Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.295
1.
Food Res Int ; 188: 114450, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823835

This study aimed at assessing the effects of two infra-vitam traits, specifically the slaughter weight (SW) and the ultrasound backfat depth (BCKF) on several post-mortem and quality traits of typical Prosciutto Veneto protected designation of origin (PDO) dry-cured ham. The trial was conducted on a population of 423 pigs fed using different strategies to generate a high variation in SW (175 ± 15.5 kg) and BCKF (23.16 ± 4.14 mm). All the left thighs were weighed at slaughter and the ham factory during the different processing phases. The fat cover depth of green trimmed hams was measured. Data were analyzed with a linear model including SW classified in tertiles, BCKF as a covariate, SW × BCKF interaction, sex, batch, and pen nested within batch. Our results highlighted that, for each 10 kg increase in SW, trimmed and seasoned ham weights increased by 0.76 and 0.54 kg, respectively. The increase in SW significantly reduced relative curing and deboning losses but did not affect ham fat cover depth and trimming losses. A rise in BCKF increased the ham fat cover depth and trimming losses and decreased the curing and deboning losses. Increases in SW and BCKF improved quality traits of the seasoned ham including fat cover depth, visible marbling, inner lean firmness, and fat color. These findings confirm the feasibility of increasing SW and BCKF, which will result in a reduction in the relative losses associated with the dry-curing process while improving the quality of the seasoned ham.


Food Handling , Animals , Food Handling/methods , Male , Female , Meat Products/analysis , Body Weight , Swine , Adipose Tissue , Pork Meat/analysis , Italy , Food Quality
2.
Food Res Int ; 188: 114494, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823873

Pores and bubbles significantly influence the physical attributes (like texture, density, and structural integrity), organoleptic properties, and shelf life of processed foods. Hence, the quality of foods and their acceptance by the consumers could be influenced by the properties and prevalence of pores and bubbles within the food structure. Considering the importance of pores, this review aimed to comprehensively discuss the factors and mechanisms involved in the generation of pores and bubbles during the processing of different food products. Moreover, the characteristics and effects of pores on the properties of chocolates, cheeses, cereal-based foods (like cake, puffed grains, and pasta), dried, and fried products were discussed. The impacts of bubbles on the quality of foam-based products, foam creamers, and beverages were also explored. This review concludes that intrinsic factors (like food compositions, initial moisture content, and porosity) and extrinsic factors (like applied technologies, processing, and storage conditions) affect various properties of the pores and bubbles including their number, size, orientation, and distribution. These factors collectively shape the overall structure and quality of processed food products such as density, texture (hardness, cohesiveness, chewiness), and water holding capacity. The desirability or undesirability of pores and their characteristics depends on the type of products; hence, some practical hints were provided to mitigate their adverse effects or to enhance their formation in foods. For example, pores could increase the nutrient digestion and reduce the shelf life of the products by enhancing the risk of fat oxidation and microbial growth. In conclusion, this study provides a valuable resource for food scientists and industry professionals by discussing the effects of pores on food preservation, heat, and mass transfer (including oxygen, moisture, flavors, and nutrients). Understanding the dynamic changes in porosity during processing will be effective in customization of final product quality with desired attributes, ensuring tailored outcomes for specific applications.


Food Handling , Food Handling/methods , Porosity , Food Quality , Fast Foods/analysis , Food, Processed
3.
Sci Rep ; 14(1): 13038, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844503

This study aimed to develop an assessment framework for evaluating the quality of different chicken soup variants. Three types of chicken soup, traditional chicken soup (TCS), concentrated chicken soup (CCS), and blended chicken soup (BCS), were prepared and analyzed for various physicochemical parameters, including gross protein content, crude fat content, pH level, solid content, viscosity, and chromatic aberration value. Sensory evaluation was also conducted to assess overall quality. Correlation analysis helped identify three key evaluation indicators: gross protein content, L* value (lightness), and b* value (chromatic aberration). The weight assigned to gross protein content was the highest using the entropy weight method (EWM). Moreover, the grey correlation degree method was comprehensively applied to evaluate the chicken soup's quality. This analysis identified TCS and CCS as varieties with superior overall quality, showing a positive correlation with sensory evaluation, consistent with the results of nuclear magnetic resonance (NMR) used in this paper. These results provide theoretical support for assessing comprehensive quality and selecting chicken soup varieties.


Chickens , Entropy , Animals , Food Quality , Viscosity , Hydrogen-Ion Concentration
4.
Anim Sci J ; 95(1): e13952, 2024.
Article En | MEDLINE | ID: mdl-38689465

Defatted Lagenaria siceraria seed flour (DLSSF) was obtained from defatted seed cake, dried, and ground through a sieve of 500 µm and characterized. A 2 × 4 factorial design (two flour hydration rates and four fat substitution rates) was used to produce a low-fat beef patty by replacing fat with DLSSF. Beef kidney fat was used to formulate the control sample. Chemical, physical, technological, sensory, and nutritional characteristics of low-fat beef patties manufactured were evaluated. DLSSF contains mainly protein. As fat replacers, DLSSF induces a significant increase in the pH of the raw and cooked patty, the moisture and protein contents, the cooking yield, the cohesion, chewiness, springiness, and lightness of the cooked beef patty with fat substitution rate. There is a decrease in fat content, total calories, water retention capacity, hardness, and redness of the cooked patty with a fat substitution rate. From the sensory analysis, the substitution of fat improves the acceptability of samples. Based on the overall parameters analyzed, DLSSF containing 60% water can be used to produce low-fat beef patty by replacing fat at 100%. From these results, hydrated DLSSF could be an effective method to solve the problems of noncommunicable diseases related to animal fat consumption.


Chemical Phenomena , Cooking , Flour , Seeds , Seeds/chemistry , Animals , Cattle , Cooking/methods , Flour/analysis , Fat Substitutes/analysis , Cucurbitaceae/chemistry , Meat Products/analysis , Humans , Water/analysis , Food Quality , Hydrogen-Ion Concentration , Taste , Nutritive Value
5.
Food Res Int ; 186: 114306, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729707

The aim of this research was to find out the effect of different combinations of starter and non-starter cultures on the proteolysis of Castellano cheese during ripening. Four cheese batches were prepared, each containing autochthonous lactobacilli and or Leuconostoc, and were compared with each other and with a control batch, that used only a commercial starter. To achieve this, nitrogen fractions (pH 4.4-soluble nitrogen and 12 % trichloroacetic acid soluble nitrogen, polypeptide nitrogen and casein nitrogen), levels of free amino acids and biogenic amines were assessed. Texture and microstructure of cheeses were also evaluated. Significant differences in nitrogen fractions were observed between batches at different stages of ripening. The free amino acid content increased throughout the cheese ripening process, with a more significant increase occurring after the first 30 days. Cheeses containing non-starter lactic acid bacteria exhibited the highest values at the end of the ripening period. Among the main amino acids, GABA was particularly abundant, especially in three of the cheese batches at the end of ripening. The autochthonous lactic acid bacteria were previously selected as non-producers of biogenic amines and this resulted in the absence of these compounds in the cheeses. Analysis of the microstructure of the cheese reflected the impact of proteolysis. Additionally, the texture profile analysis demonstrated that the cheese's hardness intensified as the ripening period progressed. The inclusion of autochthonous non-starter lactic acid bacteria in Castellano cheese production accelerated the proteolysis process, increasing significantly the free amino acids levels and improving the sensory quality of the cheeses.


Amino Acids , Biogenic Amines , Cheese , Proteolysis , Cheese/microbiology , Cheese/analysis , Amino Acids/analysis , Amino Acids/metabolism , Biogenic Amines/analysis , Food Microbiology , Food Handling/methods , Leuconostoc/metabolism , Leuconostoc/growth & development , Lactobacillus/metabolism , Lactobacillus/growth & development , Nitrogen/analysis , Food Quality , Fermentation
6.
Food Res Int ; 186: 114356, 2024 Jun.
Article En | MEDLINE | ID: mdl-38729722

The quality of Pacific oyster (Crassostrea gigas) can be affected by many factors during depuration, in which temperature is the major element. In this study, we aim to determine the quality and plasmalogen changes in C. gigas depurated at different temperatures. The quality was significantly affected by temperature, represented by varying survival rate, glycogen content, total antioxidant capacity, alkaline phosphatase activity between control and stressed groups. Targeted MS analysis demonstrated that plasmalogen profile was significantly changed during depuration with PUFA-containing plasmalogen species being most affected by temperature. Proteomics analysis and gene expression assay further verified that plasmalogen metabolism is regulated by temperature, specifically, the plasmalogen synthesis enzyme EPT1 was significantly downregulated by high temperature and four plasmalogen-related genes (GPDH, PEDS, Pex11, and PLD1) were transcriptionally regulated. The positive correlations between the plasmalogen level and quality characteristics suggested plasmalogen could be regarded as a quality indicator of oysters during depuration.


Crassostrea , Plasmalogens , Temperature , Animals , Plasmalogens/metabolism , Plasmalogens/analysis , Crassostrea/genetics , Crassostrea/metabolism , Shellfish/analysis , Proteomics/methods , Antioxidants/metabolism , Antioxidants/analysis , Alkaline Phosphatase/metabolism , Food Quality
7.
Anim Sci J ; 95(1): e13951, 2024.
Article En | MEDLINE | ID: mdl-38703069

Intramuscular fat (IMF) is a crucial determinant of meat quality and is influenced by various regulatory factors. Despite the growing recognition of the important role of long noncoding RNAs (lncRNAs) in IMF deposition, the mechanisms underlying buffalo IMF deposition remain poorly understood. In this study, we identified and characterized a lncRNA, lncFABP4, which is transcribed from the antisense strand of fatty acid-binding protein 4 (FABP4). lncFABP4 inhibited cell proliferation in buffalo intramuscular preadipocytes. Moreover, lncFABP4 significantly increased intramuscular preadipocyte differentiation, as indicated by an increase in the expression of the adipogenic markers peroxisome proliferator-activated receptor gamma (PPARG), CCAAT enhancer binding protein alpha (C/EBPα), and FABP4. Mechanistically, lncFABP4 was found to have the potential to regulate downstream gene expression by participating in protein-protein interaction pathways. These findings contribute to further understanding of the intricate mechanisms through which lncRNAs modulate intramuscular adipogenesis in buffaloes.


Adipocytes , Adipogenesis , Buffaloes , Cell Differentiation , Cell Proliferation , Fatty Acid-Binding Proteins , PPAR gamma , RNA, Long Noncoding , Animals , Buffaloes/genetics , Buffaloes/metabolism , Adipogenesis/genetics , Adipocytes/metabolism , Adipocytes/cytology , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cell Differentiation/genetics , PPAR gamma/metabolism , PPAR gamma/genetics , Gene Expression , Cells, Cultured , CCAAT-Enhancer-Binding Protein-alpha/metabolism , CCAAT-Enhancer-Binding Protein-alpha/genetics , Food Quality
8.
J Texture Stud ; 55(3): e12836, 2024 Jun.
Article En | MEDLINE | ID: mdl-38702990

A new technique known as dough crumb-sheet composite rolling (DC-SCR) was used to improve the quality of fresh noodles. However, there is a dearth of theoretical investigations into the optimal selection of specific parameters for this technology, and the underlying mechanisms are not fully understood. Therefore, the effects of dough crumb addition times in DC-SCR on the texture, cooking, and eating quality of fresh noodles were first studied. Then, the underlying regulation mechanism of DC-SCR technology on fresh noodles was analyzed in terms of moisture distribution and microstructure. The study demonstrated that the most significant enhancement in the quality of fresh noodles was achieved by adding dough crumbs six times. Compared with fresh noodles made without the addition of dough crumbs, the initial hardness and chewiness of fresh noodles made by adding six times of dough crumbs increased by 25.32% and 46.82%, respectively. In contrast, the cooking time and cooking loss were reduced by 28.45% and 29.69%, respectively. This quality improvement in fresh noodles made by DC-SCR came from the microstructural differences of the gluten network between the inner and outer layers of the dough sheet. A dense structure on the outside and a loose structure on the inside could endow the fresh noodles made by DC-SCR with higher hardness, a shortened cooking time, and less cooking loss. This study would provide a theoretical and experimental basis for creating high-quality fresh noodles.


