Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.722
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 417, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995388

ABSTRACT

Fertilizer input is one of the effective forest management practices, which improves soil nutrients and microbial community compositions and promotes forest productivity. However, few studies have explored the response of rhizosphere soil microbial communities to various fertilization regimes across seasonal dynamics. Here, we collected the rhizosphere soil samples from Phoebe bournei plantations to investigate the response of community assemblages and microbial interactions of the soil microbiome to the short-term application of four typical fertilizer practices (including chemical fertilizer (CF), organic fertilizer (OF), compound microbial fertilizer (CMF), and no fertilizer control (CK)). The amendments of organic fertilizer and compound microbial fertilizer altered the composition of rhizosphere soil bacterial and fungal communities, respectively. The fertilization regime significantly affected bacterial diversity rather than fungal diversity, and rhizosphere fungi responded more sensitively than bacteria to season. Fertilization-induced fungal networks were more complex than bacterial networks. Stochastic processes governed both rhizosphere soil bacterial and fungal communities, and drift and dispersal limitation dominated soil fungal and bacterial communities, respectively. Collectively, these findings demonstrate contrasting responses to community assemblages and interactions of rhizosphere bacteria and fungi to fertilizer practices. The application of organic fertilization strengthens microbial interactions and changes the succession of key taxa in the rhizosphere habitat. KEY POINTS: • Fertilization altered the key taxa and microbial interaction • Organic fertilizer facilitated the turnover of rhizosphere microbial communities • Stochasticity governed soil fungal and bacterial community assembly.


Subject(s)
Bacteria , Fertilizers , Fungi , Microbiota , Rhizosphere , Soil Microbiology , Fertilizers/analysis , Fungi/classification , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Microbial Interactions , Seasons , Soil/chemistry
2.
J Appl Microbiol ; 135(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38982332

ABSTRACT

AIMS: A severe lockdown occurred in Wuhan during the COVID-19 pandemic, followed by a remission phase in the pandemic's aftermath. This study analyzed the bacterial and fungal profiles of respiratory pathogens in patients hospitalized with non-COVID-19 lower respiratory tract infections (LRTIs) during this period to determine the pathogen profile distributions in different age groups and hospital departments in Wuhan. METHODS AND RESULTS: We collected reports of pathogen testing in the medical records of patients hospitalized with non-COVID-19 LRTI between 2019 and 2021. These cases were tested for bacterial and fungal pathogens using 16S and internal transcribed spacer sequencing methods on bronchoalveolar lavage fluid samples. The study included 1368 cases. The bacteria most commonly identified were Streptococcus pneumoniae (12.50%) and Mycoplasma pneumoniae (8.33%). The most commonly identified fungi were Aspergillus fumigatus (2.49%) and Pneumocystis jirovecii (1.75%). Compared to 2019, the S. pneumoniae detection rates increased significantly in 2021, and those of M. pneumoniae decreased. Streptococcus pneumoniae was detected mainly in children. The detection rates of almost all fungi were greater in the respiratory Intensive Care Unit compared to respiratory medicine. Streptococcus pneumoniae and M. pneumoniae were detected more frequently in the pediatric department. CONCLUSIONS: Before and after the COVID-19 outbreak, a change in the common pathogen spectrum was detected in patients with non-COVID-19 in Wuhan, with the greatest change occurring among children. The major pathogens varied by the patient's age and the hospital department.


Subject(s)
COVID-19 , Hospitalization , Respiratory Tract Infections , Humans , China/epidemiology , Respiratory Tract Infections/microbiology , Respiratory Tract Infections/virology , Respiratory Tract Infections/epidemiology , Middle Aged , Child , Male , Adult , Female , Child, Preschool , Adolescent , Aged , Infant , COVID-19/epidemiology , Fungi/isolation & purification , Fungi/genetics , Fungi/classification , Young Adult , Streptococcus pneumoniae/isolation & purification , Streptococcus pneumoniae/genetics , Bacteria/isolation & purification , Bacteria/classification , Bacteria/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Mycoplasma pneumoniae/isolation & purification , Mycoplasma pneumoniae/genetics , Bronchoalveolar Lavage Fluid/microbiology , Bronchoalveolar Lavage Fluid/virology
3.
Front Cell Infect Microbiol ; 14: 1420389, 2024.
Article in English | MEDLINE | ID: mdl-38983117

ABSTRACT

The intestinal microbiota assumes a pivotal role in modulating host metabolism, immune responses, overall health, and additional physiological dimensions. The structural and functional characteristics of the intestinal microbiota may cause alterations within the host's body to a certain extent. The composition of the gut microbiota is associated with environmental factors, dietary habits, and other pertinent conditions. The investigation into the gut microbiota of yaks remained relatively underexplored. An examination of yak gut microbiota holds promise in elucidating the complex relationship between microbial communities and the adaptive responses of the host to its environment. In this study, yak were selected from two distinct environmental conditions: those raised in sheds (NS, n=6) and grazed in Nimu County (NF, n=6). Fecal samples were collected from the yaks and subsequently processed for analysis through 16S rDNA and ITS sequencing methodologies. The results revealed that different feeding styles result in significant differences in the Alpha diversity of fungi in the gut of yaks, while the gut microbiota of captive yaks was relatively conserved. In addition, significant differences appeared in the abundance of microorganisms in different taxa, phylum Verrucomicrobiota was significantly enriched in group NF while Firmicutes was higher in group NS. At the genus level, Akkermansia, Paenibacillus, Roseburia, Dorea, UCG_012, Anaerovorax and Marvinbryantia were enriched in group NF while Desemzia, Olsenella, Kocuria, Ornithinimicrobium and Parvibacter were higher in group NS (P<0.05 or P<0.01). There was a significant difference in the function of gut microbiota between the two groups. The observed variations are likely influenced by differences in feeding methods and environmental conditions both inside and outside the pen. The findings of this investigation offer prospective insights into enhancing the yak breeding and expansion of the yak industry.


Subject(s)
Bacteria , Feces , Gastrointestinal Microbiome , RNA, Ribosomal, 16S , Animals , Cattle , Gastrointestinal Microbiome/genetics , Feces/microbiology , RNA, Ribosomal, 16S/genetics , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , China , Phylogeny , DNA, Bacterial/genetics , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , DNA, Ribosomal/genetics , DNA, Ribosomal/chemistry , Sequence Analysis, DNA , Biodiversity
4.
PeerJ ; 12: e17686, 2024.
Article in English | MEDLINE | ID: mdl-39006015

ABSTRACT

In the present investigation, we employ a novel and meticulously structured database assembled by experts, encompassing macrofungi field-collected in Brazil, featuring upwards of 13,894 photographs representing 505 distinct species. The purpose of utilizing this database is twofold: firstly, to furnish training and validation for convolutional neural networks (CNNs) with the capacity for autonomous identification of macrofungal species; secondly, to develop a sophisticated mobile application replete with an advanced user interface. This interface is specifically crafted to acquire images, and, utilizing the image recognition capabilities afforded by the trained CNN, proffer potential identifications for the macrofungal species depicted therein. Such technological advancements democratize access to the Brazilian Funga, thereby enhancing public engagement and knowledge dissemination, and also facilitating contributions from the populace to the expanding body of knowledge concerning the conservation of macrofungal species of Brazil.


Subject(s)
Deep Learning , Fungi , Brazil , Fungi/classification , Fungi/isolation & purification , Biodiversity , Neural Networks, Computer , Databases, Factual
5.
Environ Microbiol ; 26(7): e16673, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39001572

ABSTRACT

Protists, a crucial part of the soil food web, are increasingly acknowledged as significant influencers of nutrient cycling and plant performance in farmlands. While topographical and climatic factors are often considered to drive microbial communities on a continental scale, higher trophic levels like heterotrophic protists also rely on their food sources. In this context, bacterivores have received more attention than fungivores. Our study explored the connection between the community composition of protists (specifically Rhizaria and Cercozoa) and fungi across 156 cereal fields in Europe, spanning a latitudinal gradient of 3000 km. We employed a machine-learning approach to measure the significance of fungal communities in comparison to bacterial communities, soil abiotic factors, and climate as determinants of the Cercozoa community composition. Our findings indicate that climatic variables and fungal communities are the primary drivers of cercozoan communities, accounting for 70% of their community composition. Structural equation modelling (SEM) unveiled indirect climatic effects on the cercozoan communities through a change in the composition of the fungal communities. Our data also imply that fungivory might be more prevalent among protists than generally believed. This study uncovers a hidden facet of the soil food web, suggesting that the benefits of microbial diversity could be more effectively integrated into sustainable agriculture practices.


Subject(s)
Edible Grain , Fungi , Soil Microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Europe , Edible Grain/microbiology , Soil/chemistry , Cercozoa , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Food Chain , Microbiota , Biodiversity , Mycobiome , Agriculture
6.
BMC Bioinformatics ; 25(1): 228, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956506

