Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.504
Filter
1.
BMC Plant Biol ; 24(1): 623, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951751

ABSTRACT

BACKGROUND: Ideally, the barrier properties of a fruit's cuticle persist throughout its development. This presents a challenge for strawberry fruit, with their rapid development and thin cuticles. The objective was to establish the developmental time course of cuticle deposition in strawberry fruit. RESULTS: Fruit mass and surface area increase rapidly, with peak growth rate coinciding with the onset of ripening. On a whole-fruit basis, the masses of cutin and wax increase but on a unit surface-area basis, they decrease. The decrease is associated with marked increases in elastic strain. The expressions of cuticle-associated genes involved in transcriptional regulation (FaSHN1, FaSHN2, FaSHN3), synthesis of cutin (FaLACS2, FaGPAT3) and wax (FaCER1, FaKCS10, FaKCR1), and those involved in transport of cutin monomers and wax constituents (FaABCG11, FaABCG32) decreased until maturity. The only exceptions were FaLACS6 and FaGPAT6 that are presumably involved in cutin synthesis, and FaCER1 involved in wax synthesis. This result was consistent across five strawberry cultivars. Strawberry cutin consists mainly of C16 and C18 monomers, plus minor amounts of C19, C20, C22 and C24 monomers, ω-hydroxy acids, dihydroxy acids, epoxy acids, primary alcohols, carboxylic acids and dicarboxylic acids. The most abundant monomer is 10,16-dihydroxyhexadecanoic acid. Waxes comprise mainly long-chain fatty acids C29 to C46, with smaller amounts of C16 to C28. Wax constituents are carboxylic acids, primary alcohols, alkanes, aldehydes, sterols and esters. CONCLUSION: The downregulation of cuticle deposition during development accounts for the marked cuticular strain, for the associated microcracking, and for their high susceptibility to the disorders of water soaking and cracking.


Subject(s)
Fragaria , Fruit , Membrane Lipids , Waxes , Fragaria/growth & development , Fragaria/genetics , Fragaria/metabolism , Fragaria/enzymology , Fruit/growth & development , Fruit/genetics , Fruit/metabolism , Waxes/metabolism , Membrane Lipids/metabolism , Gene Expression Regulation, Plant , Plant Proteins/metabolism , Plant Proteins/genetics
2.
Proc Natl Acad Sci U S A ; 121(28): e2405100121, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38950372

ABSTRACT

N6-methyladenosine (m6A) is a fundamentally important RNA modification for gene regulation, whose function is achieved through m6A readers. However, whether and how m6A readers play regulatory roles during fruit ripening and quality formation remains unclear. Here, we characterized SlYTH2 as a tomato m6A reader protein and profiled the binding sites of SlYTH2 at the transcriptome-wide level. SlYTH2 undergoes liquid-liquid phase separation and promotes RNA-protein condensate formation. The target mRNAs of SlYTH2, namely m6A-modified SlHPL and SlCCD1B associated with volatile synthesis, are enriched in SlYTH2-induced condensates. Through polysome profiling assays and proteomic analysis, we demonstrate that knockout of SlYTH2 expedites the translation process of SlHPL and SlCCD1B, resulting in augmented production of aroma-associated volatiles. This aroma enrichment significantly increased consumer preferences for CRISPR-edited fruit over wild type. These findings shed light on the underlying mechanisms of m6A in plant RNA metabolism and provided a promising strategy to generate fruits that are more attractive to consumers.


Subject(s)
Adenosine , Fruit , Gene Expression Regulation, Plant , Plant Proteins , Protein Biosynthesis , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Fruit/metabolism , Fruit/genetics , Adenosine/metabolism , Adenosine/analogs & derivatives , Plant Proteins/metabolism , Plant Proteins/genetics , Odorants/analysis
3.
Physiol Plant ; 176(4): e14416, 2024.
Article in English | MEDLINE | ID: mdl-38952344

ABSTRACT

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Fruit/genetics , Fruit/drug effects , Fruit/metabolism , Vanadium/pharmacology , Stress, Physiological/genetics , Caragana/genetics , Caragana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Gene Expression Profiling , Droughts , Transcriptome/genetics , Transcriptome/drug effects , Cactaceae
4.
BMC Genomics ; 25(1): 666, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961329

