Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 4748, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38834585

ABSTRACT

Non-self recognition is a fundamental aspect of life, serving as a crucial mechanism for mitigating proliferation of molecular parasites within fungal populations. However, studies investigating the potential interference of plants with fungal non-self recognition mechanisms are limited. Here, we demonstrate a pronounced increase in the efficiency of horizontal mycovirus transmission between vegetatively incompatible Sclerotinia sclerotiorum strains in planta as compared to in vitro. This increased efficiency is associated with elevated proline concentration in plants following S. sclerotiorum infection. This surge in proline levels attenuates the non-self recognition reaction among fungi by inhibition of cell death, thereby facilitating mycovirus transmission. Furthermore, our field experiments reveal that the combined deployment of hypovirulent S. sclerotiorum strains harboring hypovirulence-associated mycoviruses (HAVs) together with exogenous proline confers substantial protection to oilseed rape plants against virulent S. sclerotiorum. This unprecedented discovery illuminates a novel pathway by which plants can counteract S. sclerotiorum infection, leveraging the weakening of fungal non-self recognition and promotion of HAVs spread. These promising insights provide an avenue to explore for developing innovative biological control strategies aimed at mitigating fungal diseases in plants by enhancing the efficacy of horizontal HAV transmission.


Subject(s)
Ascomycota , Fungal Viruses , Plant Diseases , Proline , Fungal Viruses/physiology , Fungal Viruses/genetics , Proline/metabolism , Plant Diseases/microbiology , Plant Diseases/virology , Ascomycota/virology , Ascomycota/physiology , Brassica napus/microbiology , Brassica napus/virology , Virulence , Host-Pathogen Interactions
2.
Viruses ; 16(6)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38932193

ABSTRACT

In the current study, a novel strain of Fusarium oxysporum alternavirus 1 (FoAV1) was identified from the Fusarium oxysporum f. sp. melonis (FOM) strain T-BJ17 and was designated as Fusarium oxysporum alternavirus 1-FOM (FoAV1-FOM). Its genome consists of four dsRNA segments of 3515 bp (dsRNA1), 2663 bp (dsRNA2), 2368 bp (dsRNA3), and 1776 bp (dsRNA4) in length. Open reading frame 1 (ORF1) in dsRNA1 was found to encode a putative RNA-dependent RNA polymerase (RdRp), whose amino acid sequence was 99.02% identical to that of its counterpart in FoAV1; while ORF2 in dsRNA2, ORF3 in dsRNA3, and ORF4 in dsRNA4 were all found to encode hypothetical proteins. Strain T-BJ17-VF, which was verified to FoAV1-FOM-free, was obtained using single-hyphal-tip culture combined with high-temperature treatment to eliminate FoAV1-FOM from strain T-BJ17. The colony growth rate, ability to produce spores, and virulence of strain T-BJ17 were significantly lower than those of T-BJ17-VF, while the dry weight of the mycelial biomass and the sensitivity to difenoconazole and pydiflumetofen of strain T-BJ17 were greater than those of T-BJ17-VF. FoAV1-FOM was capable of 100% vertical transmission via spores. To our knowledge, this is the first time that an alternavirus has infected FOM, and this is the first report of hypovirulence and increased sensitivity to difenoconazole and pydiflumetofen induced by FoAV1-FOM infection in FOM.


Subject(s)
Fungal Viruses , Fusarium , Genome, Viral , Plant Diseases , Triazoles , Fusarium/drug effects , Fusarium/genetics , Fusarium/virology , Fusarium/pathogenicity , Fungal Viruses/genetics , Fungal Viruses/isolation & purification , Fungal Viruses/classification , Fungal Viruses/physiology , Plant Diseases/microbiology , Plant Diseases/virology , Triazoles/pharmacology , Dioxolanes/pharmacology , Virulence , RNA Viruses/genetics , RNA Viruses/isolation & purification , RNA Viruses/drug effects , RNA Viruses/classification , Phylogeny , Open Reading Frames , Triticum/microbiology , Triticum/virology
3.
Proc Natl Acad Sci U S A ; 121(25): e2318150121, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38865269

ABSTRACT

It is extremely rare that a single virus crosses host barriers across multiple kingdoms. Based on phylogenetic and paleovirological analyses, it has previously been hypothesized that single members of the family Partitiviridae could cross multiple kingdoms. Partitiviridae accommodates members characterized by their simple bisegmented double-stranded RNA genome; asymptomatic infections of host organisms; the absence of an extracellular route for entry in nature; and collectively broad host range. Herein, we show the replicability of single fungal partitiviruses in three kingdoms of host organisms: Fungi, Plantae, and Animalia. Betapartitiviruses of the phytopathogenic fungusRosellinia necatrix could replicate in protoplasts of the carrot (Daucus carota), Nicotiana benthamiana and Nicotiana tabacum, in some cases reaching a level detectable by agarose gel electrophoresis. Moreover, betapartitiviruses showed more robust replication than the tested alphapartitiviruses. One of the fungal betapartitiviruses, RnPV18, could persistently and stably infect carrot plants regenerated from virion-transfected protoplasts. Both alpha- and betapartitiviruses, although with different host preference, could replicate in two insect cell lines derived from the fall armyworm Spodoptera frugiperda and the fruit fly Drosophila melanogaster. Our results indicate the replicability of single partitiviruses in members of three kingdoms and provide insights into virus adaptation, host jumping, and evolution.


Subject(s)
Daucus carota , Nicotiana , Virus Replication , Animals , Nicotiana/virology , Nicotiana/microbiology , Daucus carota/virology , Daucus carota/microbiology , RNA Viruses/genetics , RNA Viruses/physiology , Fungal Viruses/genetics , Fungal Viruses/classification , Fungal Viruses/physiology , Phylogeny , Protoplasts/virology , Plant Diseases/virology , Plant Diseases/microbiology , Spodoptera/virology , Spodoptera/microbiology
4.
Int J Mol Sci ; 25(11)2024 May 23.
Article in English | MEDLINE | ID: mdl-38891868

ABSTRACT

Mycoviruses are usually transmitted horizontally via hyphal anastomosis and vertically through sporulation in natural settings. Oyster mushroom spherical virus (OMSV) is a mycovirus that infects Pleurotus ostreatus, with horizontal transmission via hyphal anastomosis. However, whether OMSV can be vertically transmitted is unclear. This study aimed to investigate the transmission characteristics of OMSV to progeny via basidiospores and horizontally to a new host. A total of 37 single-basidiospore offspring were obtained from OMSV-infected P. ostreatus and Pleurotus pulmonarius for Western blot detection of OMSV. The OMSV-carrying rate among monokaryotic isolates was 19% in P. ostreatus and 44% in P. pulmonarius. Then, OMSV-free and OMSV-infected monokaryotic isolates were selected for hybridization with harvested dikaryotic progeny strains. Western blot analyses of the offspring revealed that the OMSV transmission efficiency was 50% in P. ostreatus and 75% in P. pulmonarius, indicating vertical transmission via sexual basidiospores. Furthermore, we observed the horizontal transfer of OMSV from P. pulmonarius to Pleurotus floridanus. OMSV infection in P. floridanus resulted in significant inhibition of mycelial growth and yield loss. This study was novel in reporting the vertical transmission of OMSV through basidiospores, and its infection and pathogenicity in a new host P. floridanus.


Subject(s)
Fungal Viruses , Pleurotus , Spores, Fungal , Pleurotus/virology , Spores, Fungal/growth & development , Fungal Viruses/physiology
5.
Mol Plant ; 17(6): 955-971, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38745413

ABSTRACT

Circular single-stranded DNA (ssDNA) viruses have been rarely found in fungi, and the evolutionary and ecological relationships among ssDNA viruses infecting fungi and other organisms remain unclear. In this study, a novel circular ssDNA virus, tentatively named Diaporthe sojae circular DNA virus 1 (DsCDV1), was identified in the phytopathogenic fungus Diaporthe sojae isolated from pear trees. DsCDV1 has a monopartite genome (3185 nt in size) encapsidated in isometric virions (21-26 nm in diameter). The genome comprises seven putative open reading frames encoding a discrete replicase (Rep) split by an intergenic region, a putative capsid protein (CP), several proteins of unknown function (P1-P4), and a long intergenic region. Notably, the two split parts of DsCDV1 Rep share high identities with the Reps of Geminiviridae and Genomoviridae, respectively, indicating an evolutionary linkage with both families. Phylogenetic analysis based on Rep or CP sequences placed DsCDV1 in a unique cluster, supporting the establishment of a new family, tentatively named Gegemycoviridae, intermediate to both families. DsCDV1 significantly attenuates fungal growth and nearly erases fungal virulence when transfected into the host fungus. Remarkably, DsCDV1 can systematically infect tobacco and pear seedlings, providing broad-spectrum resistance to fungal diseases. Subcellular localization analysis revealed that DsCDV1 P3 is systematically localized in the plasmodesmata, while its expression in trans-complementation experiments could restore systematic infection of a movement-deficient plant virus, suggesting that P3 is a movement protein. DsCDV1 exhibits unique molecular and biological traits not observed in other ssDNA viruses, serving as a link between fungal and plant ssDNA viruses and presenting an evolutionary connection between ssDNA viruses and fungi. These findings contribute to expanding our understanding of ssDNA virus diversity and evolution, offering potential biocontrol applications for managing crucial plant diseases.


Subject(s)
DNA, Single-Stranded , Fungal Viruses , Phylogeny , Plant Diseases , Fungal Viruses/genetics , Fungal Viruses/physiology , Plant Diseases/microbiology , Plant Diseases/virology , DNA, Single-Stranded/genetics , Ascomycota/virology , Ascomycota/physiology , DNA Viruses/genetics , Disease Resistance/genetics , Genome, Viral , Pyrus/microbiology , Pyrus/virology , Nicotiana/virology , Nicotiana/microbiology
6.
Microbiol Res ; 285: 127742, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38723390

ABSTRACT

In recent years, numerous oomycete mycoviruses have been discovered; however, very few studies have focused on their effects on the host oomycete phenotype. In this study, we investigated the impact of toti-like Pythium ultimum RNA virus 2 (PuRV2) infection on the phytopathogenic soil-borne oomycete Globisporangium ultimum, which serves as a model species for Globisporangium and Pythium, specifically the UOP226 isolate in Japan. We generated a PuRV2-free isogenic line through hyphal tip isolation using high-temperature culture and subsequently compared the phenotypic characteristics and gene expression profiles of UOP226 and the PuRV2-free isogenic line. Our findings revealed that the metalaxyl sensitivity of UOP226 was greater than that of the PuRV2-free isogenic line, whereas the mycelial growth rate and colony morphology remained unchanged in the absence of the fungicide. Furthermore, transcriptome analyses using RNA-seq revealed significant downregulation of ABC-type transporter genes, which are involved in fungicide sensitivity, in UOP226. Our results suggest that PuRV2 infection influences the ecology of G. ultimum in agricultural ecosystems where metalaxyl is applied.


Subject(s)
Alanine , Fungal Viruses , Fungicides, Industrial , Plant Diseases , RNA Viruses , Fungicides, Industrial/pharmacology , Fungal Viruses/genetics , Fungal Viruses/physiology , Fungal Viruses/isolation & purification , Fungal Viruses/drug effects , Alanine/analogs & derivatives , Alanine/pharmacology , Plant Diseases/microbiology , Plant Diseases/virology , RNA Viruses/drug effects , RNA Viruses/genetics , Pythium/drug effects , Pythium/growth & development , Hyphae/growth & development , Hyphae/drug effects , Gene Expression Profiling , Mycelium/growth & development , Mycelium/drug effects , Mycelium/virology , Japan , Transcriptome
7.
Trends Microbiol ; 32(7): 620-621, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38719702

ABSTRACT

The intimate relationships between plants and fungi provide an opportunity for the shuttling of viruses. Dai et al. recently discovered that a virus undergoes cross-kingdom transmission, and naturally spreads to both plant and fungal populations. This finding expands our understanding of viral host range, evolution, transmission, and disease management.


Subject(s)
Fungi , Host Specificity , Plant Diseases , Plants , Plants/microbiology , Plants/virology , Fungi/physiology , Fungi/genetics , Plant Diseases/microbiology , Plant Diseases/virology , Fungal Viruses/physiology , Fungal Viruses/genetics , Plant Viruses/physiology , Plant Viruses/pathogenicity , Plant Viruses/genetics , Host-Pathogen Interactions
8.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Article in English | MEDLINE | ID: mdl-38114080

ABSTRACT

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Ascomycota , Fraxinus , Fungal Viruses , Plant Diseases , Fraxinus/microbiology , Fraxinus/virology , Plant Diseases/microbiology , Plant Diseases/virology , Plant Diseases/prevention & control , Fungal Viruses/physiology , Fungal Viruses/isolation & purification , Ascomycota/virology , Ascomycota/physiology , Virulence , Pest Control, Biological , Biological Control Agents
9.
Arch Microbiol ; 206(1): 38, 2023 Dec 24.
Article in English | MEDLINE | ID: mdl-38142438

ABSTRACT

Plant pathogenic fungi pose a significant and ongoing threat to agriculture and food security, causing economic losses and significantly reducing crop yields. Effectively managing these fungal diseases is crucial for sustaining agricultural productivity, and in this context, mycoviruses have emerged as a promising biocontrol option. These viruses alter the physiology of their fungal hosts and their interactions with the host plants. This review encompasses the extensive diversity of reported mycoviruses, including their taxonomic classification and range of fungal hosts. We highlight representative examples of mycoviruses that affect economically significant plant-pathogenic fungi and their distinctive characteristics, with a particular emphasis on mycoviruses impacting Sclerotinia sclerotiorum. These mycoviruses exhibit significant potential for biocontrol, supported by their specificity, efficacy, and environmental safety. This positions mycoviruses as valuable tools in crop protection against diseases caused by this pathogen, maintaining their study and application as promising research areas in agricultural biotechnology. The remarkable diversity of mycoviruses, coupled with their ability to infect a broad range of plant-pathogenic fungi, inspires optimism, and suggests that these viruses have the potential to serve as an effective management strategy against major fungi-causing plant diseases worldwide.


Subject(s)
Ascomycota , Fungal Viruses , Mycoses , Viruses , Fungi , Mycoses/microbiology , Plants , Fungal Viruses/physiology , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL