ABSTRACT
A levan-type fructooligosaccharide was produced by a Paenibacillus strain isolated from Brazilian crude oil, the purity of which was 98.5% after precipitation with ethanol and dialysis. Characterization by FTIR, NMR spectroscopy, GC-FID and ESI-MS revealed that it is a mixture of linear ß(2 â 6) fructosyl polymers with average degree of polymerization (DP) of 18 and branching ratio of 20. Morphological structure and physicochemical properties were investigated to assess levan microstructure, degradation temperature and thermomechanical features. Thermal Gravimetric Analysis highlighted degradation temperature of 218 °C, Differential Scanning Calorimetry (DSC) glass transition at 81.47 °C, and Dynamic Mechanical Analysis three frequency-dependent transition peaks. These peaks, corresponding to a first thermomechanical transition event at 86.60 °C related to the DSC endothermic event, a second at 170.9 °C and a third at 185.2 °C, were attributed to different glass transition temperatures of oligo and polyfructans with different DP. Levan showed high morphological versatility and technological potential for the food, nutraceutical, and pharmaceutical industries.
Subject(s)
Fructans/isolation & purification , Paenibacillus/metabolism , Petroleum/microbiology , Carbohydrate Conformation , Chemical Fractionation , Hot Temperature , Structure-Activity Relationship , VitrificationABSTRACT
Inulin is a polysaccharide of fructose widely used in the food and pharmaceutical industry due to its physicochemical properties and technological applications. Inulin from jicama (Smallanthus sonchifolius) and cabuya (Agave americana) was obtained. The steps for inulin obtention were: raw material preparation, extraction and purification. The extraction conditions were determined using a random design with three levels of stirring speed (0, 130 and 300 rpm), and a 32 factorial experimental design with three levels of temperature (40, 60 and 80 °C) and solid:liquid ratio (1:2, 1:3 and 1:5 S:L). The results showed that the best extractions conditions for jicama were 130 rpm, 75 °C, 1:5 S:L and 25 min; while for cabuya were 80 °C, 300 rpm, 1:5 S-L and 100 min. The weight average molecular weight of inulin from jicama and cabuya were 5799.9 and 4659.75 g/mol, respectively. The identity of the obtained inulin from jicama and cabuya were confirmed by infrared (IR) and Raman spectroscopy. In addition, scanning electron microscopy, differential scanning calorimetry and thermogravimetry analyses were performed to characterize both inulins.
Subject(s)
Agave/chemistry , Asteraceae/chemistry , Fructans/chemistry , Fructans/isolation & purificationABSTRACT
BACKGROUND: Inulin and other fructans are synthesized and stored in mezcal agave (Agave salmiana). Fructans provide several health benefits and have excellent technological properties, but only few data report their physiological effect when added in the diet. RESULTS: Here, we studied the physiological effects of fructans obtained from A. salmiana when added in the diet of Wistar rats. Results showed favorable changes on Wistar rats when the fructans was added to their diet, including the decrease of the pH in the feces and the increase of the number of lactic acid bacteria (CFU g-1 ) (Lactobacillus spp. and Bifidobacterium spp.), even these changes were enhanced with the synbiotic diet (fructans plus B. animalis subsp. lactis). Synbiotic diet, developed changes in the reduction of cholesterol and triglycerides concentrations in serum, with statistical differences (P < 0.05). Histological analysis of colon sections showed that synbiotic diet promoted colon cells growth suggesting that fructans from A. salmiana confer beneficial health effects through gut microbiota modulation. CONCLUSION: Our data underline the advantage of targeting the gut microbiota by colonic nutrients like specific structure of fructans from A. salmiana, with their beneficial effects. More studies are necessary to define the role of fructans to develop more solid therapeutic solutions in humans. © 2016 Society of Chemical Industry.
Subject(s)
Agave/chemistry , Dysbiosis/prevention & control , Fructans/therapeutic use , Fruit/chemistry , Gastrointestinal Microbiome , Plant Extracts/therapeutic use , Prebiotics , Agave/growth & development , Animals , Bifidobacterium/growth & development , Bifidobacterium/isolation & purification , Bifidobacterium animalis/growth & development , Colon/cytology , Colon/microbiology , Colon/pathology , Dysbiosis/blood , Dysbiosis/microbiology , Dysbiosis/pathology , Feces/chemistry , Feces/microbiology , Freeze Drying , Fructans/isolation & purification , Fruit/growth & development , Hydrogen-Ion Concentration , Hyperlipidemias/blood , Hyperlipidemias/microbiology , Hyperlipidemias/pathology , Hyperlipidemias/prevention & control , Intestinal Mucosa/cytology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Lactobacillus/growth & development , Lactobacillus/isolation & purification , Male , Mexico , Plant Extracts/isolation & purification , Random Allocation , Rats, Wistar , SynbioticsABSTRACT
BACKGROUND: Agave (Agave tequilana Weber var. Azul) is an industrially important crop in México since it is the only raw material appropriate to produce tequila, an alcoholic beverage. Nowadays, however, these plants have also a nutritional interest as a source of functional food ingredients, owing to the prebiotic potential of agave fructans. In this study, a Box-Behnken design was employed to determine the influence of temperature, liquid:solid ratio and time in a maceration process for agave fructan extraction and optimization. RESULTS: The developed regression model indicates that the selected study variables were statistical determinants for the extraction yield, and the optimal conditions for maximum extraction were a temperature of 60 °C, a liquid:solid ratio of 10:1 (v/w) and a time of 26.7 min, corresponding to a predicted extraction yield of 37.84%. Through selective separation via precipitation with ethanol, fructans with a degree of polymerization of 29.1 were obtained. CONCLUSION: Box-Behnken designs are useful statistical methods for optimizing the extraction process of agave fructans. A mixture of carbohydrates was obtained from agave powder. This optimized method can be used to obtain fructans for use as prebiotics or as raw material for obtaining functional oligosaccharides. © 2015 Society of Chemical Industry.