ABSTRACT

BACKGROUND: Fungi play a key role in several important ecological functions, ranging from organic matter decomposition to symbiotic associations with plants. Moreover, fungi naturally inhabit the human body and can be beneficial when administered as probiotics. In mycology, the internal transcribed spacer (ITS) region was adopted as the universal marker for classifying fungi. Hence, an accurate and robust method for ITS classification is not only desired for the purpose of better diversity estimation, but it can also help us gain a deeper insight into the dynamics of environmental communities and ultimately comprehend whether the abundance of certain species correlate with health and disease. Although many methods have been proposed for taxonomic classification, to the best of our knowledge, none of them fully explore the taxonomic tree hierarchy when building their models. This in turn, leads to lower generalization power and higher risk of committing classification errors. RESULTS: Here we introduce HiTaC, a robust hierarchical machine learning model for accurate ITS classification, which requires a small amount of data for training and can handle imbalanced datasets. HiTaC was thoroughly evaluated with the established TAXXI benchmark and could correctly classify fungal ITS sequences of varying lengths and a range of identity differences between the training and test data. HiTaC outperforms state-of-the-art methods when trained over noisy data, consistently achieving higher F1-score and sensitivity across different taxonomic ranks, improving sensitivity by 6.9 percentage points over top methods in the most noisy dataset available on TAXXI. CONCLUSIONS: HiTaC is publicly available at the Python package index, BIOCONDA and Docker Hub. It is released under the new BSD license, allowing free use in academia and industry. Source code and documentation, which includes installation and usage instructions, are available at https://gitlab.com/dacs-hpi/hitac .


Subject(s)
Fungi , Machine Learning , Fungi/genetics , Fungi/classification , DNA, Ribosomal Spacer/genetics , Software
7.
BMC Microbiol ; 24(1): 238, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961393

ABSTRACT

OBJECTIVES: Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is extensively employed for the identification of filamentous fungi on MALDI Biotyper (Bruker Daltonics) and Vitek MS (biomerieux), but the performance of fungi identification on new EXS2600 (Zybio) is still unknow. Our study aims to evaluate the new EXS2600 system's (Zybio) ability to rapidly identify filamentous fungi and determine its effect on turnaround time (TAT) in our laboratory. METHODS: We tested 117 filamentous fungi using two pretreatment methods: the formic acid sandwich (FA-sandwich) and a commercial mold extraction kit (MEK, Zybio). All isolates were confirmed via sequence analysis. Laboratory data were extracted from our laboratory information system over two 9-month periods: pre-EXS (April to December 2022) and post-EXS (April to December 2023), respectively. RESULTS: The total correct identification (at the species, genus, or complex/group level) rate of fungi was high, FA-sandwich (95.73%, 112/117), followed by MEK (94.02%, 110/117). Excluding 6 isolates not in the database, species-level identification accuracy was 92.79% (103/111) for FA-sandwich and 91.89% (102/111) for MEK; genus-level accuracy was 97.29% (108/111) and 96.39% (107/111), respectively. Both methods attained a 100% correct identification rate for Aspergillus, Lichtheimia, Rhizopus Mucor and Talaromyces species, and were able to differentiate between Fusarium verticillioides and Fusarium proliferatum within the Fusarium fujikuroi species complex. Notably, high confidence was observed in the species-level identification of uncommon fungi such as Trichothecium roseum and Geotrichum candidum. The TAT for all positive cultures decreased from pre EXS2600 to post (108.379 VS 102.438, P < 0.05), and the TAT for tissue decreased most (451.538 VS 222.304, P < 0.001). CONCLUSIONS: The FA-sandwich method is more efficient and accurate for identifying filamentous fungi with EXS2600 than the MEK. Our study firstly evaluated the performance of fungi identification on EXS2600 and showed it is suitable for clinical microbiology laboratories use.


Subject(s)
Formates , Fungi , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Fungi/classification , Fungi/isolation & purification , Fungi/chemistry , Fungi/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Formates/chemistry
8.
BMC Microbiol ; 24(1): 232, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951807

ABSTRACT

BACKGROUND: Migratory birds exhibit heterogeneity in foraging strategies during wintering to cope with environmental and migratory pressures, and gut bacteria respond to changes in host diet. However, less is known about the dynamics of diet and gut fungi during the wintering period in black-necked cranes (Grus nigricollis). RESULTS: In this work, we performed amplicon sequencing of the trnL-P6 loop and ITS1 regions to characterize the dietary composition and gut fungal composition of black-necked cranes during wintering. Results indicated that during the wintering period, the plant-based diet of black-necked cranes mainly consisted of families Poaceae, Solanaceae, and Polygonaceae. Among them, the abundance of Solanaceae, Polygonaceae, Fabaceae, and Caryophyllaceae was significantly higher in the late wintering period, which also led to a more even consumption of various food types by black-necked cranes during this period. The diversity of gut fungal communities and the abundance of core fungi were more conserved during the wintering period, primarily dominated by Ascomycota and Basidiomycota. LEfSe analysis (P < 0.05, LDA > 2) found that Pyxidiophora, Pseudopeziza, Sporormiella, Geotrichum, and Papiliotrema were significantly enriched in early winter, Ramularia and Dendryphion were significantly enriched in mid-winter, Barnettozyma was significantly abundant in late winter, and Pleuroascus was significantly abundant in late winter. Finally, mantel test revealed a significant correlation between winter diet and gut fungal. CONCLUSIONS: This study revealed the dynamic changes in the food composition and gut fungal community of black-necked cranes during wintering in Dashanbao. In the late wintering period, their response to environmental and migratory pressures was to broaden their diet, increase the intake of non-preferred foods, and promote a more balanced consumption ratio of various foods. Balanced food composition played an important role in stabilizing the structure of the gut fungal community. While gut fungal effectively enhanced the host's food utilization rate, they may also faced potential risks of introducing pathogenic fungi. Additionally, we recongnized the limitations of fecal testing in studying the composition of animal gut fungal, as it cannot effectively distinguished between fungal taxa from food or soil inadvertently ingested and intestines. Future research on functions such as cultivation and metagenomics may further elucidate the role of fungi in the gut ecosystem.


Subject(s)
Birds , Diet , Fungi , Gastrointestinal Microbiome , Seasons , Animals , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Birds/microbiology , Gastrointestinal Tract/microbiology , DNA, Fungal/genetics , Phylogeny
9.
Sci Rep ; 14(1): 15456, 2024 07 04.
Article in English | MEDLINE | ID: mdl-38965317

ABSTRACT

Medicinal plant microbiomes undergo selection due to secondary metabolite presence. Resident endophytic/epiphytic microorganisms directly influence plant's bioactive compound synthesis. Hypothesizing low microbial diversity in Serjania erecta leaves, we assessed leaf colonization by epiphytic and endophytic fungi. Given its traditional medicinal importance, we estimated diversity in the endophytic fungal microbiome. Analyses included scanning electron microscopy (SEM), isolation of cultivable species, and metagenomics. Epiphytic fungi interacted with S. erecta leaf tissues, horizontally transmitted via stomata/trichome bases, expressing traits for nematode trapping. Cultivable endophytic fungi, known for phytopathogenic habits, didn't induce dysbiosis symptoms. This study confirms low leaf microbiome diversity in S. erecta, with a tendency towards more fungal species, likely due to antibacterial secondary metabolite selection. The classification of Halicephalobus sp. sequence corroborated the presence of nematode eggs on the epidermal surface of S. erecta by SEM. In addition, we confirmed the presence of methanogenic archaea and a considerable number of methanotrophs of the genus Methylobacterium. The metagenomic study of endophytic fungi highlighted plant growth-promoting yeasts, mainly Malassezia, Leucosporidium, Meyerozyma, and Hannaella. Studying endophytic fungi and S. erecta microbiomes can elucidate their impact on beneficial bioactive compound production, on the other hand, it is possible that the bioactive compounds produced by this plant can recruit specific microorganisms, impacting the biological system.


Subject(s)
Fungi , Microbiota , Nematoda , Plant Leaves , Plant Leaves/microbiology , Plant Leaves/parasitology , Animals , Nematoda/microbiology , Fungi/classification , Fungi/genetics , Fungi/isolation & purification , Endophytes/genetics , Endophytes/isolation & purification , Yeasts/classification , Yeasts/isolation & purification , Yeasts/genetics , Metagenomics/methods , Biodiversity
10.
BMC Microbiol ; 24(1): 243, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965478

ABSTRACT

BACKGROUND: Lichens, traditionally considered as a simple partnership primarily between mycobiont and photobiont, are, in reality, complex holobionts comprised of a multitude of microorganisms. Lichen mycobiome represents fungal community residing within lichen thalli. While it is acknowledged that factors like the host lichen species and environmental conditions influence the structure of the lichen mycobiome, the existing research remains insufficient. To investigate which factor, host genus or location, has a greater impact on the lichen mycobiome, we conducted a comparative analysis of mycobiomes within Parmelia and Peltigera collected from both Turkey and South Korea, using high-throughput sequencing based on internal transcribed spacer region amplification. RESULTS: Overall, the lichen mycobiome was dominated by Capnodiales (Dothideomycetes), regardless of host or location. At the order level, the taxonomic composition was not significantly different according to lichen genus host or geographical distance. Hierarchical clustering of the top 100 abundant ASVs did not clearly indicate whether the lichen mycobiome was more influenced by host genus or location. Analyses of community similarity and partitioning variables revealed that the structure of the lichen mycobiome is more significantly influenced by location than by host genus. When analyzing the core mycobiome by host genus, the Peltigera mycobiome contained more ASV members than the Parmelia mycobiome. These two core mycobiomes also share common fungal strains, including basidiomycete yeast. Additionally, we used chi-squared tests to identify host genus-specialists and location-specialists. CONCLUSIONS: By comparing lichen mycobiomes of the same genera across different countries, our study advances our comprehension of these microbial communities. Our study elucidates that, although host species play a contributory role, geographic distance exerts a more pronounced impact on the structure of lichen mycobiome. We have made foundational contributions to understanding the lichen mycobiome occupying ecologically crucial niches. We anticipate that broader global-scale investigations into the fungal community structures will provide more detailed insights into fungal residents within lichens.


Subject(s)
DNA, Fungal , Lichens , Mycobiome , Republic of Korea , Turkey , Lichens/microbiology , Lichens/classification , DNA, Fungal/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Ascomycota/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , Fungi/classification , Fungi/isolation & purification , Fungi/genetics , Parmeliaceae/genetics
11.
PLoS One ; 19(7): e0305600, 2024.
Article in English | MEDLINE | ID: mdl-39018319

ABSTRACT

Plants intimately coexist with diverse taxonomically structured microbial communities that influence host health and productivity. The coexistence of plant microbes in the phyllosphere benefits biodiversity maintenance, ecosystem function, and community stability. However, differences in community composition and network structures of phyllosphere epiphytic and endophytic fungi are widely unknown. Using Illumina Miseq sequencing of internal transcribed spacer (ITS) and 28S rRNA gene amplicons, we characterised the epiphytic and endophytic fungal communities associated with cashew phyllosphere (leaf, flower and fruit) from Kwale, Kilifi and Lamu counties in Kenya. The ITS and 28S rRNA gene sequences were clustered into 267 and 108 operational taxonomic units (OTUs) at 97% sequence similarity for both the epiphytes and endophytes. Phylum Ascomycota was abundant followed by Basidiomycota, while class Saccharomycetes was most dominant followed by Dothideomycetes. The major non-ascomycete fungi were associated only with class Tremellales. The fungal communities detected had notable ecological functions as saprotrophs and pathotrophs in class Saccharomyectes and Dothideomycetes. The community composition of epiphytic and endophytic fungi significantly differed between the phyllosphere organs which was statistically confirmed by the Analysis of Similarity test (ANOSIM Statistic R: 0.3273, for 28S rRNA gene and ANOSIM Statistic R: 0.3034 for ITS). The network analysis revealed that epiphytic and endophytic structures were more specialized, modular and had less connectance. Our results comprehensively describe the phyllosphere cashew-associated fungal community and serve as a foundation for understanding the host-specific microbial community structures among cashew trees.


Subject(s)
Anacardium , Endophytes , Kenya , Anacardium/microbiology , Endophytes/genetics , Endophytes/classification , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , DNA Barcoding, Taxonomic , RNA, Ribosomal, 28S/genetics , Mycobiome/genetics , Biodiversity , Phylogeny , Plant Leaves/microbiology , DNA, Fungal/genetics
12.
Curr Microbiol ; 81(8): 257, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955825

ABSTRACT

Soil represents a complex and dynamic ecosystem, hosting a myriad of microorganisms that coexist and play vital roles in nutrient cycling and organic matter transformation. Among these microorganisms, bacteria and fungi are key members of the microbial community, profoundly influencing the fate of nitrogen, sulfur, and carbon in terrestrial environments. Understanding the intricacies of soil ecosystems and the biological processes orchestrated by microbial communities necessitates a deep dive into their composition and metabolic activities. The advent of next-generation sequencing and 'omics' techniques, such as metagenomics and metaproteomics, has revolutionized our understanding of microbial ecology and the functional dynamics of soil microbial communities. Metagenomics enables the identification of microbial community composition in soil, while metaproteomics sheds light on the current biological functions performed by these communities. However, metaproteomics presents several challenges, both technical and computational. Factors such as the presence of humic acids and variations in extraction methods can influence protein yield, while the absence of high-resolution mass spectrometry and comprehensive protein databases limits the depth of protein identification. Notwithstanding these limitations, metaproteomics remains a potent tool for unraveling the intricate biological processes and functions of soil microbial communities. In this review, we delve into the methodologies and challenges of metaproteomics in soil research, covering aspects such as protein extraction, identification, and bioinformatics analysis. Furthermore, we explore the applications of metaproteomics in soil bioremediation, highlighting its potential in addressing environmental challenges.


Subject(s)
Bacteria , Metagenomics , Microbiota , Proteomics , Soil Microbiology , Proteomics/methods , Metagenomics/methods , Bacteria/genetics , Bacteria/classification , Bacteria/metabolism , Bacteria/isolation & purification , Fungi/classification , Fungi/genetics , Fungi/metabolism , Fungi/isolation & purification , Soil/chemistry , Computational Biology/methods
13.
J Med Virol ; 96(7): e29781, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961767

ABSTRACT

Rheumatoid arthritis-associated interstitial lung disease (RA-ILD) is a serious and common extra-articular disease manifestation. Patients with RA-ILD experience reduced bacterial diversity and gut bacteriome alterations. However, the gut mycobiome and virome in these patients have been largely neglected. In this study, we performed whole-metagenome shotgun sequencing on fecal samples from 30 patients with RA-ILD, and 30 with RA-non-ILD, and 40 matched healthy controls. The gut bacteriome and mycobiome were explored using a reference-based approach, while the gut virome was profiled based on a nonredundant viral operational taxonomic unit (vOTU) catalog. The results revealed significant alterations in the gut microbiomes of both RA-ILD and RA-non-ILD groups compared with healthy controls. These alterations encompassed changes in the relative abundances of 351 bacterial species, 65 fungal species, and 4,367 vOTUs. Bacteria such as Bifidobacterium longum, Dorea formicigenerans, and Collinsella aerofaciens were enriched in both patient groups. Ruminococcus gnavus (RA-ILD), Gemmiger formicilis, and Ruminococcus bromii (RA-non-ILD) were uniquely enriched. Conversely, Faecalibacterium prausnitzii, Bacteroides spp., and Roseburia inulinivorans showed depletion in both patient groups. Mycobiome analysis revealed depletion of certain fungi, including Saccharomyces cerevisiae and Candida albicans, in patients with RA compared with healthy subjects. Notably, gut virome alterations were characterized by an increase in Siphoviridae and a decrease in Myoviridae, Microviridae, and Autographiviridae in both patient groups. Hence, multikingdom gut microbial signatures showed promise as diagnostic indicators for both RA-ILD and RA-non-ILD. Overall, this study provides comprehensive insights into the fecal virome, bacteriome, and mycobiome landscapes of RA-ILD and RA-non-ILD gut microbiota, thereby offering potential biomarkers for further mechanistic and clinical research.


Subject(s)
Arthritis, Rheumatoid , Bacteria , Feces , Gastrointestinal Microbiome , Lung Diseases, Interstitial , Humans , Lung Diseases, Interstitial/microbiology , Lung Diseases, Interstitial/virology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/microbiology , Feces/microbiology , Feces/virology , Female , Male , Middle Aged , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Aged , Virome , Mycobiome , Adult , Viruses/classification , Viruses/isolation & purification , Viruses/genetics , Fungi/isolation & purification , Fungi/classification
14.
Huan Jing Ke Xue ; 45(7): 4006-4013, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022948

ABSTRACT

This study aimed to explore the effects of different disturbances on the fungal communities in the sediments of the Jialing River in order to provide scientific basis for the protection of the river ecosystem. The fungal community in the sediments of the main stream of the Jialing River was taken as the research object, and high-throughput sequencing and bioinformatics techniques were used to analyze the differences in the composition and function of fungal communities in river sediment of different types of disturbance (project disturbance, tributary disturbance, sand mining disturbance, and reclamation disturbance) and non-disturbance sections. The results showed that: ① The reclamation and project disturbances significantly inhibited the diversity and richness of fungal communities (P<0.05). The tributary disturbance increased the richness of fungal communities, whereas the impact of sand mining disturbance on sediment fungal communities was not significant. ② The diversity and composition of fungal communities tended to be similar at the different sampling sites in the section with low input of exogenous substances (non-disturbance and sand mining disturbance), whereas there were obvious differences in the diversity of fungal communities at the different sampling sites of high input of external substances (tributary disturbance, project disturbance, and reclamation disturbance) sections. ③ Ascomycota, Rozellomycota, and Basidiomycota were the main dominant fungal phyla in the sediments of the Jialing River. The relative abundance of Rozellomycota was the highest in the sand mining interference section, and the relative abundance of Basidiomycota was the highest in the tributary interference section. Project disturbance significantly increased the relative abundance of saprotrophs, animal pathogens, plant pathogens, and dung saprotrophs, whereas other disturbances inhibited the relative abundance of fungal parasitic fungi, plant pathogens, and plant saprophytes. In conclusion, human disturbance has caused changes in fungal diversity, community structure, and function in the sediment of the Jialing River, and xenobiotic input was a key factor contributing to this phenomenon. The results can provide a reference for predicting and evaluating the ecological quality of river sediments.


Subject(s)
Fungi , Geologic Sediments , Rivers , Rivers/microbiology , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Fungi/classification , China , Ecosystem , Biodiversity , Environmental Monitoring
15.
Huan Jing Ke Xue ; 45(7): 4241-4250, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022970

ABSTRACT

To illuminate the temporal variations in the structure and functional groups of the root-associated fungal community associated with Mongolian pine Pinus sylvestris var. mongholica plantations in the Mu Us Sandy Land, P. sylvestris var. mongholica plantations with different stand ages (23, 33, and 44 a) were targeted. The community compositions and main drivers of root-associated fungi at different months and stand ages were identified using the Illumina high-throughput sequencing method. The results indicated that: ① There was a distinct temporal distribution in the root-associated fungal community, the sampling month had a significant effect on the diversity of root-associated fungi (P<0.05), and the values were higher in May and July. The stand age had no significant effect on the diversity of root-associated fungi (P>0.05) and decreased gradually with increasing stand age. ② The dominant phylum of the root-associated fungal community was Ascomycota. The relative abundance of fungal function groups was different within each month and stand age, and the dominant groups were saprotroph-symbiotroph, undefined saprotroph, and ectomycorrhizal fungi. The indicator genera of ectomycorrhizal fungi in May, July, and September were Melanoleuca, Amphinema, and Tricholoma, respectively. ③ The temporal distribution of the root-associated fungal community was significantly affected by annual relative humidity, annual precipitation, soil porosity, ammonia nitrogen, annual sunshine duration, annual temperature, and soil water content (P<0.05). Soil organic carbon content, soil porosity, annual precipitation, and annual relative humidity were the main factors that significantly affected the indicator genus of the root-associated fungal community. Our results demonstrated that the temporal distribution of the root-associated fungal community was shaped by climate and soil properties, whereas stand age contributed less. This improved information will provide a theoretical basis for the sustainable management of P. sylvestris var mongholica plantations.


Subject(s)
Pinus sylvestris , Plant Roots , Pinus sylvestris/microbiology , Pinus sylvestris/growth & development , Plant Roots/microbiology , China , Soil Microbiology , Mycorrhizae/physiology , Fungi/classification , Fungi/isolation & purification , Desert Climate , Mycobiome , Ascomycota , Biodiversity
16.
Huan Jing Ke Xue ; 45(7): 4251-4265, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022971

ABSTRACT

To clarify the regulating effect of vegetation and soil factors on microbial communities in the alpine steppe under degradation on the Qinghai-Xizang Plateau, the alpine steppe in the Sanjiangyuan area of the Qinghai-Tibet Plateau was chosen. We analyzed the differences in vegetation and soil factors in different stages of degradation (non-degradation, moderate degradation, and severe degradation) and detected the variations in microbial community characteristics in the alpine steppe under different degradation stages using high-throughput sequencing technology. Eventually, redundancy analysis (RDA) and multiple regression matrixes (MRM) based on the similarity or dissimilarity matrix were used to identify key environmental factors regulating microbial (bacterial and fungal) community changes under degradation. The results showed that the degradation of the alpine steppe significantly changed the community coverage, height, biomass, and important value of graminae; significantly reduced the contents of soil organic matter, total nitrogen, total phosphorus, and silt; and increased the soil bulk density and sand content. Degradation did not change the composition of bacteria and fungi, but their composition proportions changed and also resulted in the loss of microbial richness (Chao1 index and Richness index) but did not significantly change the microbial diversity (Shannon index). With the occurrence of degradation, the vegetation characteristics, soil physicochemical properties, and microbial diversity showed a consistent change trend. Combined with the characteristics of the network topology changes (the number of nodes and clustering coefficient significantly decreased), it was found that degradation of the alpine steppe led to the decline of interspecies interactions, decentralization of network, and homogenization of microorganisms, but the cooperation relations among the species were maintained (positive correlation connections accounted for more than 90% in all degradation stages). Under the alpine steppe degradation, the vegetation-soil interaction had the greatest effect on soil bacterial community, whereas soil physicochemical properties had the greatest influence on soil fungal community. Specifically, vegetation community height, biomass, and soil bulk density were the mutual factors regulating soil microorganisms, whereas the vegetation Simpson index, important value of graminae, soil total phosphorus, total potassium, and silt content were the unique factors affecting the soil bacterial community, and soil pH and total nitrogen content were the particular factors affecting the soil fungal community.


Subject(s)
Grassland , Microbiota , Soil Microbiology , Soil , Soil/chemistry , Bacteria/classification , Bacteria/isolation & purification , Bacteria/growth & development , Phosphorus/analysis , China , Nitrogen/analysis , Fungi/classification , Fungi/isolation & purification , Tibet , Ecosystem
17.
Mycopathologia ; 189(4): 68, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023843

ABSTRACT

CONTEXT: Allergic bronchopulmonary mycoses (ABPM) can be due to molds other than Aspergillus fumigatus in patients with cystic fibrosis (pwCF). We aimed to develop immunoassays for the detection of specific IgE (sIgE) directed against five fungal species involved in ABPM: Aspergillus terreus, Scedosporium apiospermum, Lomentospora prolificans, Rasamsonia argillacea, and Exophiala dermatitidis. MATERIALS AND METHODS: Serum samples (n = 356) from 238 pwCF, collected in eight CF care centers in France, Germany, and Italy, were analyzed by dissociated enhanced lanthanide fluorescent immunoassay (DELFIA®) to assess levels of sIgE directed against antigenic extracts of each fungus. Clinical, biological, and radiological data were collected for each episode. One hundred serum samples from healthy blood donors were used as controls. Sera were classified into four groups depending on the level of sIgE according to the quartile repartition calculated for the pwCF population. A score of 4 for values above the 3rd quartile corresponds to an elevated level of sIgE. RESULTS: PwCF showed higher levels of sIgE than controls. Based on criteria from the ABPA-ISHAM working group, with an additional criterion of "a sIgE score of 4 for at least one non-A. fumigatus mold", we were able to diagnose six cases of ABPM. CONCLUSIONS: Using 417 IU/mL as the threshold for total IgE and the same additional criterion, we identified seven additional pwCF with "putative ABPM". Detection of sIgE by DELFIA® showed good analytical performance and supports the role played by non-A. fumigatus molds in ABPM. However, commercially available kits usable in routine practice are needed to improve the diagnosis of ABPM.


Subject(s)
Antibodies, Fungal , Cystic Fibrosis , Fungi , Immunoglobulin E , Humans , Cystic Fibrosis/complications , Immunoglobulin E/blood , Female , Male , Adult , Young Adult , Adolescent , Fungi/immunology , Fungi/classification , Fungi/isolation & purification , Immunoassay/methods , Child , Antibodies, Fungal/blood , Italy , France , Germany , Child, Preschool , Middle Aged , Aspergillosis, Allergic Bronchopulmonary/diagnosis , Aspergillosis, Allergic Bronchopulmonary/immunology , Aspergillosis, Allergic Bronchopulmonary/blood
18.
mBio ; 15(7): e0059024, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38832779

ABSTRACT

Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCE: The Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.


Subject(s)
Bacteria , Climate Change , Fungi , Soil Microbiology , Spiders , Animals , Arctic Regions , Fungi/classification , Spiders/microbiology , Spiders/physiology , Bacteria/classification , Bacteria/isolation & purification , Bacteria/genetics , Mycobiome , Food Chain , Predatory Behavior , Tundra , Microbiota , Ecosystem , Temperature , Arthropods/microbiology , Soil/chemistry , Biodiversity
20.
J Clin Microbiol ; 62(7): e0047924, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38856218

ABSTRACT

The diagnosis of invasive pulmonary fungal disease depends on histopathology and mycological culture; there are few studies on touch imprints of bronchoscopic biopsies or lung tissue biopsies for the diagnosis of pulmonary filamentous fungi infections. The purpose of the present study was to explore the detection accuracy of rapid on-site evaluation of touch imprints of bronchoscopic biopsies or lung tissue biopsies for the filamentous fungi, and it aims to provide a basis for initiating antifungal therapy before obtaining microbiological evidence. We retrospectively analyzed the diagnosis and treatment of 44 non-neutropenic patients with invasive pulmonary filamentous fungi confirmed by glactomannan assay, histopathology, and culture from February 2017 to December 2023. The diagnostic positive rate and sensitivity of rapid on-site evaluation for these filamentous fungi identification, including diagnostic turnaround time, were calculated. Compared with the final diagnosis, the sensitivity of rapid on-site evaluation was 81.8%, and the sensitivity of histopathology, culture of bronchoalveolar lavage fluid, and glactomannan assay of bronchoalveolar lavage fluid was 86.4%, 52.3%, and 68.2%, respectively. The average turnaround time of detecting filamentous fungi by rapid on-site evaluation was 0.17 ± 0.03 hours, which was significantly faster than histopathology, glactomannan assay, and mycological culture. A total of 29 (76.3%) patients received earlier antifungal therapy based on ROSE diagnosis and demonstrated clinical improvement. Rapid on-site evaluation showed good sensitivity and accuracy that can be comparable to histopathology in identification of pulmonary filamentous fungi. Importantly, it contributed to the triage of biopsies for further microbial culture or molecular detection based on the preliminary diagnosis, and the decision on early antifungal therapy before microbiological evidence is available.


Subject(s)
Bronchoscopy , Fungi , Lung Diseases, Fungal , Lung , Sensitivity and Specificity , Humans , Retrospective Studies , Male , Female , Middle Aged , Biopsy , Bronchoscopy/methods , Lung Diseases, Fungal/diagnosis , Lung Diseases, Fungal/microbiology , Aged , Fungi/isolation & purification , Fungi/classification , Adult , Lung/microbiology , Lung/pathology , Bronchoalveolar Lavage Fluid/microbiology , Invasive Fungal Infections/diagnosis , Invasive Fungal Infections/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...