP particles (P < 0.05), resulting in the increased concentration of active sulfhydryl and surface hydrophobicity (P < 0.05). These modifications facilitated the dissociation of the myofibrillar structure and the dissolution of more connected proteins, which in turn improved the WHC and tenderness of the pork (P < 0.05). Nevertheless, extended periods of high-power UADC treatments negatively affected the WHC and tenderness of dry-cured pork (P < 0.05). In general, using SSP modified by UADC provides a novel strategy for enhancing the WHC and tenderness of dry-cured products.


Subject(s)
Food Handling , Meat Products , Water , Animals , Swine , Water/chemistry , Food Handling/instrumentation , Meat Products/analysis , Hydrophobic and Hydrophilic Interactions , Solubility , Sodium Chloride/chemistry
5.
Food Chem ; 451: 139497, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38692240

ABSTRACT

The objective of this study was to evaluate the impacts of different drying technologies including microwave drying (MD), vacuum microwave drying (VMD), sun drying (SD), vacuum drying (VD), hot air drying (HAD), and vacuum freeze drying (VFD) on the physical characteristics, nutritional properties and antioxidant capacities of kiwifruit pomace in order to realize by-product utilization and improve energy efficiency. Results showed that both MD and VMD significantly reduced drying time by >94.6%, compared to traditional thermal drying which took 14-48 h. MD exhibited the highest content of soluble dietary fiber (9.5%) and the lowest energy consumption. Furthermore, VMD resulted in the highest content of vitamin C (198.78 mg/100 g) and reducing sugar (73.78%), and the antioxidant capacities ranked only second to VFD. Given the financial advantages and product quality, VMD was suggested to be advantageous technology in actual industrial production.


Subject(s)
Actinidia , Antioxidants , Desiccation , Fruit , Nutritive Value , Antioxidants/chemistry , Antioxidants/analysis , Actinidia/chemistry , Fruit/chemistry , Desiccation/methods , Desiccation/instrumentation , Freeze Drying , Food Handling/instrumentation , Food Handling/methods , Vacuum , Dietary Fiber/analysis
6.
Food Chem ; 450: 139356, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38643647

ABSTRACT

Fruits and vegetables (F&V) are a significant part of our diet consumption. Microbial and pesticide residues are the predominant safety hazards of F&V consumption. Ordinary water washing has a very limited effect on removing microorganisms and pesticide residues and requires high water usage. Ultrasound, as an environmentally friendly technology, shows excellent potential for reducing microbial contamination and pesticide residue. This paper summarizes the research on ultrasound application in F&V washing, including the removal of microbial and pesticide residues and the comprehensive effect on their physicochemical characteristics. Furthermore, multimode ultrasonic-assisted techniques like multi-frequency and sequential ultrasound, combined with novel and conventional methods, can enhance the ultrasound-based effect and be more effective and sustainable in preventing F&V from microbial contamination. Overall, this work explicitly establishes the background on the potential for ultrasound cleaning and disinfection in the food industry as a green, effective, and ultimate method of preventing foodborne illnesses.


Subject(s)
Decontamination , Food Contamination , Fruit , Vegetables , Vegetables/chemistry , Vegetables/microbiology , Fruit/chemistry , Fruit/microbiology , Food Contamination/analysis , Food Contamination/prevention & control , Decontamination/methods , Decontamination/instrumentation , Ultrasonics/instrumentation , Food Handling/instrumentation , Food Handling/methods , Bacteria/isolation & purification , Pesticide Residues/chemistry , Disinfection/instrumentation , Disinfection/methods
7.
Food Chem ; 450: 139394, 2024 Aug 30.
Article in English | MEDLINE | ID: mdl-38653058

ABSTRACT

In this study, the effect of osmotic dehydration (OD) pretreatment with various sugar (erythritol, glucose, and trehalose) on the quality of hot-air-predried peach slices was investigated, particularly focusing on electrical properties, texture, thermal stability, and cell wall strength. Furthermore, the correlation between the properties of predried peach slices and the texture of the instant controlled pressure drop (DIC) dried peach chips was explored. OD pretreatments improved the stability and integrity of the cell wall and cell membrane of pre-dried peach slices, which inhibited the excessive expansion of samples during DIC drying. Especially, peach chips with trehalose-OD exhibited the highest crispiness (1.05 mm), the highest hardness (101.34 N) was obtained in erythritol-OD samples. Overall, the type of osmotic agents affected the texture of DIC peach chips with OD pretreatments. It should be noted that trehalose is a promising osmotic agent for controlling and regulating the quality of DIC peach chips.


Subject(s)
Osmosis , Prunus persica , Prunus persica/chemistry , Food Handling/instrumentation , Desiccation/methods , Hot Temperature , Pressure , Food Preservation/methods , Food Preservation/instrumentation
8.
J Sci Food Agric ; 104(10): 6053-6061, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38517240

ABSTRACT

BACKGROUND: The study aimed to determine the effects of instant controlled decompression of steam pressure, termed as ICPD (instant controlled pressure drop) on fresh tea leaves, when combined with refractance window drying (RWD) of rolled green teas during green tea manufacturing. The ICPD steam treatment pressure (TP; 0.1-0.3 MPa), treatment time (TT; 10-20 s) and refractance window drying temperature (RWDT; 70-90 °C) were used as the processing parameters for manufacturing of green tea. RESULT: Response surface methodology was employed to enumerate the effects of ICPD process conditions and temperature of RWD on total phenolic content (TPC), total flavonoid content (TFC) and DPPH (1,1-diphenyl-2-picrylhydrazyl) radical scavenging activity of the green tea infusion. An optimum condition for green tea processing was found at TP 0.2 MPa, TT 20 s with RWDT at 70 °C. In comparison to made green tea manufactured without ICPD treatment, the ICPD treated green tea showed enhanced TPC, TFC and DPPH radical scavenging activity along with better colour and sensory attributes. The microstructural study of ICPD treated green tea samples showed more deformed cell surface integrity, larger stomatal pore size and cracks at the leaf surface in comparison with non-treated green tea sample. CONCLUSION: Present study reveals that an ICPD treatment at 0.2 MPa for 20 s can be used as an alternative to the traditional enzyme inactivation step of hot water treatment, for green tea leaves to improve the infusion quality in terms of increased levels of TPC and TFC and DPPH radical scavenging activity. © 2024 Society of Chemical Industry.


Subject(s)
Camellia sinensis , Food Handling , Phenols , Plant Leaves , Pressure , Tea , Camellia sinensis/chemistry , Tea/chemistry , Plant Leaves/chemistry , Food Handling/methods , Food Handling/instrumentation , Phenols/analysis , Phenols/chemistry , Humans , Flavonoids/analysis , Flavonoids/chemistry , Desiccation/methods , Desiccation/instrumentation , Color , Antioxidants/chemistry , Taste , Plant Extracts/chemistry
9.
J Sci Food Agric ; 104(9): 5435-5441, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38345581

ABSTRACT

BACKGROUND: Coffee roasting is one of the crucial steps in obtaining a high-quality product as it forms the product's color and flavor characteristics. Roast control is made by visual inspection or traditional instruments such as the Agtron spectrophotometer, which can have high implementation costs. Therefore, the present study evaluated colorimetric approaches (a bench colorimeter, smartphone digital images, and a colorimetric sensor) to predict the Agtron roasting degrees of whole and ground coffee. Two calibration approaches were assessed, that is, multiple linear regression and least-squares support vector machine. For that, 70 samples of whole and ground roasted coffees comprising the Agtron roasting range were prepared. RESULTS: The results showed that all three colorimetric acquisition types were efficient for the model building, but the bench colorimeter and the smartphone digital images generally performed with good determination coefficients and low errors as measured by external validation. For the whole bean coffee, the best model presented a determination coefficient (R2) of 0.99 and a root-mean-squared error (RMSE) of 1.91%, while R2 of 0.99 and RMSE of 0.87% was obtained for ground coffee, both using the colorimeter. CONCLUSION: The obtained models presented good prediction capability, as assessed by external validation and randomization tests. The obtained findings point to an alternative for coffee roasting monitoring that can lead to higher digitalization and local control of the process, even for smaller producers, due to its lower costs. © 2024 Society of Chemical Industry.


Subject(s)
Coffea , Coffee , Colorimetry , Cooking , Hot Temperature , Seeds , Colorimetry/instrumentation , Colorimetry/methods , Coffea/chemistry , Seeds/chemistry , Cooking/instrumentation , Cooking/methods , Coffee/chemistry , Color , Feasibility Studies , Food Handling/instrumentation , Food Handling/methods
10.
J Sci Food Agric ; 102(2): 732-739, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34173245

ABSTRACT

BACKGROUND: Ultrasound-assisted extraction of the intermediate product from the mechanical expression of hemp (Cannabis sativa L.) seed oil was investigated to improve the overall expression yield without compromising oil quality. Complementary ultrasound technology was used as an out-of-line treatment carried out at 20 kHz frequency and optimized with respect to amplitude (80 and 152 µm), sonication time (2, 10, 20 min) and to the hemp paste properties, in particular its particle size and hydration, which drive the compressibility of the press cake. RESULTS: Under the conditions evaluated, the optimal ultrasound treatment was found to be the one applied on the hydrated press cake for 2 min at 152 µm, which resulted in an oil yield of 13.4%, with an increase in extraction efficiency equal to 73% with respect to the control (untreated press cake). Sonication had a positive effect on the press cake texture and on the extracted oil antioxidant activity. Soaked samples treated for 2 min at 152 µm yielded the lowest hardness. Oil recovered from soaked samples treated at 80 µm and 152 µm ultrasound for 2 min had the highest antioxidant capacity. CONCLUSIONS: The technological results gathered in the present investigation are preliminary to the design and engineering of scaled-up equipment that combines the mechanical screw expression and the in-line ultrasound unit. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Cannabis/chemistry , Food Handling/methods , Plant Oils/isolation & purification , Sonication/methods , Animals , Antioxidants/analysis , Antioxidants/isolation & purification , Food Handling/instrumentation , Plant Oils/analysis , Ultrasonics
11.
J Sci Food Agric ; 102(3): 1047-1055, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34312869

ABSTRACT

BACKGROUND: Ultrafiltration of green honeybush (Cyclopia genistoides) extract results in a by-product (retentate). Application of further separation processes for recovery of polyphenols would entail creation of additional waste. Repurposing the retentate as a food flavour ingredient provides an alternative valorization approach. RESULTS: The retentate, suspended in water (270 g L-1 ), was heat-treated at 80 °C for 2, 4, 8 and 16 h, and at 90 °C for 2, 4, 6 and 8 h to change its sensory profile. The heat-treated retentate, diluted to beverage strength (2.15 g L-1 ), had prominent 'grape/Muscat-like' and 'marmalade/citrus' aroma and flavour notes. Overall, heating for ≤ 4 h increased the intensities of positive flavour and aroma notes, while reducing those of 'green/grass', 'hay' and bitterness, whereafter further heating only had a slight effect on the aroma profile at 80 °C (P < 0.05), but not at 90 °C (P ≥ 0.05). The heat treatments, 80 °C/4 h and 90 °C/4 h, were subsequently applied to different batches of retentate (n = 10) to accommodate the effect of natural product variation. Heating at 90 °C produced higher intensities of positive aroma attributes (P < 0.05), but was more detrimental to the phenolic stability, compared to 80 °C. CONCLUSION: After heat treatment, the phenolic content of C. genistoides retentate, reconstituted to beverage strength, still fell within the range of a typical 'fermented' (oxidized) honeybush leaf tea infusion. The change in phenolic composition will not diminish the benefit of an improved sensory profile for the retentate by-product through heating. © 2021 Society of Chemical Industry.


Subject(s)
Cyclopia Plant/chemistry , Flavoring Agents/isolation & purification , Food Handling/methods , Plant Extracts/isolation & purification , Beverages/analysis , Cyclopia Plant/metabolism , Flavoring Agents/chemistry , Flavoring Agents/metabolism , Food Handling/instrumentation , Hot Temperature , Odorants , Plant Extracts/chemistry , Plant Extracts/metabolism , Polyphenols/chemistry , Polyphenols/isolation & purification , Taste , Ultrafiltration
12.
J Sci Food Agric ; 102(3): 1155-1164, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34329485

ABSTRACT

BACKGROUND: Almonds are an important crop in California, and increased yields necessitate that dried in-hull almonds are stored in the field for longer periods, increasing the potential for postharvest moisture exposure (e.g., rain, fog). Processors are increasingly drying these 'wet' almonds to a moisture content of <6% using low heat before the hulling and shelling process in order to reduce mechanical damage to the nutmeat. To date, there is no information on the impact that moisture exposure and drying prior to hulling and shelling has on lipid oxidation and storage shelf life of raw almonds. RESULTS: Raw almonds exposed to ≤8% moisture and subsequently dried (MEx) and almonds not exposed to moisture exposure (≤4% moisture; control) were stored under accelerated shelf life conditions and evaluated monthly over 12 months for free fatty acid (FFA) value, peroxide value (PV), and headspace volatiles. At 12 months of accelerated storage, MEx almonds have 1.4 times higher FFA and 3.5 times higher PV than the control, indicating significant oxidative damage. MEx almonds also demonstrated higher levels of headspace volatile compounds related to lipid oxidation (i.e., hexanal, octanal, hexanoic acid) throughout storage. CONCLUSION: Drying almonds exposed to postharvest moisture prior to storage results in a higher degree of lipid oxidation during storage and a significant reduction in shelf life. © 2021 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Food Handling/methods , Lipids/chemistry , Nuts/chemistry , Prunus dulcis/chemistry , Food Handling/instrumentation , Food Storage , Hot Temperature , Oxidation-Reduction , Peroxides/chemistry , Water/analysis
13.
J Sci Food Agric ; 102(1): 425-433, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34143901

ABSTRACT

BACKGROUND: Apple wine is a popular alcoholic beverage for its nutrition and fresh taste. However, the methanol existing in apple wine restricts its quality. Unfortunately, there are no methods to reduce the methanol content in fruit wine. To this end, bentonite (B), calcium chloride (CC) and their combination (B&CC) were added into apple juice in this study. The treated juice (0) and supernatant obtained by standing the juice at 25 °C for 24 h were fermented at 25 °C and 10 °C, respectively. RESULTS: Bentonite was an excellent methanol interrupter, a pectin retainer and a wine quality defender both at 25 and 10 °C. The lowest methanol content of 1.41 mg L-1 and higher pectin content of 84.74 mg L-1 were reached in the finished wine by B0 at 10 °C. Calcium chloride decreased pectin content, elevated methanol content and changed the profile of individual organic acids. In fact, the wine by B&CC0 at 25 °C showed dramatic changes in individual organic acids. The content of l-malic acid and succinic acid was only 2.22% and 6.29% of the control, respectively, while the lactic acid content was 17.72 times that of the control. CONCLUSIONS: It is suggested that B0 and fermented at 10 °C was the most effective way to decrease methanol content, retain pectin content and defend wine quality. © 2021 Society of Chemical Industry.


Subject(s)
Alcoholic Beverages/analysis , Bentonite/chemistry , Calcium Chloride/chemistry , Food Handling/methods , Malus/chemistry , Fermentation , Food Handling/instrumentation , Fruit/chemistry , Methanol/chemistry , Pectins/chemistry
14.
J Sci Food Agric ; 102(2): 550-556, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34146348

ABSTRACT

BACKGROUND: This study examined the functional and antioxidant properties of Maillard reaction (MR) products of lupin protein isolate (LPI), fermented (FLPI), and germinated (GLPI) with glucose (G), treated with ultrasound (US) at different power levels (20-40-60-80%) for 15 min. The MR was conducted in a water bath for 180 min at 90 °C. RESULTS: The Trolox-equivalent antioxidant capacity (TEAC) values were found to be 46.79%, 56.43%, and 35.56% for the control (C), 58.99%, 80.17%, and 69.73% for conjugates of LPI-G, FLPI-G, and GLPI-G treated at 80% US, respectively. The maximum 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity of LPI-G, FLPI-G, and GLPI-G was found to be 39.68%, 59.54%, and 48.41%, respectively after 80% US. The FLPI-G sample showed the highest antioxidant activity compared with the samples treated at the same power level for DPPH and TEAC. The Fe-chelating activity of GLPI-G showed significant differences when compared with FLPI-G. The solubility of LPI-G, FLPI-G, and GLPI-G increased with increasing US power. The highest solubility was 74.29% for 80% US-treated GLPI-G. The emulsifying activity index (EAI) increased at 20% US and decreased with further increase in the US power. The EAI and emulsifying stability index (ESI) were negatively affected by the MR and US processes. CONCLUSION: The findings of current study proved that conjugation of LPI with G with the MR and with US pretreatment is an effective method for improving the bio- and techno-functional properties of LPI. It is therefore likely that the properties of plant proteins modified by biochemical and physical treatments may widen their applications in the food industry. © 2021 Society of Chemical Industry.


Subject(s)
Antioxidants/chemistry , Food Handling/methods , Glucose/chemistry , Lupinus/chemistry , Seed Storage Proteins/chemistry , Fermentation , Food Handling/instrumentation , Germination , Lupinus/growth & development , Maillard Reaction , Seeds/chemistry , Seeds/growth & development , Ultrasonics
15.
J Sci Food Agric ; 102(1): 121-131, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-34060085

ABSTRACT

BACKGROUND: The present study investigated the sensory acceptance, oxidative damage and protection, and possible anatomical-structural damage of cells from the surface of shapes of minimally processed yam. The tubers were minimally processed into the peeled rondelle, dice and 'chateau cut' (chateau) shapes, the latter of which was obtained after performing the abrasion technique. Control treatment corresponded to the rondelle shape with the periderm. The pieces were kept packed at 5 ± 2 °C for 14 days. RESULTS: Peeled rondelle and chateau were sensorially the most well-accepted yam shapes and achieved the highest purchase intention. The enzymes were partially modulated by the detected H2 O2 levels. Oxidative burst lasted longer in the minimally processed tissues than in the control. Polyphenol oxidase activity showed a clear difference in behavior between the minimally processed pieces and the control. Minimal processing induced transient increases in phenolic compounds, for which the expression was lowest in the abraded pieces. On the other hand, these pieces exhibited greater cell collapse on the surface of the amyliferous parenchyma. CONCLUSION: Based on the results of the trained panel, the abrasion technique is an alternative to provide shapes that are better accepted and marketable, more resistant to browning, and can be stored for up to 12 days. Resistance to browning may be related to a more efficient modulation of enzymatic antioxidant systems and intense deposition of cell debris on the surface of the amyliferous parenchyma. © 2021 Society of Chemical Industry.


Subject(s)
Consumer Behavior , Dioscorea/chemistry , Food Handling/methods , Catechol Oxidase/analysis , Catechol Oxidase/metabolism , Dioscorea/metabolism , Food Handling/instrumentation , Humans , Phenols/analysis , Phenols/metabolism , Plant Tubers/chemistry , Plant Tubers/metabolism
16.
Food Microbiol ; 102: 103914, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34809940

ABSTRACT

The biofilm life cycle where bacteria alternate between biofilm and planktonic lifestyles poses major implications in food spoilage and gastrointestinal infections. Recent studies had shown that freshly biofilm-dispersed cells have a unique physiology from planktonic cells, raising the fundamental question if biofilm-dispersed cells and planktonic cells disseminate differently across food surfaces. Mechanical dislodging via cutting can cause biofilm dispersal and eventual food cross-contamination. Here, we showed that biofilm-dispersed bacteria from various foodborne pathogens were transferred from freshly cut surface at a higher rate to the cutting material than that of planktonic bacteria. When the cutting tool was used to cut a fresh surface, more biofilm-dispersed bacteria were disseminated from the cutting tool to the newly cut surface than planktonic bacteria. Our observations were applicable to cutting tools of various materials and cut surfaces, where polystyrene and surfaces with high water content were most susceptible to biofilm transfer, respectively. Simple washing with detergent and mechanical wiping could aid bacterial removal from cutting tools. Our work revealed that biofilm-dispersed cells were transferred at a higher rate than planktonic cells and cutting tool was an important medium for pathogen cross-contamination, thus providing insights in maintaining their cleanliness in food processing industries.


Subject(s)
Bacteria , Biofilms , Food Contamination , Food Handling/methods , Bacteria/isolation & purification , Food Handling/instrumentation
17.
Sci Rep ; 11(1): 21377, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34725433

ABSTRACT

Cold brewing coffee has gained increasing popularity as a novel brewing method. A completely different flavour profile during cold brewing extraction (smooth and mild) is a result of the low-energy process, prolonged water-grind contact times and long preparation time. The aim of our research was to compare coffee drinks obtained with an innovative device for a faster, dynamic cold coffee extraction process (Hardtank) to drinks prepared traditionally in 24 h and hot brewed drinks. This study investigated the differences in chemical composition (volatile, non-volatile and lipid compounds), sensory properties and antioxidant capacity of coffee drinks from various extraction processes carried out at variable brewing temperatures, times and percolation modes. The results showed that the new cold maceration technique using coffee bed percolation (Hardtank) improved the quality of cold coffee drinks, making them similar in taste to hot coffee drinks. Among the studied extractions, the combination of a lower temperature (19.3 °C) and percolation process appeared to be the ideal setting for the most efficient extraction of compounds such as chlorogenic acids, gallic acid, caffeine, trigonelline, 5-(hydroxymethyl)furfural and lipids and consequently for their intake. In addition, FTIR spectra indicated an even 4 times greater quantity of lipids in Hardtank drinks than in classic cold brew and up to 5 times more lipids than in hot brew coffee, which contribute to the formation of the aroma and flavour. The decreased extraction time and use of coffee bed percolation could be beneficial for the quality and taste of cold brew products.


Subject(s)
Antioxidants/analysis , Coffee/chemistry , Food Handling/methods , Caffeine/analysis , Chlorogenic Acid/analysis , Coffea/chemistry , Cold Temperature , Flavoring Agents/analysis , Food Handling/instrumentation , Gallic Acid/analysis , Humans , Odorants/analysis , Seeds/chemistry , Taste
18.
J Food Sci ; 86(9): 3855-3867, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34337753

ABSTRACT

Enzymatic protein hydrolysates based on side stream materials from the fish-filleting industry are increasingly explored as food ingredients. However, intense sensory properties, and high salt contents, are often a limiting factor. Most of the sensory attributes, such as fish flavor and salty taste, can be ascribed to low-molecular-weight, water-soluble components, whereas bitterness is associated with small hydrophobic peptides. In this study, protein hydrolysates based on head and backbone residuals from Atlantic salmon (Salmo salar) and Atlantic cod (Gadus morhua) were produced using two different enzymes. The effects of micro- and nanofiltration on the chemical composition, protein recovery, and sensory properties of the final products were investigated. The choice of raw material and enzyme had negligible effects, whereas nanofiltration caused a considerable reduction in metabolites, ash, and the intensity of several sensory attributes. The intensity of bitterness increased after nanofiltration, indicating that small peptides associated with bitter taste were retained by the membrane. Total protein yield after microfiltration was 24%-29%, whereas 19%-24% were recovered in the nanofiltration retentate. PRACTICAL APPLICATION: Enzymatic protein hydrolysates can be included in food products to increase the protein content, and as a nutritional supplement and/or functional ingredient; however, unpalatable and intense flavors limit applications. This study investigated the use of membrane filtration to improve flavor quality and reduce salt content in fish protein hydrolysates. Although some protein loss is unavoidable in micro- and nanofiltration, this study demonstrates the production of fish protein hydrolysates with >90% protein and peptide content, which is suitable for inclusion in foods.


Subject(s)
Filtration , Food Handling , Protein Hydrolysates , Taste , Animals , Dietary Supplements/analysis , Fish Proteins/analysis , Fish Proteins/chemistry , Flavoring Agents/isolation & purification , Food Handling/instrumentation , Food Handling/methods , Peptides/chemistry , Protein Hydrolysates/analysis , Protein Hydrolysates/chemistry
19.
Food Microbiol ; 100: 103841, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416951

ABSTRACT

This study assessed the inactivation kinetics of 150 keV low-energy X-ray on mono-/co-culture biofilms of Listeria monocytogenes and Pseudomonas fluorescens on three different food-contact-surfaces (polyethylene, acrylic, and stainless steel). The results indicated that the level of biofilm formation of mono-/co-cultures of L. monocytogenes and P. fluorescens was the highest on acrylic. The mono-culture L. monocytogenes biofilm cells exhibited higher resistance to the low-energy X-rays than the corresponding mono-culture P. fluorescens biofilm cells, regardless of surface types. Furthermore, co-culture had enhanced the resistance of both P. fluorescens and L. monocytogenes biofilm cells to the low-energy X-ray. Two kinetic models for the inactivation process were investigated, including (i) Linear model and (ii) Weibull model. Based on R2, RMSE and AIC analysis, the Weibull model was superior in fitting the inactivation curves of low-energy X-ray on L. monocytogenes in mono-/co-culture biofilms with P. fluorescens. For mono-culture biofilms, the irradiation achieved the tR1 value (derived from the Weibull model, i.e., the dose required for the first 1-log reduction) of 46.36-50.81 Gy for L. monocytogenes and the tR1 value of 25.61-31.33 Gy for P. fluorescens. For co-culture biofilms, higher tR1 values for L. monocytogenes (59.54-70.77 Gy) and P. fluorescens (32.73-45.13 Gy) were yielded than those for their individual counterparts in mono-culture biofilm.


Subject(s)
Biofilms/radiation effects , Disinfection/methods , Listeria monocytogenes/physiology , Listeria monocytogenes/radiation effects , Pseudomonas fluorescens/radiation effects , Coculture Techniques , Disinfection/instrumentation , Equipment Contamination , Food Handling/instrumentation , Food Microbiology , Listeria monocytogenes/growth & development , Pseudomonas fluorescens/growth & development , Pseudomonas fluorescens/physiology , Stainless Steel/analysis , X-Rays
20.
Food Microbiol ; 100: 103866, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34416966

ABSTRACT

The elaboration of guidelines for the industry to establish minimum concentration to prevent cross-contamination during washing practices based on operational limits is the core of the recommended criteria for the use of sanitizers. Several studies have evidenced that sanitizers reduced the levels of foodborne pathogens. However, they might lead to the progress into a viable but non-culturable (VBNC) state of the cells. This evidence has raised concerns regarding the effectiveness of the recommended washing practices for the inactivation of microbial cells present in the process wash water (PWW). The present study evaluated if the most commonly used sanitizers, including sodium hypochlorite (chlorine), peroxyacetic acid (PAA) and chlorine dioxide (ClO2) at established operational limits induced the VBNC stage of Listeria monocytogenes and Escherichia coli O157:H7. Prevention of cross-contamination was examined in four different types of PWW from washing shredded lettuce and cabbage, diced onions, and baby spinach under simulated commercial conditions of high organic matter and 1 min contact time. The results obtained for chlorine showed that recommended operational limits (20-25 mg/L free chlorine) were effective in inactivating L. monocytogenes and E. coli O157:H7 in the different PWWs. However, the operational limits established for PAA (80 mg/L) and ClO2 (3 mg/L) reduced the levels of culturable pathogenic bacteria but induced the VBNC state of the remaining cells. Consequently, the operational limits for chlorine are satisfactory to inactivate foodborne pathogens present in PWW and prevent cross-contamination but higher concentrations or longer contact times should be needed for PAA and ClO2 to reduce the likelihood of the induction of VBNC bacteria cells, as it represents a hazard.


Subject(s)
Chlorine Compounds/pharmacology , Chlorine/pharmacology , Disinfectants/pharmacology , Escherichia coli O157/drug effects , Listeria monocytogenes/drug effects , Oxides/pharmacology , Peracetic Acid/pharmacology , Colony Count, Microbial , Escherichia coli O157/growth & development , Food Handling/instrumentation , Listeria monocytogenes/growth & development , Microbial Viability/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...