Bread , Cooking , Flour , Food Handling , Water , Cooking/methods , Flour/analysis , Food Handling/methods , Bread/analysis , Hardness , Glutens/analysis , Food Quality , Triticum/chemistry , Humans
9.
Compr Rev Food Sci Food Saf ; 23(3): e13369, 2024 May.
Article En | MEDLINE | ID: mdl-38767851

Mycotoxins, highly toxic and carcinogenic secondary metabolites produced by certain fungi, pose significant health risks as they contaminate food and feed products globally. Current mycotoxin detection methods have limitations in real-time detection capabilities. Aptasensors, incorporating aptamers as specific recognition elements, are crucial for mycotoxin detection due to their remarkable sensitivity and selectivity in identifying target mycotoxins. The sensitivity of aptasensors can be improved by using upconversion nanoparticles (UCNPs). UCNPs consist of lanthanide ions in ceramic host, and their ladder-like energy levels at f-orbitals have unique photophysical properties, including converting low-energy photons to high-energy emissions by a series of complex processes and offering sharp, low-noise, and sensitive near-infrared to visible detection strategy to enhance the efficacy of aptasensors for novel mycotoxin detection. This article aims to review recent reports on the scope of the potential of UCNPs in mycotoxin detection, focusing on their integration with aptasensors to give readers clear insight. We briefly describe the upconversion photoluminescence (UCPL) mechanism and relevant energy transfer processes influencing UCNP design and optimization. Furthermore, recent studies and advancements in UCNP-based aptasensors will be reviewed. We then discuss the potential impact of UCNP-modified aptasensors on food safety and present an outlook on future directions and challenges in this field. This review article comprehensively explains the current state-of-the-art UCNP-based aptasensors for mycotoxin detection. It provides insights into potential applications by addressing technical and practical challenges for practical implementation.


Food Contamination , Food Safety , Mycotoxins , Nanoparticles , Mycotoxins/analysis , Mycotoxins/chemistry , Nanoparticles/chemistry , Food Contamination/analysis , Food Safety/methods , Aptamers, Nucleotide/chemistry , Food Quality , Biosensing Techniques/methods
10.
Braz J Biol ; 84: e276805, 2024.
Article En | MEDLINE | ID: mdl-38808782

This study compares the physicochemical characteristics of breast meat (Pectoralis major) from conventional chicken and free-range chicken production systems. Analyses of pH, instrumental color measurement, weight loss from cooking (WLC), and water retention capacity (WRC) were carried out. Average pH values were slightly higher for conventional chicken samples. WLC did not show a significant difference between conventional and free-range chicken samples. The WRC was better and higher for the free-range chicken samples than the conventional ones. The mean values for luminosity (L*) were within the normal range, with slightly higher values for conventional chicken. In chromatids a* and b*, there was a tendency towards a more reddish color for free-range chicken samples. The differences found for types of production can be explained mainly by the difference in age at slaughter, the degree of physical activity, animal feeding, among other characteristics that differentiate an animal raised by the extensive system from the intensive system.


Chickens , Meat , Animals , Meat/analysis , Meat/standards , Pectoralis Muscles/physiology , Animal Husbandry , Hydrogen-Ion Concentration , Food Quality , Cooking
11.
Anim Sci J ; 95(1): e13962, 2024.
Article En | MEDLINE | ID: mdl-38811006

The aim of this study is to determine the effect of abrupt and gradual light/dark switching on growth performance, behavior, villus development, meat characteristics, and immunity of broilers. A total of 270 daily male broiler chicks were used in the experiment. The study comprised three groups based on whether the transitions between light and dark periods were abrupt or gradual. No significant differences were observed among the examined groups in terms of body weight, weight gain, mortality rate, feeding, pecking, relaxing, and feather preening behaviors, carcass, and breast meat quality characteristics. Total body weight gain, total feed consumption, total feed utilization ratio, and mortality rates of broilers during the 6-week fattening period did not differ compared to the abrupt transition. Broilers in the group with gradual transition exhibited less movement, more sitting, and sleeping behaviors. It was determined that the IgG was higher in the gradual transition group. The transitions between light and dark periods influenced the characteristics of thigh meat. Villus height and crypt depth were higher in the group where a 1-h gradual transition was applied. As a conclusion, gradual transition is more appropriate in broiler rearing.


Chickens , Food Quality , Meat , Photoperiod , Animals , Chickens/growth & development , Chickens/immunology , Chickens/physiology , Male , Behavior, Animal , Weight Gain , Immunoglobulin G/blood , Light , Animal Husbandry/methods
12.
J Agric Food Chem ; 72(21): 11885-11899, 2024 May 29.
Article En | MEDLINE | ID: mdl-38747409

Actin, a multifunctional protein highly expressed in eukaryotes, is widely distributed throughout cells and serves as a crucial component of the cytoskeleton. Its presence is integral to maintaining cell morphology and participating in various biological processes. As an irreplaceable component of myofibrillar proteins, actin, including G-actin and F-actin, is highly related to food quality. Up to now, purification of actin at a moderate level remains to be overcome. In this paper, we have reviewed the structures and functions of actin, the methods to obtain actin, and the relationships between actin and food texture, color, and flavor. Moreover, actin finds applications in diverse fields such as food safety, bioengineering, and nanomaterials. Developing an actin preparation method at the industrial level will help promote its further applications in food science, nutrition, and safety.


