Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.496
Filter
1.
Glycobiology ; 34(8)2024 06 22.
Article in English | MEDLINE | ID: mdl-38976017

ABSTRACT

NOTCH1 is a transmembrane receptor interacting with membrane-tethered ligands on opposing cells that mediate the direct cell-cell interaction necessary for many cell fate decisions. Protein O-fucosyltransferase 1 (POFUT1) adds O-fucose to Epidermal Growth Factor (EGF)-like repeats in the NOTCH1 extracellular domain, which is required for trafficking and signaling activation. We previously showed that POFUT1 S162L caused a 90% loss of POFUT1 activity and global developmental defects in a patient; however, the mechanism by which POFUT1 contributes to these symptoms is still unclear. Compared to controls, POFUT1 S162L patient fibroblast cells had an equivalent amount of NOTCH1 on the cell surface but showed a 60% reduction of DLL1 ligand binding and a 70% reduction in JAG1 ligand binding. To determine if the reduction of O-fucose on NOTCH1 in POFUT1 S162L patient fibroblasts was the cause of these effects, we immunopurified endogenous NOTCH1 from control and patient fibroblasts and analyzed O-fucosylation using mass spectral glycoproteomics methods. NOTCH1 EGF8 to EGF12 comprise the ligand binding domain, and O-fucose on EGF8 and EGF12 physically interact with ligands to enhance affinity. Glycoproteomics of NOTCH1 from POFUT1 S162L patient fibroblasts showed WT fucosylation levels at all sites analyzed except for a large decrease at EGF9 and the complete absence of O-fucose at EGF12. Since the loss of O-fucose on EGF12 is known to have significant effects on NOTCH1 activity, this may explain the symptoms observed in the POFUT1 S162L patient.


Subject(s)
Fibroblasts , Fucose , Fucosyltransferases , Receptor, Notch1 , Humans , Fibroblasts/metabolism , Fucose/metabolism , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Receptor, Notch1/metabolism , Receptor, Notch1/chemistry , EGF Family of Proteins/metabolism
2.
ACS Synth Biol ; 13(6): 1866-1878, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38836566

ABSTRACT

3-Fucosyllactose (3-FL) is an important fucosylated human milk oligosaccharide (HMO) with biological functions such as promoting immunity and brain development. Therefore, the construction of microbial cell factories is a promising approach to synthesizing 3-FL from renewable feedstocks. In this study, a combinatorial engineering strategy was used to achieve efficient de novo 3-FL production in Escherichia coli. α-1,3-Fucosyltransferase (futM2) from Bacteroides gallinaceum was introduced into E. coli and optimized to create a 3-FL-producing chassis strain. Subsequently, the 3-FL titer increased to 5.2 g/L by improving the utilization of the precursor lactose and down-regulating the endogenous competitive pathways. Furthermore, a synthetic membraneless organelle system based on intrinsically disordered proteins was designed to spatially regulate the pathway enzymes, producing 7.3 g/L 3-FL. The supply of the cofactors NADPH and GTP was also enhanced, after which the 3-FL titer of engineered strain E26 was improved to 8.2 g/L in a shake flask and 10.8 g/L in a 3 L fermenter. In this study, we developed a valuable approach for constructing an efficient 3-FL-producing cell factory and provided a versatile workflow for other chassis cells and HMOs.


Subject(s)
Escherichia coli , Fucosyltransferases , Metabolic Engineering , Trisaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Trisaccharides/metabolism , Trisaccharides/biosynthesis , Metabolic Engineering/methods , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Lactose/metabolism , Bacteroides/genetics , Bacteroides/metabolism , Fermentation , Oligosaccharides
3.
Methods Mol Biol ; 2810: 249-271, 2024.
Article in English | MEDLINE | ID: mdl-38926284

ABSTRACT

Genetic engineering plays an essential role in the development of cell lines for biopharmaceutical manufacturing. Advanced gene editing tools can improve both the productivity of recombinant cell lines as well as the quality of therapeutic antibodies. Antibody glycosylation is a critical quality attribute for therapeutic biologics because the glycan patterns on the antibody fragment crystallizable (Fc) region can alter its clinical efficacy and safety as a therapeutic drug. As an example, recombinant antibodies derived from Chinese hamster ovary (CHO) cells are generally highly fucosylated; the absence of α1,6-fucose significantly enhances antibody-dependent cell-mediated cytotoxicity (ADCC) against cancer cells. This chapter describes a protocol applying clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) approach with different formats to disrupt the α-1,6-fucosyltransferase (FUT8) gene and subsequently inhibit α-1,6 fucosylation on antibodies expressed in CHO cells.