ABSTRACT

BACKGROUND: Pruning is an important cultivation management option that has important effects on peach yield and quality. However, the effects of pruning on the overall genetic and metabolic changes in peach leaves and fruits are poorly understood. RESULTS: The transcriptomic and metabolomic profiles of leaves and fruits from trees subjected to pruning and unpruning treatments were measured. A total of 20,633 genes and 622 metabolites were detected. Compared with those in the control, 1,127 differentially expressed genes (DEGs) and 77 differentially expressed metabolites (DEMs) were identified in leaves from pruned and unpruned trees (pdLvsupdL), whereas 423 DEGs and 29 DEMs were identified in fruits from the pairwise comparison pdFvsupdF. The content of three auxin analogues was upregulated in the leaves of pruned trees, the content of all flavonoids detected in the leaves decreased, and the expression of almost all genes involved in the flavonoid biosynthesis pathway decreased. The phenolic acid and amino acid metabolites detected in fruits from pruned trees were downregulated, and all terpenoids were upregulated. The correlation analysis revealed that DEGs and DEMs in leaves were enriched in tryptophan metabolism, auxin signal transduction, and flavonoid biosynthesis. DEGs and DEMs in fruits were enriched in flavonoid and phenylpropanoid biosynthesis, as well as L-glutamic acid biosynthesis. CONCLUSIONS: Pruning has different effects on the leaves and fruits of peach trees, affecting mainly the secondary metabolism and hormone signalling pathways in leaves and amino acid biosynthesis in fruits.


Subject(s)
Fruit , Gene Expression Profiling , Metabolomics , Plant Leaves , Prunus persica , Plant Leaves/metabolism , Plant Leaves/genetics , Prunus persica/genetics , Prunus persica/metabolism , Prunus persica/growth & development , Fruit/metabolism , Fruit/genetics , Fruit/growth & development , Gene Expression Regulation, Plant , Metabolome , Transcriptome , Flavonoids/metabolism , Indoleacetic Acids/metabolism
5.
BMC Plant Biol ; 24(1): 626, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961401

ABSTRACT

BACKGROUND: The calmodulin (CaM) and calmodulin-like (CML) proteins play regulatory roles in plant growth and development, responses to biotic and abiotic stresses, and other biological processes. As a popular fruit and ornamental crop, it is important to explore the regulatory mechanism of flower and fruit development of passion fruit. RESULTS: In this study, 32 PeCaM/PeCML genes were identified from passion fruit genome and were divided into 9 groups based on phylogenetic analysis. The structural analysis, including conserved motifs, gene structure and homologous modeling, illustrates that the PeCaM/PeCML in the same subgroup have relative conserved structural features. Collinearity analysis suggested that the expansion of the CaM/CML gene family likely took place mainly by segmental duplication, and the whole genome replication events were closely related with the rapid expansion of the gene group. PeCaM/PeCMLs were potentially required for different floral tissues development. Significantly, PeCML26 had extremely high expression levels during ovule and fruit development compared with other PeCML genes, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. The co-presence of various cis-elements associated with growth and development, hormone responsiveness, and stress responsiveness in the promoter regions of these PeCaM/PeCMLs might contribute to their diverse regulatory roles. Furthermore, PeCaM/PeCMLs were also induced by various abiotic stresses. This work provides a comprehensive understanding of the CaM/CML gene family and valuable clues for future studies on the function and evolution of CaM/CML genes in passion fruit. CONCLUSION: A total of 32 PeCaM/PeCML genes were divided into 9 groups. The PeCaM/PeCML genes showed differential expression patterns in floral tissues at different development stages. It is worth noting that PeCML26, which is highly homologous to AtCaM2, not only interacts with multiple BBR-BPC TFs, but also has high expression levels during ovule and fruit development, suggesting that PeCML26 had potential functions involved in the development of passion fruit flowers and fruits. This research lays the foundation for future investigations and validation of the potential function of PeCaM/PeCML genes in the growth and development of passion fruit.


Subject(s)
Calmodulin , Flowers , Fruit , Passiflora , Phylogeny , Plant Proteins , Passiflora/genetics , Passiflora/growth & development , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Calmodulin/genetics , Calmodulin/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Genome, Plant , Genes, Plant , Gene Expression Profiling
6.
Plant Cell Rep ; 43(7): 180, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38914787

ABSTRACT

KEY MESSAGE: Hydrogen sulfide improved cold resistance of tomato fruits by regulating energy metabolism and delaying cell wall degradation, thereby alleviating the damage of cold storage on fruits. Postharvest cold storage in tomato fruits extended shelf life but caused the appearance of chilling injury (CI), appeared by softness and spots on the surface of the fruits. These changes were linked closely with energy and cell wall metabolisms. Hydrogen sulfide (H2S), as the gaseous fresh-keeping regulator, was used in the present study to investigate the effects of H2S on energy and cell wall metabolisms in tomato fruits during cold storage. Fruits after harvest were fumigated with different concentrations (0, 0.5, 1, 1.5 mM) of sodium hydrosulfide (NaHS) solution as H2S honor for 24 h and stored at 4 °C for 25 days. The results showed that 1 and 1.5 mM NaHS solution fumigation promoted the accumulation of endogenous H2S, followed by the increase in L-cysteine desulfurase (LCD) and D-cysteine desulfurase (DCD) activities in fruits during cold storage. It was also found that 1 and 1.5 mM NaHS treatments improved H+-ATPase, Ca2+-ATPase, cytochrome C oxidase (CCO), and succinic dehydrogenase (SDH) activities. Moreover, the contents of cellulose and hemicellulose were increased by 1 and 1.5 mM NaHS, following down-regulated activities of cellulase (CL), pectin lyase (PL), α-mannosidase (α-man) and ß-Galactosidase (ß-Gal) and down-regulated expression of PL1, PL8, MAN4 and MAN7 genes. Thus, H2S alleviates CI led by cold storage in tomato fruits via regulating energy and cell wall metabolisms.


Subject(s)
Cell Wall , Cold Temperature , Energy Metabolism , Fruit , Hydrogen Sulfide , Solanum lycopersicum , Cell Wall/metabolism , Hydrogen Sulfide/pharmacology , Hydrogen Sulfide/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Fruit/metabolism , Fruit/genetics , Fruit/drug effects , Energy Metabolism/drug effects , Gene Expression Regulation, Plant/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics , Food Storage/methods , Sulfides/pharmacology , Sulfides/metabolism
7.
Plant Mol Biol ; 114(3): 70, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842600

ABSTRACT

Melon (Cucumis melo L.) is an important horticultural and economic crop. ETHYLENE RESPONSE FACTOR1 (ERF1) plays an important role in regulating plant development, and the resistance to multiple biotic and abiotic stresses. In this study, developmental biology, molecular biology and biochemical assays were performed to explore the biological function of CmERF1 in melon. Abundant transcripts of CmERF1 were found in ovary at green-yellow bud (GYB) and rapid enlargement (ORE) stages. In CmERF1 promoter, the cis-regulatory elements for indoleacetic acid (IAA), methyl jasmonate (MeJA), salicylic acid (SA), abscisic acid (ABA), gibberellic acid (GA), light and low temperature responses were found. CmERF1 could be significantly induced by ethylene, IAA, MeJA, SA, ABA, and respond to continuous light and low temperature stresses in melon. Ectopic expression of CmERF1 increased the length of siliqua and carpopodium, and expanded the size of leaves in Arabidopsis. Knockdown of CmERF1 led to smaller ovary at anthesis, mature fruit and leaves in melon. In CmERF1-RNAi #2 plants, 75 genes were differently expressed compared with control, and the promoter regions of 28 differential expression genes (DEGs) contained the GCC-box (AGCCGCC) or DRE (A/GCCGAC) cis-acting elements of CmERF1. A homolog of cell division cycle protein 48 (CmCDC48) was proved to be the direct target of CmERF1 by the yeast one-hybrid assay and dual-luciferase (LUC) reporter (DLR) system. These results indicated that CmERF1 was able to promote the growth of fruits and leaves, and involved in multiple hormones and environmental signaling pathways in melon.


Subject(s)
Cucumis melo , Cyclopentanes , Fruit , Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Leaves , Plant Proteins , Plants, Genetically Modified , Cucumis melo/genetics , Cucumis melo/growth & development , Cucumis melo/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/growth & development , Plant Leaves/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Fruit/genetics , Fruit/growth & development , Fruit/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Promoter Regions, Genetic , Oxylipins/pharmacology , Oxylipins/metabolism , Abscisic Acid/metabolism , Abscisic Acid/pharmacology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Acetates/pharmacology , Salicylic Acid/metabolism , Salicylic Acid/pharmacology
8.
Nat Commun ; 15(1): 4877, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849342

ABSTRACT

In flowering plants, the predominant sexual morph is hermaphroditism, and the emergence of unisexuality is poorly understood. Using Cucumis melo (melon) as a model system, we explore the mechanisms driving sexual forms. We identify a spontaneous mutant exhibiting a transition from bisexual to unisexual male flower, and identify the causal mutation as a Harbinger transposon impairing the expression of Ethylene Insensitive 2 (CmEIN2) gene. Genetics and transcriptomic analysis reveal a dual role of CmEIN2 in both sex determination and fruit shape formation. Upon expression of CmACS11, EIN2 is recruited to repress the expression of the carpel inhibitor, CmWIP1. Subsequently, EIN2 is recruited to mediate stamina inhibition. Following the sex determination phase, EIN2 promotes fruit shape elongation. Genome-wide analysis reveals that Harbinger transposon mobilization is triggered by environmental cues, and integrates preferentially in active chromatin, particularly within promoter regions. Characterization of a large collection of melon germplasm points to active transpositions in the wild, compared to cultivated accessions. Our study underscores the association between chromatin dynamics and the temporal aspects of mobile genetic element insertions, providing valuable insights into plant adaptation and crop genome evolution.


Subject(s)
DNA Transposable Elements , Ethylenes , Flowers , Gene Expression Regulation, Plant , Plant Proteins , DNA Transposable Elements/genetics , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Flowers/genetics , Flowers/growth & development , Signal Transduction/genetics , Cucumis melo/genetics , Cucumis melo/metabolism , Fruit/genetics , Fruit/growth & development , Mutation
9.
BMC Plant Biol ; 24(1): 565, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38879490

ABSTRACT

BACKGROUND: AP2/ERF is a large family of plant transcription factor proteins that play essential roles in signal transduction, plant growth and development, and responses to various stresses. The AP2/ERF family has been identified and verified by functional analysis in various plants, but so far there has been no comprehensive study of these factors in Chinese prickly ash. Phylogenetic, motif, and functional analyses combined with transcriptome analysis of Chinese prickly ash fruits at different developmental stages (30, 60, and 90 days after anthesis) were conducted in this study. RESULTS: The analysis identified 146 ZbAP2/ERF genes that could be classified into 15 subgroups. The motif analysis revealed the presence of different motifs or elements in each group that may explain the functional differences between the groups. ZbERF13.2, ZbRAP2-12, and ZbERF2.1 showed high levels of expression in the early stages of fruit development. ZbRAP2-4, and ZbERF3.1 were significantly expressed at the fruit coloring stage (R2 and G2). ZbERF16 were significantly expressed at fruit ripening and expression level increased as the fruit continued to develop. Relative gene expression levels of 6 representative ZbAP2/ERFs assessed by RT-qPCR agreed with transcriptome analysis results. CONCLUSIONS: These genes identified by screening can be used as candidate genes that affect fruit development. The results of the analysis can help guide future genetic improvement of Chinese prickly ash and enrich our understanding of AP2/ERF transcription factors and their regulatory functions in plants.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Transcription Factors , Fruit/genetics , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Gene Expression Profiling , Genome, Plant , Genes, Plant , East Asian People
10.
PeerJ ; 12: e17466, 2024.
Article in English | MEDLINE | ID: mdl-38827284

ABSTRACT

Background: Tomato (Solanum lycopersicum) is an annual or perennial herb that occupies an important position in daily agricultural production. It is an essential food crop for humans and its ripening process is regulated by a number of genes. S-adenosyl-l-homocysteine hydrolase (AdoHcyase, EC 3.3.1.1) is widespread in organisms and plays an important role in regulating biological methylation reactions. Previous studies have revealed that transgenic tomato that over-express SlSAHH2 ripen earlier than the wild-type (WT). However, the differences in metabolites and the mechanisms driving how these differences affect the ripening cycle are unclear. Objective: To investigate the effects of SlSAHH2 on metabolites in over-expressed tomato and WT tomato. Methods: SlSAHH2 over-expressed tomato fruit (OE-5# and OE-6#) and WT tomato fruit at the breaker stage (Br) were selected for non-targeted metabolome analysis. Results: A total of 733 metabolites were identified by mass spectrometry using the Kyoto Encyclopedia of Genes and Genomes (KEGG) database and the Human Metabolome database (HMDB). The metabolites were divided into 12 categories based on the superclass results and a comparison with the HMDB. The differences between the two databases were analyzed by PLS-DA. Based on a variable important in projection value >1 and P < 0.05, 103 differential metabolites were found between tomato variety OE-5# and WT and 63 differential metabolites were found between OE-6# and WT. These included dehydrotomatine, L-serine, and gallic acid amongst others. Many metabolites are associated with fruit ripening and eight common metabolites were found between the OE-5# vs. WT and OE-6# vs. WT comparison groups. The low L-tryptophan expression in OE-5# and OE-6# is consistent with previous reports that its content decreases with fruit ripening. A KEGG pathway enrichment analysis of the significantly different metabolites revealed that in the OE-5# and WT groups, up-regulated metabolites were enriched in 23 metabolic pathways and down-regulated metabolites were enriched in 11 metabolic pathways. In the OE-6# and WT groups, up-regulated metabolites were enriched in 29 pathways and down-regulated metabolites were enriched in six metabolic pathways. In addition, the differential metabolite changes in the L-serine to flavonoid transformation metabolic pathway also provide evidence that there is a phenotypic explanation for the changes in transgenic tomato. Discussion: The metabolomic mechanism controlling SlSAHH2 promotion of tomato fruit ripening has been further elucidated.


Subject(s)
Fruit , Solanum lycopersicum , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Fruit/metabolism , Fruit/genetics , Plants, Genetically Modified/genetics , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Adenosylhomocysteinase/metabolism , Adenosylhomocysteinase/genetics , Metabolome , Metabolomics
11.
PeerJ ; 12: e17473, 2024.
Article in English | MEDLINE | ID: mdl-38827312

ABSTRACT

Background: Zinc (Zn) is a vital micronutrient essential for plant growth and development. Transporter proteins of the ZRT/IRT-like protein (ZIP) family play crucial roles in maintaining Zn homeostasis. Although the acquisition, translocation, and intracellular transport of Zn are well understood in plant roots and leaves, the genes that regulate these pathways in fruits remain largely unexplored. In this study, we aimed to investigate the function of SlZIP11 in regulating tomato fruit development. Methods: We used Solanum lycopersicum L. 'Micro-Tom' SlZIP11 (Solanum lycopersicum) is highly expressed in tomato fruit, particularly in mature green (MG) stages. For obtaining results, we employed reverse transcription-quantitative polymerase chain reaction (RT-qPCR), yeast two-hybrid assay, bimolecular fluorescent complementation, subcellular localization assay, virus-induced gene silencing (VIGS), SlZIP11 overexpression, determination of Zn content, sugar extraction and content determination, and statistical analysis. Results: RT-qPCR analysis showed elevated SlZIP11 expression in MG tomato fruits. SlZIP11 expression was inhibited and induced by Zn deficiency and toxicity treatments, respectively. Silencing SlZIP11 via the VIGS technology resulted in a significant increase in the Zn content of tomato fruits. In contrast, overexpression of SlZIP11 led to reduced Zn content in MG fruits. Moreover, both silencing and overexpression of SlZIP11 caused alterations in the fructose and glucose contents of tomato fruits. Additionally, SlSWEEET7a interacted with SlZIP11. The heterodimerization between SlSWEET7a and SlZIP11 affected subcellular targeting, thereby increasing the amount of intracellularly localized oligomeric complexes. Overall, this study elucidates the role of SlZIP11 in mediating Zn accumulation and sugar transport during tomato fruit ripening. These findings underscore the significance of SlZIP11 in regulating Zn levels and sugar content, providing insights into its potential implications for plant physiology and agricultural practices.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Plant Proteins , Solanum lycopersicum , Zinc , Solanum lycopersicum/metabolism , Solanum lycopersicum/genetics , Zinc/metabolism , Zinc/analysis , Fruit/metabolism , Fruit/genetics , Plant Proteins/genetics , Plant Proteins/metabolism
12.
Physiol Plant ; 176(3): e14374, 2024.
Article in English | MEDLINE | ID: mdl-38837422

ABSTRACT

Heat stress substantially reduces tomato (Solanum lycopersicum) growth and yield globally, thereby jeopardizing food security. DnaJ proteins, constituents of the heat shock protein system, protect cells from diverse environmental stresses as HSP-70 molecular co-chaperones. In this study, we demonstrated that AdDjSKI, a serine-rich DnaJ III protein induced by pathogens, plays an important role in stabilizing photosystem II (PSII) in response to heat stress. Our results revealed that transplastomic tomato plants expressing the AdDjSKI gene exhibited increased levels of total soluble proteins, improved growth and chlorophyll content, reduced malondialdehyde (MDA) accumulation, and diminished PSII photoinhibition under elevated temperatures when compared with wild-type (WT) plants. Intriguingly, these transplastomic plants maintained higher levels of D1 protein under elevated temperatures compared with the WT plants, suggesting that overexpression of AdDjSKI in plastids is crucial for PSII protection, likely due to its chaperone activity. Furthermore, the transplastomic plants displayed lower accumulation of superoxide radical (O2 •─) and H2O2, in comparison with the WT plants, plausibly attributed to higher superoxide dismutase (SOD) and ascorbate peroxidase (APX) activities. This also coincides with an enhanced expression of corresponding genes, including SlCuZnSOD, SlFeSOD, SlAPX2, and SltAPX, under heat stress. Taken together, our findings reveal that chloroplastic expression of AdDjSKI in tomatoes plays a critical role in fruit yield, primarily through a combination of delayed senescence and stabilizing PSII under heat stress.


Subject(s)
Fruit , Heat-Shock Response , Photosystem II Protein Complex , Plant Leaves , Plant Proteins , Plastids , Solanum lycopersicum , Solanum lycopersicum/genetics , Solanum lycopersicum/physiology , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Photosystem II Protein Complex/metabolism , Photosystem II Protein Complex/genetics , Heat-Shock Response/genetics , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Fruit/metabolism , Plant Proteins/metabolism , Plant Proteins/genetics , Plant Leaves/genetics , Plant Leaves/physiology , Plant Leaves/metabolism , Plastids/metabolism , Plastids/genetics , Chlorophyll/metabolism , HSP40 Heat-Shock Proteins/metabolism , HSP40 Heat-Shock Proteins/genetics , Plants, Genetically Modified , Plant Senescence/genetics , Gene Expression Regulation, Plant , Malondialdehyde/metabolism
13.
BMC Plant Biol ; 24(1): 489, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38825671

ABSTRACT

BACKGROUND: The Fructus Ligustri Lucidi, the fruit of Ligustrum lucidum, contains a variety of bioactive compounds, such as flavonoids, triterpenoids, and secoiridoids. The proportions of these compounds vary greatly during the different fruit development periods of Fructus Ligustri Lucidi. However, a clear understanding of how the proportions of the compounds and their regulatory biosynthetic mechanisms change across the different fruit development periods of Fructus Ligustri Lucidi is still lacking. RESULTS: In this study, metabolite profiling and transcriptome analysis of six fruit development periods (45 DAF, 75 DAF, 112 DAF, 135 DAF, 170 DAF, and 195 DAF) were performed. Seventy compounds were tentatively identified, of which secoiridoids were the most abundant. Eleven identified compounds were quantified by high performance liquid chromatography. A total of 103,058 unigenes were obtained from six periods of Fructus Ligustri Lucidi. Furthermore, candidate genes involved in triterpenoids, phenylethanols, and oleoside-type secoiridoid biosynthesis were identified and analyzed. The in vitro enzyme activities of nine glycosyltransferases involved in salidroside biosynthesis revealed that they can catalyze trysol and hydroxytyrosol to salidroside and hydroxylsalidroside. CONCLUSIONS: These results provide valuable information to clarify the profile and molecular regulatory mechanisms of metabolite biosynthesis, and also in optimizing the harvest time of this fruit.


Subject(s)
Fruit , Ligustrum , Metabolome , Transcriptome , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Ligustrum/genetics , Ligustrum/metabolism , Ligustrum/chemistry , Gene Expression Profiling , Gene Expression Regulation, Plant
14.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928124

ABSTRACT

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Subject(s)
Fruit , Macadamia , Polymorphism, Single Nucleotide , Macadamia/genetics , Fruit/genetics , Fruit/growth & development , Seeds/genetics , Seeds/growth & development , Self-Fertilization , Pollen/genetics , Pollen/growth & development , Pollen/drug effects , DNA, Plant/genetics , Nuts/genetics , Nuts/growth & development , Pollination
15.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928199

ABSTRACT

Tomato fruit ripening is accompanied by carotenoid accumulation and color changes. To elucidate the regulatory mechanisms underlying carotenoid synthesis during fruit ripening, a combined transcriptomic and metabolomic analysis was conducted on red-fruited tomato (WP190) and orange-fruited tomato (ZH108). A total of twenty-nine (29) different carotenoid compounds were identified in tomato fruits at six different stages. The abundance of the majority of the carotenoids was enhanced significantly with fruit ripening, with higher levels of lycopene; (E/Z)-lycopene; and α-, ß- and γ-carotenoids detected in the fruits of WP190 at 50 and 60 days post anthesis (DPA). Transcriptome analysis revealed that the fruits of two varieties exhibited the highest number of differentially expressed genes (DEGs) at 50 DPA, and a module of co-expressed genes related to the fruit carotenoid content was established by WGCNA. qRT-PCR analysis validated the transcriptome result with a significantly elevated transcript level of lycopene biosynthesis genes (including SlPSY2, SlZCIS, SlPDS, SlZDS and SlCRTSO2) observed in WP190 at 50 DPA in comparison to ZH108. In addition, during the ripening process, the expression of ethylene biosynthesis (SlACSs and SlACOs) and signaling (SlEIN3 and SlERF1) genes was also increased, and these mechanisms may regulate carotenoid accumulation and fruit ripening in tomato. Differential expression of several key genes in the fruit of two tomato varieties at different stages regulates the accumulation of carotenoids and leads to differences in color between the two varieties of tomato. The results of this study provide a comprehensive understanding of carotenoid accumulation and ethylene biosynthesis and signal transduction pathway regulatory mechanisms during tomato fruit development.


Subject(s)
Carotenoids , Fruit , Gene Expression Regulation, Plant , Metabolome , Solanum lycopersicum , Transcriptome , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Solanum lycopersicum/growth & development , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Carotenoids/metabolism , Gene Expression Profiling/methods , Lycopene/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Pigmentation/genetics , Color
16.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928287

ABSTRACT

Exoglycosidase enzymes hydrolyze the N-glycosylations of cell wall enzymes, releasing N-glycans that act as signal molecules and promote fruit ripening. Vesicular exoglycosidase α-mannosidase enzymes of the GH38 family (EC 3.2.1.24; α-man) hydrolyze N-glycans in non-reduced termini. Strawberry fruit (Fragaria × ananassa) is characterized by rapid softening as a result of cell wall modifications during the fruit ripening process. Enzymes acting on cell wall polysaccharides explain the changes in fruit firmness, but α-man has not yet been described in F. × ananassa, meaning that the indirect effects of N-glycan removal on its fruit ripening process are unknown. The present study identified 10 GH38 α-man sequences in the F. × ananassa genome with characteristic conserved domains and key residues. A phylogenetic tree built with the neighbor-joining method and three groups of α-man established, of which group I was classified into three subgroups and group III contained only Poaceae spp. sequences. The real-time qPCR results demonstrated that FaMAN genes decreased during fruit ripening, a trend mirrored by the total enzyme activity from the white to ripe stages. The analysis of the promoter regions of these FaMAN genes was enriched with ripening and phytohormone response elements, and contained cis-regulatory elements related to stress responses to low temperature, drought, defense, and salt stress. This study discusses the relevance of α-man in fruit ripening and how it can be a useful target to prolong fruit shelf life.


Subject(s)
Fragaria , Fruit , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , alpha-Mannosidase , Fragaria/genetics , Fragaria/enzymology , Fragaria/growth & development , Fragaria/metabolism , Fruit/growth & development , Fruit/genetics , Fruit/enzymology , Fruit/metabolism , alpha-Mannosidase/metabolism , alpha-Mannosidase/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Cell Wall/metabolism
17.
Int J Mol Sci ; 25(12)2024 Jun 16.
Article in English | MEDLINE | ID: mdl-38928338

ABSTRACT

The flavonoids in citrus fruits are crucial physiological regulators and natural bioactive products of high pharmaceutical value. Melatonin is a pleiotropic hormone that can regulate plant morphogenesis and stress resistance and alter the accumulation of flavonoids in these processes. However, the direct effect of melatonin on citrus flavonoids remains unclear. In this study, nontargeted metabolomics and transcriptomics were utilized to reveal how exogenous melatonin affects flavonoid biosynthesis in "Bingtangcheng" citrus fruits. The melatonin treatment at 0.1 mmol L-1 significantly increased the contents of seven polymethoxylated flavones (PMFs) and up-regulated a series of flavonoid pathway genes, including 4CL (4-coumaroyl CoA ligase), FNS (flavone synthase), and FHs (flavonoid hydroxylases). Meanwhile, CHS (chalcone synthase) was down-regulated, causing a decrease in the content of most flavonoid glycosides. Pearson correlation analysis obtained 21 transcription factors co-expressed with differentially accumulated flavonoids, among which the AP2/EREBP members were the most numerous. Additionally, circadian rhythm and photosynthesis pathways were enriched in the DEG (differentially expressed gene) analysis, suggesting that melatonin might also mediate changes in the flavonoid biosynthesis pathway by affecting the fruit's circadian rhythm. These results provide valuable information for further exploration of the molecular mechanisms through which melatonin regulates citrus fruit metabolism.


Subject(s)
Citrus , Flavonoids , Fruit , Gene Expression Regulation, Plant , Melatonin , Metabolomics , Citrus/metabolism , Citrus/drug effects , Citrus/genetics , Melatonin/pharmacology , Melatonin/metabolism , Flavonoids/metabolism , Gene Expression Regulation, Plant/drug effects , Fruit/metabolism , Fruit/drug effects , Fruit/genetics , Metabolomics/methods , Gene Expression Profiling , Transcriptome , Metabolome/drug effects , Plant Proteins/metabolism , Plant Proteins/genetics
18.
Int J Mol Sci ; 25(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38928516

ABSTRACT

Anthocyanins are a large group of water-soluble flavonoid pigments. These specialized metabolites are ubiquitous in the plant kingdom and play an essential role not only in plant reproduction and dispersal but also in responses to biotic and abiotic stresses. Anthocyanins are recognized as important health-promoting and chronic-disease-preventing components in the human diet. Therefore, interest in developing food crops with improved levels and compositions of these important nutraceuticals is growing. This review focuses on work conducted to elucidate the genetic control of the anthocyanin pathway and modulate anthocyanin content in eggplant (Solanum melongena L.) and tomato (Solanum lycopersicum L.), two solanaceous fruit vegetables of worldwide relevance. While anthocyanin levels in eggplant fruit have always been an important quality trait, anthocyanin-based, purple-fruited tomato cultivars are currently a novelty. As detailed in this review, this difference in the anthocyanin content of the cultivated germplasm has largely influenced genetic studies as well as breeding and transgenic approaches to improve the anthocyanin content/profile of these two important solanaceous crops. The information provided should be of help to researchers and breeders in devising strategies to address the increasing consumer demand for nutraceutical foods.


Subject(s)
Anthocyanins , Fruit , Solanum lycopersicum , Solanum melongena , Anthocyanins/analysis , Anthocyanins/metabolism , Solanum melongena/genetics , Solanum melongena/metabolism , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Fruit/genetics , Fruit/metabolism , Fruit/chemistry , Biotechnology/methods , Plants, Genetically Modified/genetics , Plant Breeding/methods , Gene Expression Regulation, Plant , Crops, Agricultural/genetics , Crops, Agricultural/metabolism
19.
Plant Physiol Biochem ; 212: 108668, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38823091

ABSTRACT

Alcohol acyltransferases (AATs) play a crucial role in catalyzing the transfer of acyl groups, contributing to the diverse aroma of fruits, including strawberries. In this research we identified nine AAT genes in strawberries through a comprehensive analysis involving phylogenetics, gene structure, conserved motifs, and structural protein model examinations. The study used the 'Camarosa' strawberry genome database, and experiments were conducted with fruits harvested at different developmental and ripening stages. The transcriptional analysis revealed differential expression patterns among the AAT genes during fruit ripening, with only four genes (SAAT, FaAAT2, FaAAT7, and FaAAT9) showing increased transcript accumulation correlated with total AAT enzyme activity. Additionally, the study employed in silico methods, including sequence alignment, phylogenetic analysis, and structural modeling, to gain insights into the AAT protein model structures with increase expression pattern during fruit ripening. The four modeled AAT proteins exhibited structural similarities, including conserved catalytic sites and solvent channels. Furthermore, the research investigated the interaction of AAT proteins with different substrates, highlighting the enzymes' promiscuity in substrate preferences. The study contributes with valuable information to unveil AAT gene family members in strawberries, providing scientific background for further exploration of their biological characteristics and their role in aroma biosynthesis during fruit ripening.


Subject(s)
Fragaria , Fruit , Phylogeny , Plant Proteins , Fragaria/genetics , Fragaria/enzymology , Fragaria/metabolism , Fragaria/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Fruit/growth & development , Fruit/enzymology , Fruit/metabolism , Acyltransferases/genetics , Acyltransferases/metabolism , Gene Expression Regulation, Plant , Amino Acid Sequence
20.
PeerJ ; 12: e17540, 2024.
Article in English | MEDLINE | ID: mdl-38887620

ABSTRACT

Despite extensive research highlighting the pivotal role of MYB transcription factors in regulating anthocyanin biosynthesis, the interactive regulatory network involving these MYB factors in pear fruits remains inadequately characterized. In this study, the anthocyanin-regulatory gene PbrMYB114 was successfully cloned from 'Yuluxiang' pear (Pyrus bretschneideri) fruits, and its influence on anthocyanin accumulation was confirmed through transient expression assays. Specifically, the co-transformation of PbrMYB114 with its partner PbrbHLH3 in pears served to validate the functional role of PbrMYB114. Subsequently, PbrMYB114 was employed as bait in a yeast two-hybrid screening assay, using a 'Yuluxiang' pear protein library, which led to the identification of 25 interacting proteins. Further validation of the interactions between PbrMYB114 and PbrMT2/PbrMT3 was conducted. Investigations into the role of PbrMT2 and PbrMT3 in 'Duli' seedlings (Pyrus betulaefolia) revealed their potential to enhance anthocyanin accumulation. The outcomes of these studies provide novel insights into the protein network that regulates pear anthocyanin biosynthesis, particularly the functional interactions among PbrMYB114 and associated proteins.


Subject(s)
Anthocyanins , Gene Expression Regulation, Plant , Plant Proteins , Pyrus , Transcription Factors , Pyrus/metabolism , Pyrus/genetics , Anthocyanins/metabolism , Anthocyanins/genetics , Anthocyanins/biosynthesis , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Two-Hybrid System Techniques , Fruit/metabolism , Fruit/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...