Actins , Food Quality , Actins/metabolism , Actins/chemistry , Animals , Humans
13.
Food Res Int ; 187: 114424, 2024 Jul.
Article En | MEDLINE | ID: mdl-38763675

This study aimed to investigate the changes in flavor quality of roasted duck during repetitive freeze-thawing (FT, -20 ℃ for 24 h, then at 4 ℃ for 24 h for five cycles) of raw duck preforms. HS-SPME/GC-MS analysis showed that more than thirty volatile flavor compounds identified in roasted ducks fluctuated with freeze-thawing of raw duck preforms, while hexanal, nonanal, 1-octen-3-ol, and acetone could as potential flavor markers. Compared with the unfrozen raw duck preforms (FT-0), repetitive freeze-thawing increased the protein/lipid oxidation and cross-linking of raw duck preforms by maintaining the higher carbonyl contents (1.40 âˆ¼ 3.30 nmol/mg), 2-thiobarbituric acid reactive substances (0.25 âˆ¼ 0.51 mg/kg), schiff bases and disulfide bond (19.65 âˆ¼ 30.65 µmol/g), but lower total sulfhydryl (73.37 âˆ¼ 88.94 µmol/g) and tryptophan fluorescence intensity. Moreover, A lower protein band intensity and a transformation from α-helixes to ß-sheets and random coils were observed in FT-3 âˆ¼ FT-5. The obtained results indicated that multiple freeze-thawing (more than two cycles) of raw duck preforms could be detrimental to the flavor quality of the roasted duck due to excessive oxidation and degradation.


Cooking , Ducks , Freezing , Gas Chromatography-Mass Spectrometry , Taste , Volatile Organic Compounds , Animals , Volatile Organic Compounds/analysis , Food Handling/methods , Oxidation-Reduction , Food Quality , Thiobarbituric Acid Reactive Substances/analysis
14.
Anim Sci J ; 95(1): e13959, 2024.
Article En | MEDLINE | ID: mdl-38769761

This study investigates the relationships between subclinical mastitis and milk quality with selected microRNAs in cow milk. California Mastitis Test (CMT)-positive (n = 20) and negative (n = 20) samples were compared (Experiment I). Additionally, samples with CMT-positive but microbiological-negative, as well as positive for only Staphylococcus subspecies (Staph spp.) and only Streptococcus subspecies (Strep spp.) were examined (Experiment II). Four groups were formed in Experiment II: Group I (CMT and microbiological-negative) (n = 20), Group II (CMT-positive but microbiological-negative) (n = 10), Group III (Staph spp.) (n = 5), Group IV (Strep spp.) (n = 5). While electrical conductivity, somatic cell count (SCC), malondialdehyde (MDA) increased, miR-27a-3p and miR-223 upregulated and miR-125b downregulated in the CMT-positive group in Experiment I. SCC and MDA were higher in CMT-positive groups. miR-27a-3p and miR-223 upregulated in Groups III and IV. While miR-155 is upregulated, miR-125b downregulated in Group IV. Milk fat is positively correlated with miR-148a and miR-223. As miR-27a-3p positively correlated with SCC and MDA, miR-125b negatively correlated with electrical conductivity and SCC. miR-148a and MDA were positively correlated. miR-155 was correlated with fat-free dry matter, protein, lactose, and freezing point. miR-223 was positively correlated with SCC and miR-148a. Results particularly highlight miR-27a-3p and miR-223 as potential biomarkers in subclinical mastitis, especially those caused by Staph spp. and Strep spp., while miR-148a, miR-155, and miR-223 stand out in determining milk quality.


Mastitis, Bovine , MicroRNAs , Milk , Animals , Milk/microbiology , MicroRNAs/metabolism , MicroRNAs/genetics , Cattle , Female , Mastitis, Bovine/microbiology , Mastitis, Bovine/diagnosis , Mastitis, Bovine/genetics , Mastitis, Bovine/metabolism , Staphylococcus/isolation & purification , Cell Count/veterinary , Streptococcus/isolation & purification , Food Quality , Malondialdehyde/metabolism , Malondialdehyde/analysis , Electric Conductivity , Asymptomatic Infections
15.
Anim Sci J ; 95(1): e13956, 2024.
Article En | MEDLINE | ID: mdl-38797661

Dry-cured beef ham quality is determined by moisture content; however, it is hard to do non-destructive monitoring. We investigated whether the internal moisture content of dry-cured beef ham could be determined from the impedance of the surface, which is removed at the time of eating. Supraspinatus muscle samples from Japanese Shorthorn steers were dried for different periods. The samples were then divided into the parts to be removed (surface) and edible parts. Their respective impedance and moisture content were measured, and the correlation between these two parameters was investigated. A negative correlation was observed between the impedance and moisture content of the surface and the shallow and deep sections of the edible part. There was also a negative correlation between the impedance of the surface and the moisture content of the shallow and deep sections of the edible part. Therefore, the results of this study indicate that during drying, the moisture content in the shallow and deep sections of dry-cured hams can be estimated by measuring the impedance of the surface. This non-destructive method of measuring the moisture content of dry-cured hams can help in regulating the moisture content during drying to produce high-quality dry-cured hams.


Electric Impedance , Food Quality , Water , Animals , Water/analysis , Cattle , Desiccation , Food Handling/methods , Meat Products/analysis , Food Analysis/methods , Swine , Red Meat/analysis , Male , Muscle, Skeletal
16.
Sci Rep ; 14(1): 8277, 2024 04 09.
Article En | MEDLINE | ID: mdl-38594334

With both foodborne illness and food spoilage detrimentally impacting human health and the economy, there is growing interest in the development of in situ sensors that offer real-time monitoring of food quality within enclosed food packages. While oligonucleotide-based fluorescent sensors have illustrated significant promise, the development of such on-food sensors requires consideration towards sensing-relevant fluorescence properties of target food products-information that has not yet been reported. To address this need, comprehensive fluorescence profiles for various contamination-prone food products are established in this study across several wavelengths and timepoints. The intensity of these food backgrounds is further contextualized to biomolecule-mediated sensing using overlaid fluorescent oligonucleotide arrays, which offer perspective towards the viability of distinct wavelengths and fluorophores for in situ food monitoring. Results show that biosensing in the Cyanine3 range is optimal for all tested foods, with the Cyanine5 range offering comparable performance with meat products specifically. Moreover, recognizing that mass fabrication of on-food sensors requires rapid and simple deposition of sensing agents onto packaging substrates, RNA-cleaving fluorescent nucleic acid probes are successfully deposited via microcontact printing for the first time. Direct incorporation onto food packaging yields cost-effective sensors with performance comparable to ones produced using conventional deposition strategies.


Food Contamination , Oligonucleotides , Humans , Food Contamination/analysis , Fluorescent Dyes , Food Quality , Oligonucleotide Array Sequence Analysis
17.
J Oleo Sci ; 73(5): 645-655, 2024 May 01.
Article En | MEDLINE | ID: mdl-38583981

The physicochemical characteristics and general food quality were greatly impacted by milling. In order to investigate the effect of milling technique for physicochemical properties of sesame paste of sesame paste, samples were prepared using ball mill and colloid mill by varying grinding times. The samples prepared by ball milling had the higher moisture contents (0.07% - 0.14%) than colloid milling (p < 0.05), except for colloid milling for one cycle (0.11%). The particle size curves showed the multimodal distributions. Compared to colloid milled samples, ball milled samples have smaller particle sizes and more uniform particle distribution. The L* values of samples prepared by ball milling were higher than colloid milling. The ball mill produced sesame paste with a wider range of hardness and silkier texture, and the samples made by ball milling for 30 min had the highest hardness. And the hardness of both CMS and BMS showed a decreasing trend with increasing grinding time. During ball milling, high-speed cutting and collision caused breakage of disulfide bonds, and the sesame proteins were decomposed to their subunits. In conclusions, ball milling may be an alternative and promising process for the preparation of sesame paste.


Chemical Phenomena , Colloids , Food Handling , Hardness , Particle Size , Sesamum , Sesamum/chemistry , Food Handling/methods , Colloids/chemistry , Food Quality , Time Factors , Water/chemistry , Plant Proteins/chemistry , Plant Proteins/analysis , Disulfides/chemistry , Disulfides/analysis
18.
Meat Sci ; 213: 109501, 2024 Jul.
Article En | MEDLINE | ID: mdl-38574653

The lack of consumer feedback on beef eating quality contributes to reduced beef consumption in Europe. The Meat Standards Australia (MSA) grading scheme can assess the palatability of beef carcasses usually graded at the 10th thoracic vertebrae. However, the European beef industry relies on late-maturing breeds usually cut at the 5th vertebrae due to commercial reasons. Data from 55 young bulls and heifers of late-maturing breeds were collected in an Italian slaughterhouse following the MSA guidelines at both carcass grading sites and sides. Intramuscular fat levels were assessed through two scores and used with other variables to feed the MSA model, which predicts the MSA index, the meat-eating quality scores (MQ4) for 5 muscles and for each carcass grading site × side combination. The scores were analyzed using a mixed linear model. A correlation analysis was conducted to predict the variables measured at the 10th site using their correspondent at the 5th carcass grading site. A stepwise regression was conducted to understand the weight of each measured variable on marbling and MQ4 scores measured both at 5th and 10th carcass grading sites. Results showed significantly higher value for the studied traits at the 5th carcass grading site, while carcass side had no significant impact. The equations had high predictive capability and MSA marbling score played a key role in explaining the variability across carcass grading sites. The differences in marbling and MQ4 scores between the carcass grading sites suggest considering this factor if the MSA grading system will be applied to Europe.


Muscle, Skeletal , Red Meat , Animals , Cattle , Red Meat/analysis , Red Meat/standards , Male , Female , Muscle, Skeletal/chemistry , Abattoirs , Adipose Tissue , Australia , Italy , Food Quality , Europe , Body Composition
19.
Meat Sci ; 213: 109507, 2024 Jul.
Article En | MEDLINE | ID: mdl-38583336

The impact of various field strength (2, 3, 4 kV/cm) and treatment time (60s and 90s) combinations on NaCl content and diffusion coefficient of beef were evaluated in the current study. Weight change, water content, water holding capacity, and texture of beef after brining were also explored. The results demonstrated pulsed electric field (PEF) pre-treatment significantly increased NaCl uptake when the brining time was 150 min (P < 0.05). The maximum NaCl content increased by 19.50% and the diffusion coefficient increased by 58.50%. Relatively mild PEF (60s) could improve beef qualities, but longer treatment time (90s) was detrimental to these qualities. Meanwhile, more complete myofibrillar structure and lower lipid oxidation extent were observed in the samples treated by PEF, contributing to the higher a* values. In conclusion, short processing time (60s) and high field strength (4 kV/cm) treatment is a potential strategy for meat brining acceleration and quality improvement in practical industrial production.


Food Handling , Red Meat , Sodium Chloride , Animals , Cattle , Red Meat/analysis , Food Handling/methods , Sodium Chloride/chemistry , Electricity , Diffusion , Water , Myofibrils/chemistry , Muscle, Skeletal/chemistry , Food Quality
20.
Food Chem ; 449: 139191, 2024 Aug 15.
Article En | MEDLINE | ID: mdl-38583396

This study discusses interaction differences between three phenols (protocatechuic acid, naringin and tannic acid) and starch helix, investigates influences of phenols at different doses on properties of maize starch, and further determines their effects on quality and function of maize-starchy foods. Simulated results indicate variations of phenolic structure (phenolic hydroxyl group amount, glycoside structure and steric hindrance) and dose induce phenols form different complexes with starch helix. Formation of different starch-phenols complexes alters gelatinization (1.65-5.63 J/g), pasting form, water binding capacity (8.83-12.69 g/g) and particle size distribution of starch. Meanwhile, differences in starch-phenols complexes are reflected in fingerprint area (R1045/1022: 0.920 to 1.047), crystallinity (8.3% to 17.0%), rheology and gel structure of starch. Additionally, phenols change texture and color of cold maize cake, giving them different antioxidant capacity and lower digestibility. Findings are beneficial for understanding interaction between starch and different phenols and their potential application.


Phenols , Starch , Zea mays , Zea mays/chemistry , Starch/chemistry , Phenols/chemistry , Food Quality , Rheology , Antioxidants/chemistry , Particle Size
...