Subject(s)
CRISPR-Cas Systems , Cricetulus , Fucose , Fucosyltransferases , Gene Editing , CHO Cells , Animals , Gene Editing/methods , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Glycosylation , Fucose/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Cricetinae , Humans
4.
ISME J ; 18(1)2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38896583

ABSTRACT

Probiotics have gained significant attention as a potential strategy to improve health by modulating host-microbe interactions, particularly in situations where the normal microbiota has been disrupted. However, evidence regarding their efficacy has been inconsistent, with considerable interindividual variability in response. We aimed to explore whether a common genetic variant that affects the production of mucosal α(1,2)-fucosylated glycans, present in around 20% of the population, could explain the observed interpersonal differences in the persistence of commonly used probiotics. Using a mouse model with varying α(1,2)-fucosylated glycans secretion (Fut2WT or Fut2KO), we examined the abundance and persistence of Bifidobacterium strains (infantis, breve, and bifidum). We observed significant differences in baseline gut microbiota characteristics between Fut2WT and Fut2KO littermates, with Fut2WT mice exhibiting enrichment of species able to utilize α(1,2)-fucosylated glycans. Following antibiotic exposure, only Fut2WT animals showed persistent engraftment of Bifidobacterium infantis, a strain able to internalize α(1,2)-fucosylated glycans, whereas B. breve and B. bifidum, which cannot internalize α(1,2)-fucosylated glycans, did not exhibit this difference. In mice with an intact commensal microbiota, the relationship between secretor status and B. infantis persistence was reversed, with Fut2KO animals showing greater persistence compared to Fut2WT. Our findings suggest that the interplay between a common genetic variation and antibiotic exposure plays a crucial role in determining the dynamics of B. infantis in the recipient gut, which could potentially contribute to the observed variation in response to this commonly used probiotic species.


Subject(s)
Anti-Bacterial Agents , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Gastrointestinal Microbiome , Probiotics , Animals , Mice , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Probiotics/administration & dosage , Anti-Bacterial Agents/pharmacology , Bifidobacterium longum subspecies infantis/genetics , Bifidobacterium longum subspecies infantis/metabolism , Polysaccharides/metabolism , Host Microbial Interactions , Mice, Inbred C57BL , Mice, Knockout , Bifidobacterium/genetics , Bifidobacterium/metabolism
5.
Front Immunol ; 15: 1365430, 2024.
Article in English | MEDLINE | ID: mdl-38840912

ABSTRACT

The presence of the blood group H2 antigen on the membrane of red blood cells determines blood type O in individuals and this H2 antigen serves as a precursor to the A and B antigens expressed in blood types A and B, respectively. However, the specific involvement of ABH antigens in skin diseases is unknown. Therefore, we aim to investigate the expression of ABH antigens in skin tissue of patients with atopic dermatitis (AD) and MC903-induced AD-like mice. We demonstrated that the expression of ABH antigen is primarily located in the granular and horny layers of the skin in healthy control individuals. However, in patients with AD, the expression of the ABH antigen was absent or diminished in these layers, while the H2 antigen expression increased in the spinous layers of the affected skin lesions. Then, we investigated the biological function of blood group H antigen mediated by fucosyltransferase 1 (Fut1) in the skin, utilizing an AD mouse model induced by MC903 in wild-type (WT) and Fut1-knockout mice. After the application of MC903, Fut1-deficient mice, with no H2 antigen expression on their skin, exhibited more severe clinical signs, increased ear swelling, and elevated serum IgE levels compared with those of WT mice. Additionally, the MC903-induced thickening of both the epidermis and dermis was more pronounced in Fut1-deficient mice than that in WT mice. Furthermore, Fut1-deficient mice showed a significantly higher production of interleukin-4 (IL-4) and IL-6 in skin lesions compared with that of their WT counterparts. The expression of chemokines, particularly Ccl2 and Ccl8, was notably higher in Fut1-deficient mice compared with those of WT mice. The infiltration of CD4+ T cells, eosinophils, and mast cells into the lesional skin was significantly elevated in Fut1-deficient mice compared with that in WT mice. These findings demonstrate the protective role of H2 antigen expression against AD-like inflammation and highlight its potential therapeutic impact on AD through the regulation of blood group antigens.


Subject(s)
Dermatitis, Atopic , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Mice, Knockout , Adult , Animals , Female , Humans , Male , Mice , Cytokines/metabolism , Dermatitis, Atopic/immunology , Disease Models, Animal , Epidermis/immunology , Epidermis/pathology , Epidermis/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Mice, Inbred C57BL
6.
J Agric Food Chem ; 72(25): 14191-14198, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38878091