Subject(s)
Agave/chemistry , Crops, Agricultural/chemistry , Fructans/isolation & purification , Models, Chemical , Plant Extracts/isolation & purification , Plant Stems/chemistry , Prebiotics/analysis , Chemical Precipitation , Ethanol/chemistry , Food Handling/methods , Fructans/analysis , Fructans/chemistry , Hot Temperature , Mexico , Molecular Weight , Particle Size , Plant Extracts/chemistry , Polymerization , Regression Analysis , Reproducibility of Results , Solvents/chemistry , Statistics as Topic , Time FactorsABSTRACT
Inulin-type fructans are the most studied prebiotic compounds because of their broad range of health benefits. In particular, plants of the Agave genus are rich in fructans. Agave-derived fructans have a branched structure with both ß-(2â1) and ß-(2â6) linked fructosyl chains attached to the sucrose start unit with a degree of polymerization (DP) of up to 80 fructose units. The objective of this work was to assess the prebiotic potential of three Agave angustifolia Haw fructan fractions (AFF) with different degrees of polymerization. The three fructan fractions were extracted from the agave stem by lixiviation and then purified by ultrafiltration and ion exchange chromatography: AFF1, AFF2 and AFF3 with high (3-60 fructose units), medium (2-40) and low (2-22) DP, respectively. The fructan profile was determined with high-performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), which confirmed a branched fructan structure. Structural elucidation was performed by Fourier Transform Infra-Red Spectroscopy. The AFF spectrum shows characteristic fructan bands. The prebiotic effect of these fractions was assessed in vitro through fermentation by Bifidobacterium and Lactobacillus strains. Four growth patterns were observed. Some bacteria did not grow with any of the AFF, while other strains grew with only AFF3. Some bacteria grew according to the molecular weight of the AFF and some grew indistinctly with the three fructan fractions.
Subject(s)
Agave/chemistry , Fructans/chemistry , Plant Extracts/chemistry , Prebiotics , Bifidobacterium/growth & development , Bifidobacterium/metabolism , Culture Media/chemistry , Fermentation , Fructans/isolation & purification , Fructans/metabolism , Lactobacillus/growth & development , Lactobacillus/metabolism , Plant Extracts/isolation & purification , Plant Extracts/metabolism , PolymerizationABSTRACT
The prebiotic effect of agave fructans (Agave salmiana) was evaluated through the growth of two lactic acid bacterial (LAB) strains (Lactobacillus casei and Bifidobacterium lactis). The immune system was activated through the stimulation of peripheral blood mononuclear cells (PBMC) of healthy subjects testing fructans, LAB or a mixture of these compounds at different concentrations. Immune responses, such as early cell activation (CD69), cell cycle progression, nitric oxide (NO) production and the expression of transcription factors for lymphocyte differentiation, were analyzed. Compared with other fructans, the extracted agave fructans showed the highest prebiotic activity and increased levels of CD69 expression, proliferative activity and NO production when administered with the probiotic L. casei. The Th1 lymphocyte differentiation produced through LAB stimulation was greatly diminished after the incorporation of agave fructans. In conclusion, these types of fructans (A. salmiana) are involved in the activation and selective differentiation of cells of the immune system through interactions with probiotics. Thus, agave fructans represent a novel immunomodulator that might benefit the functional food industry.
Subject(s)
Fructans/administration & dosage , Immune System/drug effects , Immunomodulation/drug effects , Prebiotics , Agave/chemistry , Bifidobacterium/metabolism , Cell Proliferation/drug effects , Fructans/chemistry , Fructans/isolation & purification , Humans , Lacticaseibacillus casei/metabolism , Leukocytes, Mononuclear/drug effects , Lymphocyte Activation/drug effectsABSTRACT
RATIONALE: Infant formulae are being supplemented with probiotics, prebiotics, or symbiotic despite uncertainties regarding their efficacy. Mexican agave is an interesting source of fructans with particular features and with potential prebiotic effects. MATERIAL AND METHODS: RCT in 600 healthy term babies (20 ± 7 days), allocated to receive standard infant formula (control) or infant formula added with a dual prebiotic system "Metlin® and Metlos®", from Mexican agave. Primary outcomes include stools frequency, stools consistency, gastrointestinal intolerance (frequency of abdominal distension, flatulency, regurgitations, vomiting). Secondary outcomes include changes on weight and height along the study and frequency of dermatologic problems (eczema). RESULTS: In 66,120 days of total follow-up, there were no differences on the frequency of stools passage (Human Milk: 3.8 ± 2.4 evacuations per day; Pro + Metlin + Metlos 3.6 ± 2.0; Pro + Metlin 3.6 ± 2; only Pro 3.4 ± 2.3¸ only formula 3.4 ± 2.0; p NS). Consistency of stools was similar between human milk and prebiotics supplemented groups. Also the frequency of gastrointestinal symptoms was significantly low between these groups. CONCLUSIONS: Fructans derivate from agave and added to infant formula are safe and well tolerated by Mexican healthy term babies.