Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 11.543
Filter
1.
Protein Expr Purif ; 225: 106584, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39178976

ABSTRACT

Lipases comprise the third most commercialized group of enzymes worldwide and those of microbial origin are sought for their multiple advantages. Agro-industrial waste can be an alternative culture medium for producing lipases, reducing production costs and the improper disposal of waste frying oil (WFO). This study aimed to produce yeast lipases through submerged fermentation (SF) using domestic edible oil waste as inducer and alternative culture medium. The optimal culture conditions, most effective inducer, and purification method for a new lipase from Moesziomyces aphidis BRT57 were identified. Yeast was cultured in medium containing green coconut pulp and WFO waste for 72 h. The maximum production of lipases in SF occurred in a culture medium containing WFO and yeast extract at 48 and 72 h of incubation, with enzyme activities of 8.88 and 11.39 U mL-1, respectively. The lipase was isolated through ultrafiltration followed by size exclusion chromatography, achieving a 50.46 % recovery rate. To the best of our knowledge, this is the first study to report the production and purification of lipases from M. aphidis, demonstrating the value of frying oil as inducer and alternative medium for SF, contributing to the production of fatty acids for biodiesel from food waste.


Subject(s)
Cocos , Lipase , Lipase/isolation & purification , Lipase/chemistry , Lipase/biosynthesis , Lipase/metabolism , Cocos/chemistry , Plant Oils/chemistry , Fermentation , Fungal Proteins/isolation & purification , Fungal Proteins/chemistry , Fungal Proteins/biosynthesis , Fungal Proteins/genetics
2.
Protein Expr Purif ; 225: 106594, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39197672

ABSTRACT

Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some ß-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.


Subject(s)
Cellulase , Cryptococcus gattii , Escherichia coli , Cryptococcus gattii/genetics , Cryptococcus gattii/enzymology , Cryptococcus gattii/chemistry , Cellulase/genetics , Cellulase/chemistry , Cellulase/isolation & purification , Cellulase/metabolism , Cellulase/biosynthesis , Escherichia coli/genetics , Escherichia coli/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/isolation & purification , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification , Fungal Proteins/metabolism , Fungal Proteins/biosynthesis , Gene Expression , Cloning, Molecular , Maltose-Binding Proteins/genetics , Maltose-Binding Proteins/chemistry , Maltose-Binding Proteins/metabolism , Hydrogen-Ion Concentration , Temperature
3.
J Environ Sci (China) ; 149: 242-253, 2025 Mar.
Article in English | MEDLINE | ID: mdl-39181639

ABSTRACT

Poly(butylene succinate-co-furandicarboxylate) (PBSF) and poly(butylene adipate-co-furandicarboxylate) (PBAF) are novel furandicarboxylic acid-based biodegradable copolyesters with great potential to replace fossil-derived terephthalic acid-based copolyesters such as poly(butylene succinate-co-terephthalate) (PBST) and poly(butylene adipate-co-terephthalate) (PBAT). In this study, quantum chemistry techniques after molecular dynamics simulations are employed to investigate the degradation mechanism of PBSF and PBAF catalyzed by Candida antarctica lipase B (CALB). Computational analysis indicates that the catalytic reaction follows a four-step mechanism resembling the ping-pong bibi mechanism, with the initial two steps being acylation reactions and the subsequent two being hydrolysis reactions. Notably, the first step of the hydrolysis is identified as the rate-determining step. Moreover, by introducing single-point mutations to expand the substrate entrance tunnel, the catalytic distance of the first acylation step decreases. Additionally, energy barrier of the rate-determining step is decreased in the PBSF system by site-directed mutations on key residues increasing hydrophobicity of the enzyme's active site. This study unprecedently show the substrate binding pocket and hydrophobicity of the enzyme's active site have the potential to be engineered to enhance the degradation of copolyesters catalyzed by CALB.


Subject(s)
Fungal Proteins , Lipase , Polyesters , Lipase/metabolism , Lipase/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Polyesters/chemistry , Polyesters/metabolism , Biodegradation, Environmental , Molecular Dynamics Simulation , Hydrolysis , Models, Chemical
4.
Curr Microbiol ; 81(11): 394, 2024 Oct 07.
Article in English | MEDLINE | ID: mdl-39375258

ABSTRACT

Microbial lipases (MLs) are pivotal biocatalysts in lipid biotechnology due to their diverse enzymatic properties and substrate specificity, garnering significant research attention. This comprehensive review explores the significance of MLs in biocatalysis, providing insights into their structure, catalytic domain, and oxyanion hole. The catalytic mechanism is elucidated, highlighting the molecular processes driving their efficiency. The review delves into ML sources, spanning fungi, yeasts, bacteria, and actinomycetes, followed by a discussion on classification and characterization. Emphasizing the scattered findings in the literature, the paper consolidates the latest information on ML applications across various industries, from food and pharmaceuticals to biofuel production and the paper and pulp industry. The review captures the dynamic landscape of ML research, emphasizing their structure-function relationships and practical implications across diverse sectors.


Subject(s)
Bacteria , Biocatalysis , Fungi , Lipase , Lipase/chemistry , Lipase/metabolism , Lipase/genetics , Bacteria/enzymology , Bacteria/genetics , Fungi/enzymology , Fungi/chemistry , Substrate Specificity , Catalytic Domain , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/genetics
5.
Microb Cell Fact ; 23(1): 266, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-39369235

ABSTRACT

BACKGROUND: Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. RESULTS: A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. CONCLUSION: Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.


Subject(s)
Coloring Agents , Endophytes , Laccase , Opuntia , Wastewater , Laccase/metabolism , Laccase/genetics , Laccase/isolation & purification , Laccase/chemistry , Opuntia/microbiology , Wastewater/microbiology , Coloring Agents/metabolism , Endophytes/enzymology , Endophytes/genetics , Endophytes/isolation & purification , Hypocreales/enzymology , Hypocreales/genetics , Fermentation , Hydrogen-Ion Concentration , Enzyme Stability , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/isolation & purification
6.
J Mol Biol ; 436(17): 168613, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39237206

ABSTRACT

Fungal pathogens pose significant threats to plant health by secreting effectors that manipulate plant-host defences. However, identifying effector proteins remains challenging, in part because they lack common sequence motifs. Here, we introduce Fungtion (Fungal effector prediction), a toolkit leveraging a hybrid framework to accurately predict and visualize fungal effectors. By combining global patterns learned from pretrained protein language models with refined information from known effectors, Fungtion achieves state-of-the-art prediction performance. Additionally, the interactive visualizations we have developed enable researchers to explore both sequence- and high-level relationships between the predicted and known effectors, facilitating effector function discovery, annotation, and hypothesis formulation regarding plant-pathogen interactions. We anticipate Fungtion to be a valuable resource for biologists seeking deeper insights into fungal effector functions and for computational biologists aiming to develop future methodologies for fungal effector prediction: https://step3.erc.monash.edu/Fungtion/.


Subject(s)
Computational Biology , Fungal Proteins , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Computational Biology/methods , Software , Fungi/metabolism , Fungi/chemistry , Host-Pathogen Interactions , Plants/microbiology , Plants/metabolism
7.
BMC Microbiol ; 24(1): 326, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39243017

ABSTRACT

BACKGROUND: ​​The genus Fusarium poses significant threats to food security and safety worldwide because numerous species of the fungus cause destructive diseases and/or mycotoxin contamination in crops. The adverse effects of climate change are exacerbating some existing threats and causing new problems. These challenges highlight the need for innovative solutions, including the development of advanced tools to identify targets for control strategies. DESCRIPTION: In response to these challenges, we developed the Fusarium Protein Toolkit (FPT), a web-based tool that allows users to interrogate the structural and variant landscape within the Fusarium pan-genome. The tool displays both AlphaFold and ESMFold-generated protein structure models from six Fusarium species. The structures are accessible through a user-friendly web portal and facilitate comparative analysis, functional annotation inference, and identification of related protein structures. Using a protein language model, FPT predicts the impact of over 270 million coding variants in two of the most agriculturally important species, Fusarium graminearum and F. verticillioides. To facilitate the assessment of naturally occurring genetic variation, FPT provides variant effect scores for proteins in a Fusarium pan-genome based on 22 diverse species. The scores indicate potential functional consequences of amino acid substitutions and are displayed as intuitive heatmaps using the PanEffect framework. CONCLUSION: FPT fills a knowledge gap by providing previously unavailable tools to assess structural and missense variation in proteins produced by Fusarium. FPT has the potential to deepen our understanding of pathogenic mechanisms in Fusarium, and aid the identification of genetic targets for control strategies that reduce crop diseases and mycotoxin contamination. Such targets are vital to solving the agricultural problems incited by Fusarium, particularly evolving threats resulting from climate change. Thus, FPT has the potential to contribute to improving food security and safety worldwide.


Subject(s)
Fungal Proteins , Fusarium , Internet , Fusarium/genetics , Fusarium/metabolism , Fusarium/classification , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Genome, Fungal/genetics , Genetic Variation , Models, Molecular , Software , Protein Conformation
8.
Curr Genet ; 70(1): 17, 2024 Sep 14.
Article in English | MEDLINE | ID: mdl-39276214

ABSTRACT

Two-component systems (TCSs) are diverse cell signaling pathways that play a significant role in coping with a wide range of environmental cues in both prokaryotic and eukaryotic organisms. These transduction circuitries are primarily governed by histidine kinases (HKs), which act as sensing proteins of a broad variety of stressors. To date, nineteen HK groups have been previously described in the fungal kingdom. However, the structure and distribution of these prominent sensing proteins were hitherto investigated in a limited number of fungal species. In this study, we took advantage of recent genomic resources in fungi to refine the fungal HK classification by deciphering the structural diversity and phylogenetic distribution of HKs across a large number of fungal clades. To this end, we browsed the genome of 91 species representative of different fungal clades, which yielded 726 predicted HK sequences. A domain organization analysis, coupled with a robust phylogenomic approach, led to an improved categorization of fungal HKs. While most of the compiled sequences were categorized into previously described fungal HK groups, some new groups were also defined. Overall, this study provides an improved overview of the structure, distribution, and evolution of HKs in the fungal kingdom.


Subject(s)
Fungi , Histidine Kinase , Phylogeny , Histidine Kinase/genetics , Histidine Kinase/metabolism , Histidine Kinase/chemistry , Fungi/genetics , Fungi/enzymology , Fungi/classification , Genome, Fungal , Signal Transduction , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Evolution, Molecular , Protein Kinases/genetics , Protein Kinases/metabolism , Protein Kinases/chemistry
9.
Int J Mol Sci ; 25(17)2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39273612

ABSTRACT

Zearalenone (ZEN) is a toxic secondary metabolite produced by the Fusarium fungi, which widely contaminates grains, food, and feed, causing health hazards for humans and animals. Therefore, it is essential to find effective ZEN detoxification methods. Enzymatic degradation of ZEN is believed to be an eco-friendly detoxification strategy, specifically thermostable ZEN degradation enzymes are needed in the food and feed industry. In this study, a novel ZEN lactone hydrolase ZHRnZ from Rosellinia necatrix was discovered using bioinformatic and molecular docking technology. The recombinant ZHRnZ showed the best activity at pH 9.0 and 45 °C with more than 90% degradation for ZEN, α-zearalenol (α-ZOL), ß-zearalenol (ß-ZOL) and α-zearalanol (α-ZAL) after incubation for 15 min. We obtained 10 mutants with improved thermostability by single point mutation technology. Among them, mutants E122Q and E122R showed the best performance, which retained more than 30% of their initial activity at 50 °C for 2 min, and approximately 10% of their initial activity at 60 °C for 1 min. The enzymatic kinetic study showed that the catalytic efficiency of E122R was 1.3 times higher than that of the wild-type (WT). Comprehensive consideration suggests that mutant E122R is a promising hydrolase to detoxify ZEN in food and feed.


Subject(s)
Enzyme Stability , Hydrolases , Molecular Docking Simulation , Zearalenone , Zearalenone/metabolism , Zearalenone/chemistry , Hydrolases/metabolism , Hydrolases/chemistry , Hydrolases/genetics , Kinetics , Hydrogen-Ion Concentration , Fungal Proteins/metabolism , Fungal Proteins/genetics , Fungal Proteins/chemistry , Lactones/metabolism , Temperature , Hypocreales/enzymology , Hypocreales/genetics
10.
Molecules ; 29(17)2024 Aug 24.
Article in English | MEDLINE | ID: mdl-39274860

ABSTRACT

Extracellular vesicles (EVs) are vesicle-like structures composed of lipid bilayers, which can be divided into apoptotic bodies, microbubbles and exosomes. They are nanoparticles used for the exchange of information between cells. EVs contains many substances, including protein. With the development of proteomics, we know more about the types and functions of protein in vesicles. The potential functions of proteins in the envelope are mainly discussed, including cell wall construction, fungal virulence transmission, signal transmission and redox reactions, which provides a new perspective for studying the interaction mechanism between fungi and other organisms. The fungal protein markers of EVs are also summarized, which provided an exploration tool for studying the mechanism of vesicles. In addition, the possible role of immune protein in the EVs in the treatment of human diseases is also discussed, which provides new ideas for vaccine development.


Subject(s)
Extracellular Vesicles , Fungal Proteins , Fungi , Extracellular Vesicles/metabolism , Extracellular Vesicles/chemistry , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Humans , Fungi/metabolism , Fungi/chemistry , Proteomics/methods
11.
Molecules ; 29(17)2024 Aug 31.
Article in English | MEDLINE | ID: mdl-39274989

ABSTRACT

In the glycerolysis process for diacylglycerol (DAG) preparation, free lipases suffer from poor stability and the inability to be reused. To address this, a cost-effective immobilized lipase preparation was developed by cross-linking macroporous resin with poly (ethylene glycol) diglycidyl ether (PEGDGE) followed by lipase adsorption. The selected immobilization conditions were identified as pH 7.0, 35 °C, cross-linking agent concentration 2.0%, cross-linking time 4 h, lipase amount 5 mg/g of support, and adsorption time 4 h. Enzymatic properties of the immobilized lipase were analyzed, revealing enhanced pH stability, thermal stability, storage stability, and operational stability post-immobilization. The conditions for immobilized enzyme-catalyzed glycerolysis to produce DAG were selected, demonstrating the broad applicability of the immobilized lipase. The immobilized lipase catalyzed glycerolysis reactions using various oils as substrates, with DAG content in the products ranging between 35 and 45%, demonstrating broad applicability. Additionally, the changes during the repeated use of the immobilized lipase were characterized, showing that mechanical damage, lipase leakage, and alterations in the secondary structure of the lipase protein contributed to the decline in catalytic activity over time. These findings provide valuable insights for the industrial application of lipase.


Subject(s)
Diglycerides , Enzyme Stability , Enzymes, Immobilized , Lipase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Diglycerides/chemistry , Hydrogen-Ion Concentration , Glycerol/chemistry , Temperature , Eurotiales/enzymology , Biocatalysis , Fungal Proteins/chemistry , Fungal Proteins/metabolism
12.
Virulence ; 15(1): 2403566, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39285518

ABSTRACT

The filamentous fungus Magnaporthe oryzae is widely recognized as a notorious plant pathogen responsible for causing rice blasts. With rapid advancements in molecular biology technologies, numerous regulatory mechanisms have been thoroughly investigated. However, most recent studies have predominantly focused on infection-related pathways or host defence mechanisms, which may be insufficient for developing novel structure-based prevention strategies. A substantial body of literature has utilized cryo-electron microscopy and X-ray diffraction to explore the relationships between functional components, shedding light on the identification of potential drug targets. Owing to the complexity of protein extraction and stochastic nature of crystallization, obtaining high-quality structures remains a significant challenge for the scientific community. Emerging computational tools such as AlphaFold for structural prediction, docking for interaction analysis, and molecular dynamics simulations to replicate in vivo conditions provide novel avenues for overcoming these challenges. In this review, we aim to consolidate the structural biological advancements in M. oryzae, drawing upon mature experimental experiences from other species such as Saccharomyces cerevisiae and mammals. We aim to explore the potential of protein construction to address the invasion and proliferation of M. oryzae, with the goal of identifying new drug targets and designing small-molecule compounds to manage this disease.


Subject(s)
Fungal Proteins , Oryza , Plant Diseases , Oryza/microbiology , Plant Diseases/microbiology , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Ascomycota/genetics , Ascomycota/pathogenicity , Ascomycota/chemistry , Cryoelectron Microscopy
13.
J Hazard Mater ; 479: 135775, 2024 Nov 05.
Article in English | MEDLINE | ID: mdl-39250861

ABSTRACT

Glomalin-related soil protein (GRSP) has demonstrated significant potential for water purification and remediation of heavy metals in soils; however, its redox reactivity for As(III) sequestration and the corresponding redox-active component are still poorly understood. This study investigated the photochemical properties of GRSP and its mechanism of oxidation/adsorption of As(III). The results showed that UV irradiation triggered electron transfer and the production of reactive oxygen species (ROS) in GRSP, thereby facilitating As(III) oxidation with promotion rates ranging from 43.34 % to 111.1 %. The oxidation of As(III) occurred both on the GRSP photoforming holes and in the ROS reaction from the oxygen reduction products of the photoforming electrons. OH• and H2O2 played an important role in the oxidation of As(III) by GRSP, especially under alkaline conditions. Moreover, the presence of Fe(III) in GRSP facilitated the formation of OH• and its the oxidation capacity towards As(III). The binding of As(III) to the -COOH, -OH, and -FeO groups on the GRSP surface occurred through surface complexation. Overall, these findings provided new insights into the roles of the redox-active moieties and Fe(III) on GRSP in the promoted oxidation of As(III), which would help to deepen our understanding of the migration and transformation of As(III) in soils.


Subject(s)
Arsenic , Oxidation-Reduction , Soil Pollutants , Arsenic/chemistry , Soil Pollutants/chemistry , Adsorption , Iron/chemistry , Ultraviolet Rays , Reactive Oxygen Species/chemistry , Fungal Proteins/chemistry , Hydrogen Peroxide/chemistry , Ferric Compounds/chemistry , Soil/chemistry , Glycoproteins
14.
Nat Commun ; 15(1): 7722, 2024 Sep 06.
Article in English | MEDLINE | ID: mdl-39242571

ABSTRACT

In Candida albicans, Cdr1 pumps azole drugs out of the cells to reduce intracellular accumulation at detrimental concentrations, leading to azole-drug resistance. Milbemycin oxime, a veterinary anti-parasitic drug, strongly and specifically inhibits Cdr1. However, how Cdr1 recognizes and exports azole drugs, and how milbemycin oxime inhibits Cdr1 remain unclear. Here, we report three cryo-EM structures of Cdr1 in distinct states: the apo state (Cdr1Apo), fluconazole-bound state (Cdr1Flu), and milbemycin oxime-inhibited state (Cdr1Mil). Both the fluconazole substrate and the milbemycin oxime inhibitor are primarily recognized within the central cavity of Cdr1 through hydrophobic interactions. The fluconazole is suggested to be exported from the binding site into the environment through a lateral pathway driven by TM2, TM5, TM8 and TM11. Our findings uncover the inhibitory mechanism of milbemycin oxime, which inhibits Cdr1 through competition, hindering export, and obstructing substrate entry. These discoveries advance our understanding of Cdr1-mediated azole resistance in C. albicans and provide the foundation for the development of innovative antifungal drugs targeting Cdr1 to combat azole-drug resistance.


Subject(s)
Antifungal Agents , Azoles , Candida albicans , Cryoelectron Microscopy , Fungal Proteins , Membrane Transport Proteins , Candida albicans/drug effects , Candida albicans/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Fungal Proteins/antagonists & inhibitors , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Azoles/pharmacology , Azoles/chemistry , Membrane Transport Proteins/metabolism , Membrane Transport Proteins/chemistry , Membrane Transport Proteins/ultrastructure , Drug Resistance, Fungal , Fluconazole/pharmacology , Binding Sites
15.
BMC Res Notes ; 17(1): 257, 2024 Sep 10.
Article in English | MEDLINE | ID: mdl-39256846

ABSTRACT

The glycoside hydrolase family 3 (GH3) ß-glucosidases from filamentous fungi are crucial industrial enzymes facilitating the complete degradation of lignocellulose, by converting cello-oligosaccharides and cellobiose into glucose. Understanding the diverse domain organization is essential for elucidating their biological roles and potential biotechnological applications. This research delves into the variability of domain organization within GH3 ß-glucosidases. Two distinct configurations were identified in fungal GH3 ß-glucosidases, one comprising solely the GH3 catalytic domain, and another incorporating the GH3 domain with a C-terminal fibronectin type III (Fn3) domain. Notably, Streptomyces filamentous bacteria showcased a separate clade of GH3 proteins linking the GH3 domain to a carbohydrate binding module from family 2 (CBM2). As a first step to be able to explore the role of accessory domains in ß-glucosidase activity, a screening system utilizing the well-characterised Aspergillus niger ß-glucosidase gene (bglA) in bglA deletion mutant host was developed. Based on this screening system, reintroducing the native GH3-Fn3 gene successfully expressed the gene allowing detection of the protein using different enzymatic assays. Further investigation into the role of the accessory domains in GH3 family proteins, including those from Streptomyces, will be required to design improved chimeric ß-glucosidases enzymes for industrial application.


Subject(s)
Protein Engineering , Streptomyces , beta-Glucosidase , Streptomyces/enzymology , Streptomyces/genetics , beta-Glucosidase/genetics , beta-Glucosidase/metabolism , beta-Glucosidase/chemistry , Protein Engineering/methods , Biotechnology/methods , Aspergillus niger/enzymology , Aspergillus niger/genetics , Protein Domains , Aspergillus/enzymology , Aspergillus/genetics , Fungal Proteins/genetics , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Catalytic Domain , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry
16.
J Agric Food Chem ; 72(38): 20850-20861, 2024 Sep 25.
Article in English | MEDLINE | ID: mdl-39287063

ABSTRACT

Replacing old pesticides with new pesticide varieties has been the main means to solve pesticide resistance. Therefore, it is necessary to research and develop new antifungal agents for plant protection. In this study, a series of pyridinecarbaldehyde phenylhydrazone derivatives were designed and evaluated for their inhibition activity on plant pathogenic fungi to search for novel fungicide candidates. Picolinaldehyde phenylhydrazone (1) and nicotinaldehyde phenylhydrazone (2) were identified as promising antifungal lead scaffolds. The 4-fluorophenylhydrazone derivatives (1a and 2a) of 1 and 2 showed highly effective and broad-spectrum inhibition activity in vitro on 11 phytopathogenic fungi with EC50 values of 0.870-3.26 µg/mL, superior to the positive control carbendazim in most cases. The presence of the 4-fluorine atom on the phenyl showed a remarkable activity enhancement effect. Compound 1a at 300 µg/mL provided almost complete protection against infection of Alternaria solani on tomatoes over the post-treatment 9 days and high safety to germination of plant seeds. Furthermore, 1a showed strong inhibition activity with an IC50 value of 0.506 µg/mL on succinate dehydrogenase in A. solani. Molecular docking showed that both 1a and 2a can well bind to the ubiquinone-binding region of SDH by the conventional hydrogen bond, carbon-hydrogen bond, π-π or π-amide interaction, π-alkyl interaction, X---F (X = N, C, or H) interaction, and van der Waal forces. Meanwhile, scanning and transmission electron analysis displayed that 1a destroyed the morphology of mycelium and the structure of the cell membrane of A. solani. Fluorescent staining analysis revealed that 1a changed the mitochondrial membrane potential and cell membrane permeability. Thus, pyridinecarbaldehyde phenylhydrazone compounds emerged as novel antifungal lead scaffolds, and 1a and 2a can be considered promising candidates for the development of new agricultural fungicides.


Subject(s)
Alternaria , Fungicides, Industrial , Hydrazones , Molecular Docking Simulation , Plant Diseases , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Plant Diseases/microbiology , Alternaria/drug effects , Alternaria/growth & development , Structure-Activity Relationship , Hydrazones/pharmacology , Hydrazones/chemistry , Hydrazones/chemical synthesis , Drug Design , Solanum lycopersicum/microbiology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Microbial Sensitivity Tests
17.
Food Funct ; 15(19): 9903-9915, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39257163

ABSTRACT

Medium- and long-chain triglyceride (MLCT) is a striking structural lipid for the supply of energy and essential fatty free acids (FFAs) in the food field. This study aimed to prepare MLCT by enzymatic interesterification of rubber seed oil (RSO) and medium-chain triglyceride (MCT). Fortunately, the conversion of synthesized MLCT could reach 75.4% by the catalysis of Novozym 40086 (7 wt% to MCT) at a temperature of 40 °C with the substrate mole ratio of 1 : 0.7 (RSO : MCT). The as-synthesized MLCT contained unsaturated fatty acid (USFA, 50.13%) at the sn-2 position and exhibited superior performance on the acid value, peroxide value and iodine value in contrast to grade III soybean oil. Moreover, it exhibited the simultaneous release of LCFAs and MCFAs, extremely facilitating the reduction of body weight gain and control of the level of lipids in the blood. Finally, the preferred hepatic metabolism process of the obtained MLCT was proven to be the main cause of the reduced body weight and improved lipid levels by the in vivo deposition experiments. Therefore, our study suggested that the outstanding performance of the MLCT synthesized by RSO in foods as functional lipids.


Subject(s)
Lipase , Plant Oils , Seeds , Triglycerides , Triglycerides/chemistry , Plant Oils/chemistry , Plant Oils/metabolism , Esterification , Lipase/metabolism , Lipase/chemistry , Seeds/chemistry , Animals , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Enzymes, Immobilized/metabolism , Enzymes, Immobilized/chemistry , Male , Mice , Hevea/chemistry , Catalysis
18.
J Agric Food Chem ; 72(39): 21741-21751, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39297229

ABSTRACT

Flutriafol, a globally utilized triazole fungicide in agriculture, is typically applied as a racemic mixture, but its enantiomers differ in bioactivity and environmental impact. The synthesis of flutriafol enantiomers is critically dependent on chiral precursors: 2,2-bisaryl-substituted oxirane [(2-fluorophenyl)-2-(4-fluorophenyl)oxirane, 1a] and 1,2-diol [1-(2-fluorophenyl)-1-(4-fluorophenyl)ethane-1,2-diol, 1b]. Here, we engineered a Rhodotorula paludigensis epoxide hydrolase (RpEH), obtaining mutant Escherichia coli/RpehH336W/L360F with a 6.4-fold enhanced enantiomeric ratio (E) from 5.5 to 35.4. This enabled a gram-scale resolution of rac-1a by E. coli/RpehH336W/L360F, producing (S)-1a (98.2% ees) and (R)-1b (75.0% eep) with 44.3 and 55.7% analytical yields, respectively. As follows, chiral (S)-flutriafol (98.2% ee) and (R)-flutriafol (75.0% ee) were easily synthesized by a one-step chemocatalytic process from (S)-1a and a two-step chemocatalytic process from (R)-1b, respectively. This chemoenzymatic approach offers a superior alternative for the asymmetric synthesis of flutriafol enantiomers. Furthermore, molecular dynamics simulations revealed insight into the enantioselectivity improvement of RpEH toward bulky 2,2-bisaryl-substituted oxirane 1a.


Subject(s)
Epoxide Hydrolases , Fungal Proteins , Fungicides, Industrial , Rhodotorula , Triazoles , Fungicides, Industrial/chemistry , Fungicides, Industrial/chemical synthesis , Fungicides, Industrial/metabolism , Triazoles/chemistry , Triazoles/metabolism , Triazoles/chemical synthesis , Epoxide Hydrolases/metabolism , Epoxide Hydrolases/genetics , Epoxide Hydrolases/chemistry , Stereoisomerism , Rhodotorula/enzymology , Rhodotorula/genetics , Rhodotorula/chemistry , Rhodotorula/metabolism , Fungal Proteins/chemistry , Fungal Proteins/genetics , Fungal Proteins/metabolism , Biocatalysis , Escherichia coli/genetics , Escherichia coli/enzymology , Escherichia coli/metabolism , Protein Engineering
19.
J Agric Food Chem ; 72(39): 21429-21439, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39297351

ABSTRACT

The discovery of natural product-derived novel nanopesticide systems can effectively address the adverse effects caused by the improper use of traditional fungicides. In this research, 33 novel 3-carene-derived amide-thiourea derivatives 5a-5zg were designed using laccase as the biological target, synthesized from natural renewable forest biomass resource 3-carene as the starting material, and structurally confirmed by Fourier-transform infrared spectroscopy, nuclear magnetic resonance, high-resolution mass spectrometry, and single crystal X-ray diffraction. The antifungal activity of the target compounds against eight plant pathogenic fungi was evaluated, and the results presented that target compound 5g exhibited excellent and broad-spectrum antifungal activity against the eight tested phytopathogenic fungi. Furthermore, the important contribution of the gem-dimethylcyclopropane structure in the antifungal activity of compound 5g was revealed through two negative controls without the gem-dimethylcyclopropane structure. Besides, compound 5g also demonstrated a prominent laccase inhibitory activity. The fluorescence quenching of the laccase with compound 5g, the chelating characteristics of compound 5g, and the interaction mode between the laccase and compound 5g presented that the target compound 5g probably exhibited excellent antifungal activity by acting on the laccase target. Cytotoxicity assay revealed that compound 5g had a low cytotoxicity for LO2 and HEK293T cell lines. On the other hand, to further improve the application potential of compound 5g, the 3-carene molecular skeleton containing gem-dimethylcyclopropane ring was grafted onto chitosan, and two nanopesticide carriers CACS and CATCS with sustained releasing performance were synthesized for loading compound 5g. 3-Carene-derived nanochitosan carrier CATCS showed a relatively regular, loose, and porous reticular structure, which displayed high dispersibility and good thermostability. In addition, this carrier had a higher drug-loading capacity and sustained releasing performance than that of the unmodified chitosan. This research identified that the target compound 5g could be used as a promising lead compound for fungicide against the laccase target, meanwhile, the complex 5g/CATCS deserved further study as a nanopesticide candidate.


Subject(s)
Chitosan , Laccase , Thiourea , Laccase/chemistry , Laccase/metabolism , Chitosan/chemistry , Chitosan/pharmacology , Thiourea/chemistry , Thiourea/pharmacology , Humans , Drug Design , Fungi/drug effects , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemical synthesis , Fungicides, Industrial/chemistry , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemical synthesis , Plant Diseases/microbiology , Fungal Proteins/chemistry , Fungal Proteins/metabolism , Fungal Proteins/antagonists & inhibitors , Delayed-Action Preparations/chemistry , HEK293 Cells
20.
J Agric Food Chem ; 72(39): 21495-21502, 2024 Oct 02.
Article in English | MEDLINE | ID: mdl-39298264

ABSTRACT

Alternaria alternata is a common plant pathogen that can infect crops and reduce their production. In this work, an antagonism experiment between A. alternata and the essential oil of arborvitae (Platycladus orientalis) was performed, and it was proven that A. alternata had developed resistance to this plant-derived fungicide. A. alternata facilitated the biotransformation of hinokitiol (1), the main antifungal compound in the essential oil of arborvitae, into (R)-2-hydroxy-ß-methylbenzeneethanol (2), which does not have antifungal activity against A. alternata. This biotransformation is an unusual ring-contraction reaction that was verified to be catalyzed by P450 enzyme hydroxylation and Baeyer-Villiger oxidation. In addition, the P450 enzyme inhibitors 1-aminobenzotriazole and piperonyl butoxide effectively prevented the destruction of the hinokitiol structure by A. alternata, and the combined use of these P450 enzyme inhibitors significantly increased the antifungal activity of hinokitiol. This work provides a theoretical reference for the further development of botanical fungicides.


Subject(s)
Alternaria , Fungicides, Industrial , Monoterpenes , Plant Diseases , Tropolone , Alternaria/drug effects , Alternaria/metabolism , Fungicides, Industrial/pharmacology , Fungicides, Industrial/chemistry , Tropolone/pharmacology , Tropolone/analogs & derivatives , Tropolone/chemistry , Tropolone/metabolism , Monoterpenes/pharmacology , Monoterpenes/metabolism , Monoterpenes/chemistry , Plant Diseases/microbiology , Plant Diseases/prevention & control , Cytochrome P-450 Enzyme System/metabolism , Fungal Proteins/metabolism , Fungal Proteins/chemistry , Oils, Volatile/chemistry , Oils, Volatile/pharmacology , Inactivation, Metabolic , Biotransformation
SELECTION OF CITATIONS
SEARCH DETAIL