ABSTRACT

3-Fucosyllactose (3-FL), an important fucosylated human milk oligosaccharide in breast milk, offers numerous health benefits to infants. Previously, we metabolically engineered Escherichia coli BL21(DE3) for the in vivo biosynthesis of 3-FL. In this study, we initially optimized culture conditions to double 3-FL production. Competing pathway genes involved in in vivo guanosine 5'-diphosphate-fucose biosynthesis were subsequently inactivated to redirect fluxes toward 3-FL biosynthesis. Next, three promising transporters were evaluated using plasmid-based or chromosomally integrated expression to maximize extracellular 3-FL production. Additionally, through analysis of α1,3-fucosyltransferase (FutM2) structure, we identified Q126 residues as a highly mutable residue in the active site. After site-saturation mutation, the best-performing mutant, FutM2-Q126A, was obtained. Structural analysis and molecular dynamics simulations revealed that small residue replacement positively influenced helical structure generation. Finally, the best strain BD3-A produced 6.91 and 52.1 g/L of 3-FL in a shake-flask and fed-batch cultivations, respectively, highlighting its potential for large-scale industrial applications.


Subject(s)
Escherichia coli , Fucosyltransferases , Metabolic Engineering , Trisaccharides , Escherichia coli/genetics , Escherichia coli/metabolism , Trisaccharides/metabolism , Trisaccharides/biosynthesis , Trisaccharides/chemistry , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Humans , Oligosaccharides
7.
Int J Mol Sci ; 25(12)2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38928269

ABSTRACT

The FUT2 gene encodes an enzyme called α-1,2-fucosyltransferase, which is involved in the formation of blood group antigens AB0(H) and is also involved in the processes of vitamin B12 absorption and its transport between cells. FUT2 gene polymorphisms are associated with vitamin B12 levels in the body. Vitamin B12 deficiency associated with hyperhomocysteinemia is a major risk factor for cardiovascular diseases (CVDs), which are one of the main causes of death in patients after kidney transplantation. The aim of our study was to determine the impact of the rs602662 (G>A) polymorphism of the FUT2 gene on the functionality of transplanted kidneys and the risk of CVD in patients after kidney transplantation. The study included 402 patients treated with immunosuppression (183 patients taking cyclosporine (CsA) and 219 patients taking tacrolimus (TAC)). The analysis of the FUT2 rs602662 (G>A) polymorphism was performed using real-time PCR. Patients with CsA were more likely to be underweight (1.64% vs. 0.91%) and obese (27.87% vs. 15.98%), while those taking TAC were more likely to be of normal weight (39.27%) or overweight (43.84%). No statistically significant differences were observed comparing the mean blood pressure, both systolic and diastolic. The renal profile showed a higher median urea nitrogen concentration in patients with CsA (26.45 mg/dL (20.60-35.40) vs. 22.95 mg/dL (17.60-33.30), p = 0.004). The observed frequency of rs602662 alleles of the FUT2 gene was similar in the analyzed groups. The A allele was present in 43.7% of patients with CsA and 41.1% of those taking TAC (OR = 0.898; 95% CI: 0.678-1.189; p = 0.453). In the group with CsA, the GG genotype was present in 32.2% of patients, the GA in 48.1% and the AA in 19.7%. A similar distribution was obtained in the TAC group: GG-33.8%, GA-50.2%, and AA-16.0%. An association of genotypes containing the G allele with a higher incidence of hypertension was observed. The G allele was present in 65% of people with hypertension and in 56% of patients with normal blood pressure (p = 0.036). Moreover, the evaluation of the renal parameters showed no effect of the FUT2 polymorphism on the risk of organ rejection because the levels of creatinine, eGFR, potassium, and urea nitrogen were prognostic of successful transplantation. Our results suggest that the rs6022662 FUT2 polymorphism may influence the risk of cardiovascular diseases.


Subject(s)
Cardiovascular Diseases , Fucosyltransferases , Galactoside 2-alpha-L-fucosyltransferase , Kidney Transplantation , Polymorphism, Single Nucleotide , Humans , Fucosyltransferases/genetics , Kidney Transplantation/adverse effects , Male , Female , Cardiovascular Diseases/genetics , Cardiovascular Diseases/etiology , Middle Aged , Adult , Risk Factors , Genetic Predisposition to Disease , Genotype , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/adverse effects , Cyclosporine/therapeutic use , Cyclosporine/adverse effects , Tacrolimus/adverse effects , Tacrolimus/therapeutic use
8.
J Immunother Cancer ; 12(6)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38908854

ABSTRACT

BACKGROUND AND AIMS: The immunosuppressive tumor microenvironment (TME) plays an essential role in cancer progression and immunotherapy response. Despite the considerable advancements in cancer immunotherapy, the limited response to immune checkpoint blockade (ICB) therapies in patients with hepatocellular carcinoma (HCC) remains a major challenge for its clinical implications. Here, we investigated the molecular basis of the protein O-fucosyltransferase 1 (POFUT1) that drives HCC immune evasion and explored a potential therapeutic strategy for enhancing ICB efficacy. METHODS: De novo MYC/Trp53-/- liver tumor and the xenograft tumor models were used to evaluate the function of POFUT1 in immune evasion. Biochemical assays were performed to elucidate the underlying mechanism of POFUT1-mediated immune evasion. RESULTS: We identified POFUT1 as a crucial promoter of immune evasion in liver cancer. Notably, POFUT1 promoted HCC progression and inhibited T-cell infiltration in the xenograft tumor and de novo MYC/Trp53-/- mouse liver tumor models. Mechanistically, we demonstrated that POFUT1 stabilized programmed death ligand 1 (PD-L1) protein by preventing tripartite motif containing 21-mediated PD-L1 ubiquitination and degradation independently of its protein-O-fucosyltransferase activity. In addition, we further demonstrated that PD-L1 was required for the tumor-promoting and immune evasion effects of POFUT1 in HCC. Importantly, inhibition of POFUT1 could synergize with anti-programmed death receptor 1 therapy by remodeling TME in the xenograft tumor mouse model. Clinically, POFUT1 high expression displayed a lower response rate and worse clinical outcome to ICB therapies. CONCLUSIONS: Our findings demonstrate that POFUT1 functions as a novel regulator of tumor immune evasion and inhibition of POFUT1 may be a potential therapeutic strategy to enhance the efficacy of immune therapy in HCC.


Subject(s)
B7-H1 Antigen , Fucosyltransferases , Immunotherapy , Liver Neoplasms , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Liver Neoplasms/immunology , Liver Neoplasms/drug therapy , Humans , Mice , Animals , B7-H1 Antigen/metabolism , Immunotherapy/methods , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/pathology , Tumor Escape , Tumor Microenvironment , Immune Evasion , Cell Line, Tumor
9.
J Microbiol Biotechnol ; 34(7): 1511-1521, 2024 Jul 28.
Article in English | MEDLINE | ID: mdl-38934781

ABSTRACT

This study aimed to determine the function of LINC00511 in Nod-Like Receptor Pyrin Domain 3 inflammasome-mediated chondrocyte pyroptosis via the regulation of miR-9-5p and FUT 1. Chondrocyte inflammatory injury was induced by treating chondrocytes with LPS. Afterwards, the levels of IL-1ß and IL-18, the expression of NLRP3, ASC, Caspase-1, and GSDMD, cell viability, and LDH activity in chondrocytes were assessed. LINC00511 expression in LPS-treated chondrocytes was detected, and LINC00511 was subsequently silenced to analyse its role in chondrocyte pyroptosis. The subcellular localization of LINC00511 was predicted and verified. Furthermore, the binding relationships between LINC00511 and miR-9-5p and between miR-9-5p and FUT1 were validated. LINC00511 regulated NLRP3 inflammasome-mediated chondrocyte pyroptosis through the miR-9-5p/FUT1 axis. LPS-treated ATDC5 cells exhibited elevated levels of inflammatory injury; increased levels of NLRP3, ASC, Caspase-1, and GSDMD; reduced cell viability; increased LDH activity; and increased LINC00511 expression, while LINC00511 silencing inhibited the NLRP3 inflammasome to restrict LPS-induced chondrocyte pyroptosis. Next, LINC00511 sponged miR-9-5p, which targeted FUT1. Silencing LINC00511 suppressed FUT1 by upregulating miR-9-5p. Additionally, downregulation of miR-9-5p or overexpression of FUT1 neutralized the suppressive effect of LINC00511 knockdown on LPS-induced chondrocyte pyroptosis. Silencing LINC00511 inhibited the NLRP3 inflammasome to quench Caspase-1-dependent chondrocyte pyroptosis in OA by promoting miR-9-5p and downregulating FUT1.


Subject(s)
Chondrocytes , Fucosyltransferases , MicroRNAs , NLR Family, Pyrin Domain-Containing 3 Protein , Pyroptosis , RNA, Long Noncoding , Chondrocytes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Inflammasomes/metabolism , Lipopolysaccharides , Humans , Cell Line , Animals , Mice , Cell Survival , Interleukin-1beta/metabolism , Interleukin-18/metabolism , Interleukin-18/genetics , Caspase 1/metabolism , Caspase 1/genetics
10.
Int Immunopharmacol ; 137: 112512, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-38897123

ABSTRACT

OBJECTIVE: This study aims to disclose how loss of fucosyltransferase 2 (Fut2) impacts intestinal inflammation through cGAS-STING pathway that is closely associated with gut microbiota, and which microbial metabolite improves colitis in Fut2 deficiency. METHODS: Chronic colitis was induced in intestinal epithelial Fut2 knock out mice (Fut2△IEC), whose intestinal inflammation and activity of cGAS-STING pathway were evaluated. 16S rRNA sequencing and metabolomics were performed using intestinal samples. 2-oxindole was used to treat RAW264.7 cells and Fut2△IEC mice with colitis (Fut2△IEC-DSS) to investigate the effect of 2-oxindole on cGAS-STING response and intestinal inflammation. RESULTS: Fut2 loss exacerbated chronic colitis in mice, manifested by declined body weight, reduced colon length, increased disease activity index (DAI) and more colon injury in Fut2△IEC-DSS mice compared with WT-DSS (wild type mice with colitis). Lack of Fut2 promoted activation of cGAS-STING pathway. Fut2 deficiency had a primary impact on colonic microbiota, as shown by alteration of microbial diversity and structure, as well as decreased Lactobacillus. Metabolic structure and tryptophan metabolism in colonic luminal microbiota were also influenced by Fut2 loss. Fut2 deficiency also led to decreased levels of aryl hydrocarbon receptor (AHR) and its ligand 2-oxindole derived from tryptophan metabolism. 2-oxindole compromised cGAS-STING response through activating AHR in macrophages, and protected against intestinal inflammation and overactive cGAS-STING pathway in Fut2△IEC-DSS mice. CONCLUSION: Fut2 deficiency promotes cGAS-STING pathway through suppressing 2-oxindole-AHR axis, ultimately facilitating the susceptibility to chronic colitis.


Subject(s)
Colitis , Fucosyltransferases , Gastrointestinal Microbiome , Membrane Proteins , Mice, Knockout , Nucleotidyltransferases , Oxindoles , Signal Transduction , Animals , Mice , Colitis/chemically induced , Colitis/immunology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nucleotidyltransferases/genetics , Nucleotidyltransferases/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Fucosyltransferases/deficiency , RAW 264.7 Cells , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Mice, Inbred C57BL , Male , Colon/pathology , Colon/immunology , Colon/metabolism , Chronic Disease , Disease Models, Animal , Humans , Dextran Sulfate
11.
Proc Natl Acad Sci U S A ; 121(27): e2314026121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38917011

ABSTRACT

The fucosylation of glycoproteins regulates diverse physiological processes. Inhibitors that can control cellular levels of protein fucosylation have consequently emerged as being of high interest. One area where inhibitors of fucosylation have gained significant attention is in the production of afucosylated antibodies, which exhibit superior antibody-dependent cell cytotoxicity as compared to their fucosylated counterparts. Here, we describe ß-carbafucose, a fucose derivative in which the endocyclic ring oxygen is replaced by a methylene group, and show that it acts as a potent metabolic inhibitor within cells to antagonize protein fucosylation. ß-carbafucose is assimilated by the fucose salvage pathway to form GDP-carbafucose which, due to its being unable to form the oxocarbenium ion-like transition states used by fucosyltransferases, is an incompetent substrate for these enzymes. ß-carbafucose treatment of a CHO cell line used for high-level production of the therapeutic antibody Herceptin leads to dose-dependent reductions in core fucosylation without affecting cell growth or antibody production. Mass spectrometry analyses of the intact antibody and N-glycans show that ß-carbafucose is not incorporated into the antibody N-glycans at detectable levels. We expect that ß-carbafucose will serve as a useful research tool for the community and may find immediate application for the rapid production of afucosylated antibodies for therapeutic purposes.


Subject(s)
Cricetulus , Fucose , Fucose/metabolism , Animals , CHO Cells , Glycosylation , Humans , Trastuzumab/pharmacology , Trastuzumab/metabolism , Fucosyltransferases/metabolism , Antibody-Dependent Cell Cytotoxicity/drug effects
12.
Bioorg Chem ; 149: 107492, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38820939

ABSTRACT

As a member of glycosyltransferases, fucosyltransferase 8 (FUT8) is essential to core fucosylation and has been considered as a potential therapeutic target for malignant tumors, including colorectal cancer (CRC). Based on the identification of key binding residues and probable conformation of FUT8, an integrated strategy that combines virtual screening and chemical optimization was carried out and compound 15 was identified as a potent FUT8 inhibitor with novel chemical structure and in vitro antitumor activity. Moreover, chemical pulldown experiments and binding assays confirmed that compound 15 selectively bound to FUT8. In vivo, compound 15 showed promising anti-CRC effects in SW480 xenografts. These data support that compound 15 is a potential FUT8 inhibitor for CRC treatment and deserve further optimization studies.


Subject(s)
Antineoplastic Agents , Colorectal Neoplasms , Drug Discovery , Enzyme Inhibitors , Fucosyltransferases , Fucosyltransferases/antagonists & inhibitors , Fucosyltransferases/metabolism , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Animals , Structure-Activity Relationship , Mice , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Molecular Structure , Drug Screening Assays, Antitumor , Dose-Response Relationship, Drug , Cell Proliferation/drug effects , Mice, Nude , Cell Line, Tumor , Mice, Inbred BALB C , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/pathology , Neoplasms, Experimental/metabolism , Molecular Docking Simulation
13.
Biomolecules ; 14(5)2024 May 17.
Article in English | MEDLINE | ID: mdl-38786002

ABSTRACT

The aim of this study was to identify effective genetic markers for the Antigen Processing Associated Transporter 1 (TAP1), α (1,2) Fucosyltransferase 1 (FUT1), Natural Resistance Associated Macrophage Protein 1 (NRAMP1), Mucin 4 (MUC4) and Mucin 13 (MUC13) diarrhea-resistance genes in the local pig breeds, namely Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, to provide a reference for the characterization of local pig breed resources in Shanghai. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLR) and sequence sequencing were applied to analyze the polymorphisms of the above genes and to explore the effects on the immunity of Shanghai local pig breeds in conjunction with some immunity factors. The results showed that both TAP1 and MUC4 genes had antidiarrheal genotype GG in the five pig breeds, AG and GG genotypes of the FUT1 gene were detected in Pudong white pigs, AA antidiarrheal genes of the NRAMP1 gene were detected in Meishan pigs, the AB type of the NRAMP1 gene was detected in Pudong white pigs, and antidiarrheal genotype GG of the MUC13 gene was only detected in Shanghai white pigs. The MUC13 antidiarrhea genotype GG was only detected in Shanghai white pigs. The TAP1 gene was moderately polymorphic in Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs, among which TAP1 in Shanghai white pigs and Shawutou pigs did not satisfy the Hardy-Weinberg equilibrium. The FUT1 gene of Pudong white pigs was in a state of low polymorphism. NRAMP1 of Meishan pigs and Pudong white pigs was in a state of moderate polymorphism, which did not satisfy the Hardy-Weinberg equilibrium. The MUC4 genes of Shanghai white pigs and Pudong white pigs were in a state of low polymorphism, and the MUC4 genes of Fengjing pigs and Shawutou pigs were in a state of moderate polymorphism, and the MUC4 genes of Fengjing pigs and Pudong white pigs did not satisfy the Hardy-Weinberg equilibrium. The MUC13 gene of Shanghai white pigs and Pudong white pigs was in a state of moderate polymorphism. Meishan pigs had higher levels of IL-2, IL-10, IgG and TNF-α, and Pudong white pigs had higher levels of IL-12 than the other pigs. The level of interleukin 12 (IL-12) was significantly higher in the AA genotype of the MUC13 gene of Shanghai white pigs than in the AG genotype. The indicator of tumor necrosis factor alpha (TNF-α) in the AA genotype of the TAP1 gene of Fengjing pigs was significantly higher than that of the GG and AG genotypes. The indicator of IL-12 in the AG genotype of the Shawutou pig TAP1 gene was significantly higher than that of the GG genotype. The level of TNF-α in the AA genotype of the NRAMP1 gene of Meishan pigs was markedly higher than that of the AB genotype. The IL-2 level of the AG type of the FUT1 gene was obviously higher than that of the GG type of Pudong white pigs, the IL-2 level of the AA type of the MUC4 gene was dramatically higher than that of the AG type, and the IgG level of the GG type of the MUC13 gene was apparently higher than that of the AG type. The results of this study are of great significance in guiding the antidiarrhea breeding and molecular selection of Shanghai white pigs, Fengjing pigs, Shawutou pigs, Meishan pigs and Pudong white pigs and laying the foundation for future antidiarrhea breeding of various local pig breeds in Shanghai.


Subject(s)
Diarrhea , Animals , Swine/genetics , China , Diarrhea/genetics , Diarrhea/veterinary , Fucosyltransferases/genetics , Cation Transport Proteins/genetics , Breeding , Galactoside 2-alpha-L-fucosyltransferase , Mucin-4/genetics , Genotype
14.
Mol Cell Proteomics ; 23(6): 100776, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38670309

ABSTRACT

Alterations in the glycomic profile are a hallmark of cancer, including colorectal cancer (CRC). While, the glycosylation of glycoproteins and glycolipids has been widely studied for CRC cell lines and tissues, a comprehensive overview of CRC glycomics is still lacking due to the usage of different samples and analytical methods. In this study, we compared glycosylation features of N-, O-glycans, and glycosphingolipid glycans for a set of 22 CRC cell lines, all measured by porous graphitized carbon nano-liquid chromatography-tandem mass spectrometry. An overall, high abundance of (sialyl)Lewis antigens for colon-like cell lines was found, while undifferentiated cell lines showed high expression of H blood group antigens and α2-3/6 sialylation. Moreover, significant associations of glycosylation features were found between the three classes of glycans, such as (sialyl)Lewis and H blood group antigens. Integration of the datasets with transcriptomics data revealed positive correlations between (sialyl)Lewis antigens, the corresponding glycosyltransferase FUT3 and transcription factors CDX1, ETS, HNF1/4A, MECOM, and MYB. This indicates a possible role of these transcription factors in the upregulation of (sialyl)Lewis antigens, particularly on glycosphingolipid glycans, via FUT3/4 expression in colon-like cell lines. In conclusion, our study provides insights into the possible regulation of glycans in CRC and can serve as a guide for the development of diagnostic and therapeutic biomarkers.


Subject(s)
Cell Differentiation , Colorectal Neoplasms , Glycosphingolipids , Polysaccharides , Humans , Glycosphingolipids/metabolism , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Polysaccharides/metabolism , Cell Line, Tumor , Colon/metabolism , Glycosylation , Lewis Blood Group Antigens/metabolism , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Glycomics/methods , Gene Expression Regulation, Neoplastic
15.
Br J Haematol ; 204(6): 2264-2274, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659295

ABSTRACT

The interaction of acute myeloid leukaemic (AML) blasts with the bone marrow (BM) microenvironment is a major determinant governing disease progression and resistance to treatment. The constitutive expression of E-selectin in the vascular compartment of BM, a key endothelial cell factor, directly mediates chemoresistance via E-selectin ligand/receptors. Despite the success of hypomethylating agent (HMA)-containing regimens to induce remissions in older AML patients, the development of primary or secondary resistance is common. We report that following treatment with 5-azacitidine, promoter regions regulating the biosynthesis of the E-selectin ligands, sialyl Lewis X, become further hypomethylated. The resultant upregulation of these gene products, in particular α(1,3)-fucosyltransferase VII (FUT7) and α(2,3)-sialyltransferase IV (ST3GAL4), likely causes functional E-selectin binding. When combined with the E-selectin antagonist uproleselan, the adhesion to E-selectin is reversed and the survival of mice transplanted with AML cells is prolonged. Finally, we present clinical evidence showing that BM myeloid cells from higher risk MDS and AML patients have the potential to bind E-selectin, and these cells are more abundant in 5-azacitidine-non-responsive patients. The collective data provide a strong rationale to evaluate 5-azacitidine in combination with the E-selectin antagonist, uproleselan, in this patient population.


Subject(s)
Azacitidine , E-Selectin , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Humans , E-Selectin/metabolism , Leukemia, Myeloid, Acute/drug therapy , Animals , Myelodysplastic Syndromes/drug therapy , Mice , Azacitidine/pharmacology , Azacitidine/therapeutic use , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Female , Sialyl Lewis X Antigen , Male , Fucosyltransferases , Middle Aged
16.
Brain Res Bull ; 212: 110959, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38643887

ABSTRACT

Alpha-(1,6)-fucosyltransferase (FUT8) has been found to play a role in modulating the central immune system and inflammatory responses. Limited studies have assessed the correlations between serum FUT8 levels and various non-motor symptoms associated with early Parkinson's disease (PD). Therefore, our research aims to investigate the associations between serum FUT8 levels and symptoms such as smell dysfunction, sleep duration, sleep problems, and MMSE scores in PD patients. FUT8 and neurofilament light chain (NfL) levels were measured using enzyme-linked immunosorbent assays (ELISA). We analyzed the correlations between serum FUT8 levels, NfL, and early symptoms of PD using Spearman's correlation, multiple linear regression, and logistic regression models. The expression of FUT8 in CSF samples from PD patients was significantly upregulated, with its protein levels in CSF being positively associated with serum levels. Furthermore, there were significant positive associations between serum FUT8 levels with NfL levels, smell dysfunction, short sleep duration, and long sleep duration. However, a significant inverse relationship was observed between FUT8 levels and MMSE scores. Additionally, we explored gender and age differences in the correlations of FUT8 levels and early symptoms in patients. This study reveals that increased FUT8 levels are positively correlated with a higher risk of early PD-associated symptoms. These findings suggest that serum FUT8 could serve as a promising biomarker for the early detection of PD.


Subject(s)
Fucosyltransferases , Parkinson Disease , Humans , Parkinson Disease/blood , Male , Female , Middle Aged , Aged , Cross-Sectional Studies , Retrospective Studies , Neurofilament Proteins/blood , Neurofilament Proteins/cerebrospinal fluid , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Sleep Wake Disorders/blood , Sleep Wake Disorders/cerebrospinal fluid
17.
J Agric Food Chem ; 72(18): 10469-10476, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38659344

ABSTRACT

Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.


Subject(s)
Bacterial Proteins , Escherichia coli , Fucosyltransferases , Guanosine Diphosphate Fucose , Metabolic Engineering , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Escherichia coli/genetics , Escherichia coli/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Guanosine Diphosphate Fucose/metabolism , Helicobacter pylori/genetics , Helicobacter pylori/metabolism , Helicobacter pylori/enzymology , Oligosaccharides/metabolism , Oligosaccharides/biosynthesis
18.
Biotechnol J ; 19(4): e2300505, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38651269

ABSTRACT

Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.


Subject(s)
CRISPR-Cas Systems , Cricetulus , Gene Editing , CHO Cells , Animals , CRISPR-Cas Systems/genetics , Gene Editing/methods , Antibodies, Monoclonal/genetics , Recombinant Proteins/genetics , Gene Knockout Techniques/methods , bcl-2-Associated X Protein/genetics , bcl-2-Associated X Protein/metabolism , Tetrahydrofolate Dehydrogenase/genetics , Tetrahydrofolate Dehydrogenase/metabolism , Fucosyltransferases/genetics , Fucosyltransferases/metabolism , Cricetinae , Genetic Engineering/methods
19.
Sci China Life Sci ; 67(7): 1427-1440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38523237

ABSTRACT

Fucosyltransferase 8 (Fut8) and core fucosylation play critical roles in regulating various biological processes, including immune response, signal transduction, proteasomal degradation, and energy metabolism. However, the function and underlying mechanism of Fut8 and core fucosylation in regulating adult neurogenesis remains unknown. We have shown that Fut8 and core fucosylation display dynamic features during the differentiation of adult neural stem/progenitor cells (aNSPCs) and postnatal brain development. Fut8 depletion reduces the proliferation of aNSPCs and inhibits neuronal differentiation of aNSPCs in vitro and in vivo, respectively. Additionally, Fut8 deficiency impairs learning and memory in mice. Mechanistically, Fut8 directly interacts with integrin α6 (Itga6), an upstream regulator of the PI3k-Akt signaling pathway, and catalyzes core fucosylation of Itga6. Deletion of Fut8 enhances the ubiquitination of Itga6 by promoting the binding of ubiquitin ligase Trim21 to Itga6. Low levels of Itga6 inhibit the activity of the PI3K/Akt signaling pathway. Moreover, the Akt agonist SC79 can rescue neurogenic and behavioral deficits caused by Fut8 deficiency. In summary, our study uncovers an essential function of Fut8 and core fucosylation in regulating adult neurogenesis and sheds light on the underlying mechanisms.


Subject(s)
Cognition , Fucosyltransferases , Integrin alpha6 , Neurogenesis , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Signal Transduction , Animals , Fucosyltransferases/metabolism , Fucosyltransferases/genetics , Neurogenesis/genetics , Proto-Oncogene Proteins c-akt/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Integrin alpha6/metabolism , Integrin alpha6/genetics , Cognition/physiology , Neural Stem Cells/metabolism , Neural Stem Cells/cytology , Cell Differentiation , Cell Proliferation , Mice, Inbred C57BL , Mice, Knockout
20.
Int J Oral Sci ; 16(1): 26, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548747

ABSTRACT

SEMA7A belongs to the Semaphorin family and is involved in the oncogenesis and tumor progression. Aberrant glycosylation has been intricately linked with immune escape and tumor growth. SEMA7A is a highly glycosylated protein with five glycosylated sites. The underlying mechanisms of SEMA7A glycosylation and its contribution to immunosuppression and tumorigenesis are unclear. Here, we identify overexpression and aberrant N-glycosylation of SEMA7A in head and neck squamous cell carcinoma, and elucidate fucosyltransferase FUT8 catalyzes aberrant core fucosylation in SEMA7A at N-linked oligosaccharides (Asn 105, 157, 258, 330, and 602) via a direct protein‒protein interaction. A glycosylated statue of SEMA7A is necessary for its intra-cellular trafficking from the cytoplasm to the cytomembrane. Cytokine EGF triggers SEMA7A N-glycosylation through increasing the binding affinity of SEMA7A toward FUT8, whereas TGF-ß1 promotes abnormal glycosylation of SEMA7A via induction of epithelial-mesenchymal transition. Aberrant N-glycosylation of SEMA7A leads to the differentiation of CD8+ T cells along a trajectory toward an exhausted state, thus shaping an immunosuppressive microenvironment and being resistant immunogenic cell death. Deglycosylation of SEMA7A significantly improves the clinical outcome of EGFR-targeted and anti-PD-L1-based immunotherapy. Finally, we also define RBM4, a splice regulator, as a downstream effector of glycosylated SEMA7A and a pivotal mediator of PD-L1 alternative splicing. These findings suggest that targeting FUT8-SEMA7A axis might be a promising strategy for improving antitumor responses in head and neck squamous cell carcinoma patients.


Subject(s)
Head and Neck Neoplasms , Semaphorins , Humans , Glycosylation , Squamous Cell Carcinoma of Head and Neck , CD8-Positive T-Lymphocytes/metabolism , Fucosyltransferases/metabolism , Tumor Microenvironment , RNA-Binding Proteins/metabolism , Antigens, CD/metabolism , Semaphorins/metabolism , GPI-Linked Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL