Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.452
Filter
1.
BMC Med ; 22(1): 422, 2024 Sep 27.
Article in English | MEDLINE | ID: mdl-39334392

ABSTRACT

BACKGROUND: Breast cancer (BC) is a complex disease with profound genomic aberrations. However, the underlying molecular disparity influenced by age and ethnicity remains elusive. METHODS: In this study, we aimed to investigate the molecular properties of 843 primary and metastatic BC patients enrolled in the K-MASTER program. By categorizing patients into two distinct age subgroups, we explored their unique molecular properties. Additionally, we leveraged large-scale genomic data from the TCGA and MSK-IMPACT studies to examine the ethnic-driven molecular and clinical disparities. RESULTS: We observed a high prevalence of PI3KCA mutations in K-MASTER HER2 + tumors, particularly in older patients. Moreover, we identified increased mutation rates in DNA damage response molecules, including ARID1A, MSH6, and MLH1. The K-MASTER patients were mainly comprised of triple-negative breast cancer (TNBC) and HER2-positive tumors, while the TCGA and MSK-IMPACT cohorts exhibited a predominance of hormone receptor-positive (HR +) subtype tumors. Importantly, GATA3 mutations were less frequently observed in East Asian patients, which correlated with poor clinical outcomes. In addition to characterizing the molecular disparities, we developed a gradient-boosting multivariable model to identify a new molecular signature that could predict the therapeutic response to platinum-based chemotherapy. CONCLUSIONS: Our findings collectively provide unprecedented insights into the significance of age and ethnicity on the molecular and clinical characteristics of BC patients.


Subject(s)
Breast Neoplasms , Mutation , Humans , Female , Breast Neoplasms/genetics , Middle Aged , Aged , Adult , Age Factors , Asian People/genetics , Receptor, ErbB-2/genetics , GATA3 Transcription Factor/genetics , Aged, 80 and over , Class I Phosphatidylinositol 3-Kinases/genetics , East Asian People
2.
J Med Food ; 27(9): 844-856, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39293041

ABSTRACT

We aimed to determine the in vitro and in vivo synergistic antiallergic effect of guaijaverin and epigallocatechin gallate (EGCG) complex (GEC), and the antiallergic rhinitis (AR) properties of guaijaverin-rich Psidium guajava and EGCG-rich Camellia sinensis (ILS-F-2301). GEC showed synergistic inhibition of ß-hexosaminidase by 4.20% and interleukin (IL)-4, -5, and -13 by 4.08%, 0.67%, and 4.71%, respectively, while increasing interferon (IFN)-γ by 12.43%, compared with EGCG only. In addition, 50 µg/mL of ILS-F-2301 inhibited ß-hexosaminidase release, and inhibited IL-4, -5, and -13 by 61.54%, 58.79%, and 59.25%, respectively, while increasing IFN-γ (showing 133.14% activation). Moreover, 50 µg/mL of ILS-F-2301 suppressed p-STAT6 and GATA3, while p-STAT1 and T-bet increased, and 0.039 µg/mL of guaijaverin or 5.275 µg/mL of EGCG modulated T helper (Th)1- and Th2-related proteins. These data suggested that guaijaverin and EGCG in ILS-F-2301 was the main active compound involved in Th1/Th2 modulation. In the AR mouse model, the administration of ILS-F-2301 inhibited ovalbumin (OVA)-specific IgE, histamine in serum; it also inhibited IL-4 and -5 by 28.23% and 47.15%, respectively, while increasing IFN-γ (showing 37.11% activation), compared with OVA/Alu-treated mice. Taken together, our findings suggest that ILS-F-2301 is a functional food for alleviating anti-AR.


Subject(s)
Camellia sinensis , Catechin , Signal Transduction , Th1 Cells , Th2 Cells , Animals , Female , Humans , Mice , Anti-Allergic Agents/pharmacology , Camellia sinensis/chemistry , Catechin/analogs & derivatives , Catechin/pharmacology , Cytokines/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Immunoglobulin E/immunology , Interferon-gamma/metabolism , Interferon-gamma/immunology , Interleukin-4/immunology , Interleukin-4/metabolism , Mice, Inbred BALB C , Plant Extracts/pharmacology , Psidium/chemistry , Rhinitis, Allergic/drug therapy , Signal Transduction/drug effects , STAT1 Transcription Factor/metabolism , STAT6 Transcription Factor/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Th1 Cells/drug effects , Th1 Cells/immunology , Th2 Cells/drug effects , Th2 Cells/immunology
3.
Development ; 151(17)2024 Sep 01.
Article in English | MEDLINE | ID: mdl-39250534

ABSTRACT

During the first week of development, human embryos form a blastocyst composed of an inner cell mass and trophectoderm (TE) cells, the latter of which are progenitors of placental trophoblast. Here, we investigated the expression of transcripts in the human TE from early to late blastocyst stages. We identified enrichment of the transcription factors GATA2, GATA3, TFAP2C and KLF5 and characterised their protein expression dynamics across TE development. By inducible overexpression and mRNA transfection, we determined that these factors, together with MYC, are sufficient to establish induced trophoblast stem cells (iTSCs) from primed human embryonic stem cells. These iTSCs self-renew and recapitulate morphological characteristics, gene expression profiles, and directed differentiation potential, similar to existing human TSCs. Systematic omission of each, or combinations of factors, revealed the crucial importance of GATA2 and GATA3 for iTSC transdifferentiation. Altogether, these findings provide insights into the transcription factor network that may be operational in the human TE and broaden the methods for establishing cellular models of early human placental progenitor cells, which may be useful in the future to model placental-associated diseases.


Subject(s)
Cell Transdifferentiation , Transcription Factors , Trophoblasts , Humans , Trophoblasts/cytology , Trophoblasts/metabolism , Transcription Factors/metabolism , Transcription Factors/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , Female , Gene Expression Regulation, Developmental , Human Embryonic Stem Cells/metabolism , Human Embryonic Stem Cells/cytology , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Blastocyst/metabolism , Blastocyst/cytology , Pregnancy , Cell Differentiation
4.
Taiwan J Obstet Gynecol ; 63(5): 745-749, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39266158

ABSTRACT

OBJECTIVE: This case demonstrated the possibility of using GATA3-positive circulating tumor cells (CTCs) to detect early-stage breast cancer (BrC). CASE REPORT: The 86 years old female patient received a mammographic examination with no evidence of malignancy (Breast Imaging Reporting and Data System, (BI-RADS category 2). However, CTC testing on the same day revealed four GATA3-positive CTCs in 4 ml of peripheral blood. Core needle biopsy was performed in the suspicious area even with no evidence of malignant image on breast ultrasound. Pathologic examination showed invasive carcinoma of no special type of the breast. The patient then received an oncoplastic partial mastectomy of right breast and sentinel lymph node biopsy. The surgical staging was cT1N0M0. Post-operation follow-up examination showed absence of GATA3-positive CTCs and the presence of HER2/ER positive CTCs. CONCLUSION: The role of GATA3-positive CTCs as a potential biomarker for early-stage BrC should be explored.


Subject(s)
Breast Neoplasms , GATA3 Transcription Factor , Neoplasm Staging , Neoplastic Cells, Circulating , Humans , Female , GATA3 Transcription Factor/analysis , GATA3 Transcription Factor/metabolism , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/blood , Neoplastic Cells, Circulating/pathology , Neoplastic Cells, Circulating/metabolism , Aged, 80 and over , Biomarkers, Tumor/blood , Sentinel Lymph Node Biopsy , Biopsy, Large-Core Needle , Mastectomy, Segmental , Early Detection of Cancer/methods
5.
Development ; 151(20)2024 Oct 15.
Article in English | MEDLINE | ID: mdl-39171364

ABSTRACT

The first lineage differentiation in mammals gives rise to the inner cell mass and the trophectoderm (TE). In mice, TEAD4 is a master regulator of TE commitment, as it regulates the expression of other TE-specific genes and its ablation prevents blastocyst formation, but its role in other mammals remains unclear. Herein, we have observed that TEAD4 ablation in two phylogenetically distant species (bovine and rabbit) does not impede TE differentiation, blastocyst formation and the expression of TE markers, such as GATA3 and CDX2, although a reduced number of cells in the inner cell mass was observed in bovine TEAD4 knockout (KO) blastocysts. Transcriptional analysis in bovine blastocysts revealed no major transcriptional effect of the ablation, although the expression of hypoblast and Hippo signalling-related genes tended to be decreased in KO embryos. Experiments were conducted in the bovine model to determine whether TEAD4 was required for post-hatching development. TEAD4 KO spherical conceptuses showed normal development of the embryonic disc and TE, but hypoblast migration rate was reduced. At later stages of development (tubular conceptuses), no differences were observed between KO and wild-type conceptuses.


Subject(s)
Blastocyst , Cell Differentiation , Embryonic Development , Gene Expression Regulation, Developmental , TEA Domain Transcription Factors , Transcription Factors , Animals , Cattle , TEA Domain Transcription Factors/metabolism , Blastocyst/metabolism , Blastocyst/cytology , Cell Differentiation/genetics , Transcription Factors/metabolism , Transcription Factors/genetics , Rabbits , Embryonic Development/genetics , Ectoderm/metabolism , Ectoderm/embryology , Ectoderm/cytology , Female , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Trophoblasts/metabolism , Trophoblasts/cytology , Mice , Hippo Signaling Pathway , Embryo, Mammalian/metabolism , CDX2 Transcription Factor/metabolism , CDX2 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics
6.
Int J Mol Sci ; 25(15)2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39125649

ABSTRACT

lncRNAs are noncoding transcripts with tissue and cancer specificity. Particularly, in breast cancer, lncRNAs exhibit subtype-specific expression; they are particularly upregulated in luminal tumors. However, no gene signature-based laboratory tests have been developed for luminal breast cancer identification or the differential diagnosis of luminal tumors, since no luminal A- or B-specific genes have been identified. Particularly, luminal B patients are of clinical interest, since they have the most variable response to neoadjuvant treatment; thus, it is necessary to develop diagnostic and predictive biomarkers for these patients to optimize treatment decision-making and improve treatment quality. In this study, we analyzed the lncRNA expression profiles of breast cancer cell lines and patient tumor samples from RNA-Seq data to identify an lncRNA signature specific for luminal phenotypes. We identified an lncRNA signature consisting of LINC01016, GATA3-AS1, MAPT-IT1, and DSCAM-AS1 that exhibits luminal subtype-specific expression; among these lncRNAs, GATA3-AS1 is associated with the presence of residual disease (Wilcoxon test, p < 0.05), which is related to neoadjuvant chemotherapy resistance in luminal B breast cancer patients. Furthermore, analysis of GATA3-AS1 expression using RNA in situ hybridization (RNA ISH) demonstrated that this lncRNA is detectable in histological slides. Similar to estrogen receptors and Ki67, both commonly detected biomarkers, GATA3-AS1 proves to be a suitable predictive biomarker for clinical application in breast cancer laboratory tests.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , Neoadjuvant Therapy , RNA, Long Noncoding , Humans , RNA, Long Noncoding/genetics , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Female , Drug Resistance, Neoplasm/genetics , Biomarkers, Tumor/genetics , Cell Line, Tumor , Gene Expression Profiling , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Transcriptome
7.
Sci Rep ; 14(1): 17795, 2024 08 01.
Article in English | MEDLINE | ID: mdl-39090342

ABSTRACT

Breast cancer remains a leading cause of cancer-related mortality among women, with triple-positive breast cancer (TPBC) being a particularly aggressive subtype. GATA binding protein 3 (GATA3) plays a crucial role in the luminal differentiation of breast epithelium and T-cell differentiation. However, the relationship between GATA3 and immune infiltration in TPBC remains unclear. This study collected and analyzed TPBC data from The Cancer Genome Atlas (TCGA), METABRIC, and GSE123845 databases. Univariate and multivariate Cox regression analyses, along with Kaplan-Meier survival analyses, were employed to assess the prognostic value of GATA3 and other clinical features. Subsequently, Gene Set Enrichment Analysis (GSEA) was conducted to explore the potential biological functions and regulatory mechanisms of GATA3 in TPBC. Additionally, ssGSEA analysis revealed the connection between GATA3 and immune infiltration. And the effects of neoadjuvant chemotherapy and immunotherapy on GATA3 expression were also explored. Finally, clinical samples were used to detect the relationship between GATA3 expression and tumor infiltrating lymphocyte (TIL) levels. Our results demonstrated that GATA3 was significantly overexpressed in TPBC tissues compared to normal tissues (P < 0.05). A positive correlation between GATA3 mRNA and protein levels was observed (R = 0.55, P < 0.05). Notably, high GATA3 expression was associated with poor overall survival (HR = 1.24, 95% confidence interval (CI) 1.25-11.76, P < 0.05). GSEA indicated significant enrichment of immune-related gene sets in low GATA3 expression groups. Furthermore, pathologic complete response (pCR) patients exhibited significantly lower GATA3 expression compared to residual disease (RD) patients. Mutation analysis revealed higher PIK3CA and TP53 mutation rates in high GATA3 expression groups. Finally, clinical validation data showed that the degree of TILs was significantly higher in the low GATA3 expression group. In conclusion, this study suggests that high GATA3 expression may be associated with poor prognosis and may reduce immune infiltration in TPBC.


Subject(s)
Breast Neoplasms , GATA3 Transcription Factor , Gene Expression Regulation, Neoplastic , Lymphocytes, Tumor-Infiltrating , Humans , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Female , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Prognosis , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Breast Neoplasms/immunology , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Kaplan-Meier Estimate
8.
Bull Exp Biol Med ; 177(3): 374-378, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39138790

ABSTRACT

The subareolar Sappey's plexus was studied using color lymphography and immunohistochemical methods with a panel of antibodies to podoplanin, smooth muscle actin, low molecular weight cytokeratin AE1/AE3, and GATA3 on archival material obtained during radical mastectomies and sectoral resections with lymph node dissection from 86 patients diagnosed with non-special type breast cancer. At the macro- and microscopic levels, the connection between the subareolar lymphatic plexus and the lymphatic system of the breast parenchyma has been demonstrated. In triple negative breast cancer with metastases to the axillary lymph nodes, the involvement of subareolar lymphatic plexus into lymphogenous metastasis to the lymph nodes of the axillary lymphatic collector was shown.


Subject(s)
Axilla , Breast Neoplasms , Lymph Nodes , Lymphatic Metastasis , Lymphatic Vessels , Humans , Female , Lymphatic Metastasis/pathology , Lymphatic Vessels/pathology , Lymph Nodes/pathology , Middle Aged , Breast Neoplasms/pathology , Actins/metabolism , GATA3 Transcription Factor/metabolism , Lymph Node Excision , Adult , Lymphography/methods , Triple Negative Breast Neoplasms/pathology , Aged , Keratins/metabolism , Membrane Glycoproteins
9.
Cytokine ; 182: 156708, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39053080

ABSTRACT

BACKGROUND: Pulmonary tuberculosis (PTB) is a well-known disease caused by Mycobacterium tuberculosis. Its pathogenesis is premised on evasion of the immune system and dampened immune cells activity. METHODS: Here, the transcription pattern of immune cells exhaustion, inflammatory, and cellular activity markers were examined in peripheral blood mononuclear cells (PBMCs) from PTB patients at various stages of treatment. PBMCs were isolated, and RNA extracted. cDNA synthesis was performed, then amplification of genes of interest. RESULTS: The T cell exhaustion markers (PD-L1, CTLA4, CD244 and LAG3) showed varied levels of expressions when comparing 0 T and 1 T to the other treatment phases, suggesting their potential roles as markers for monitoring TB treatment. IL-2, IFN-g and TNF-a expression at the gene level returned to normal at completion of treatment, while granzyme B levels remained undetectable at the cured stage. At the cured stage, the cellular activity monitors Ki67, CD69, GATA-3, CD8 and CD4 expressions were comparable to the healthy controls. Correlation analysis revealed a significantly strong negative relationship with CD244 expression, particularly between 1 T and 2 T (r = -0.94; p = 0.018), and 3 T (r = -0.95; p = 0.013). Comparing 0 T and 3 T, a genitive correlation existed in PD-L1 (r = -0.74) but statistically not significant, as seen in CTLA4 and LAG-3 expressions. CONCLUSION: Collectively, the findings of the study suggest that T-cells exhaustion marker particularly CD244, inflammatory markers IL-2, IFN-g and TNF-a, and cellular activity indicators such as Ki67, CD69, GATA-3, CD8 and CD4 are promising markers in monitoring the progress of PTB patients during treatment.


Subject(s)
Antigens, CD , Biomarkers , CTLA-4 Antigen , Leukocytes, Mononuclear , Lymphocyte Activation Gene 3 Protein , Tuberculosis, Pulmonary , Humans , Tuberculosis, Pulmonary/immunology , Tuberculosis, Pulmonary/drug therapy , Tuberculosis, Pulmonary/metabolism , Tuberculosis, Pulmonary/blood , Male , Female , Adult , Leukocytes, Mononuclear/metabolism , Antigens, CD/metabolism , Biomarkers/metabolism , CTLA-4 Antigen/metabolism , Treatment Outcome , Middle Aged , B7-H1 Antigen/metabolism , GATA3 Transcription Factor/metabolism , Lectins, C-Type/metabolism , T-Lymphocytes/metabolism , T-Lymphocytes/immunology , Antigens, Differentiation, T-Lymphocyte/metabolism , Mycobacterium tuberculosis/immunology , Interleukin-2/metabolism , Ki-67 Antigen/metabolism , Tumor Necrosis Factor-alpha/metabolism , Inflammation/metabolism , Interferon-gamma/metabolism
10.
J Immunol ; 213(6): 831-842, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39082935

ABSTRACT

Calcitriol, the bioactive form of vitamin D, exerts its biological functions by binding to its cognate receptor, the vitamin D receptor (VDR). The indicators of the severity of allergies and asthma have been linked to low vitamin D levels. However, the role of calcitriol in regulating IL-4 and IL-13, two cytokines pivotal to allergic inflammation, remained unclear. Our study observed diminished IL-4 and IL-13 secretion in murine and human Th2 cells treated with calcitriol. In murine Th2 cells, Gata3 expression was attenuated by calcitriol. However, the expression of the transcriptional repressor Gfi1, too, was attenuated in the presence of calcitriol. Ectopic expression of either Gfi1 or VDR impaired the secretion of IL-13 in Th2 cells. In murine Th2 cells, VDR interacted with Gata3 but not Gfi1. Gfi1 significantly impaired Il13 promoter activation, which calcitriol failed to restore. Conversely, calcitriol augmented Gfi1 recruitment to the Il13 promoter. Ecr, a conserved region between these two genes, which enhanced the transactivation of Il4 and Il13 promoters, is essential for calcitriol-mediated suppression of both the genes. Calcitriol augmented the recruitment of VDR to the Il13 promoter and Ecr regions. Gata3 recruitment was significantly impaired at the Il13 and Ecr loci in the presence of calcitriol but increased at the Il4 promoter. Furthermore, the recruitment of the histone deacetylase HDAC1 was universally increased at the promoters of Il4, Il13, and Ecr when calcitriol was present. Together, our data clearly elucidate that calcitriol modulates VDR, Gata3, and Gfi1 to suppress IL-4 and IL-13 production in Th2 cells.


Subject(s)
Calcitriol , GATA3 Transcription Factor , Interleukin-13 , Interleukin-4 , Receptors, Calcitriol , Th2 Cells , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Calcitriol/pharmacology , Animals , Interleukin-4/metabolism , Interleukin-4/immunology , Interleukin-13/metabolism , Interleukin-13/immunology , Mice , Th2 Cells/immunology , Humans , Transcription Factors/metabolism , Transcription Factors/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics
11.
Mol Biol Rep ; 51(1): 874, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39080124

ABSTRACT

BACKGROUND: Long non-coding RNAs (lncRNAs) play various roles in gene regulation. GATA3 antisense RNA 1 (GATA3-AS1) is an lncRNA gene neighboring GATA binding protein 3 (GATA3). The current study aims to quantitatively compare the levels of the expression of GATA3-AS1, GATA3, and Interleukin-4 (IL-4) in peripheral blood mononuclear cells (PBMC) samples of MS patients and healthy individuals under the hypothesis of regulation of GATA3 and IL-4 expression orchestrated by GATA3-AS1. METHODS AND RESULTS: In this case-control study, the GATA3-AS1, GATA3 and IL-4 expression profiles were assessed using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Also, we assessed the IL-4 levels in the serum. The median fold changes in MS patients vs. controls were (4.39 ± 0.38 vs. 2.44 ± 0.20) for GATA3-AS1, (5.22 ± 0.51 vs. 2.86 ± 0.30) for GATA3, and (6.16 ± 0.52 vs. 3.57 ± 0.38) for IL-4, (P < 0.001). Furthermore, the mean serum levels of IL-4 were 30.85 ± 1.53 pg/ml in MS patients and 11.15 ± 4.23 pg/ml in healthy controls (P < 0.001). ROC curve analysis showed that the level of GATA3-AS1 might serve as a biomarker for diagnosing MS patients with the area under the curve (AUC = 0.918, P < 0.0001). Based on our results, this GATA3-AS1/GATA3/IL-4 pathway may increase IL-4 expression in MS patients. CONCLUSIONS: Our results indicate a probably regulatory function for GATA3-AS1and the levels of GATA3-AS1 in blood could be important biomarkers for MS diagnosis. To confirm and be more certain of these results, it is necessary to study neuromyelitis optica (NMO) and asthma patients in future studies.


Subject(s)
GATA3 Transcription Factor , Interleukin-4 , Leukocytes, Mononuclear , Multiple Sclerosis , RNA, Long Noncoding , Humans , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Interleukin-4/genetics , Interleukin-4/blood , RNA, Long Noncoding/genetics , RNA, Long Noncoding/blood , Female , Adult , Male , Multiple Sclerosis/genetics , Multiple Sclerosis/blood , Multiple Sclerosis/metabolism , Case-Control Studies , Leukocytes, Mononuclear/metabolism , Up-Regulation/genetics , Middle Aged , Gene Expression Regulation/genetics , RNA, Antisense/genetics
12.
Nat Commun ; 15(1): 5610, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969652

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are a subset of innate lymphocytes that produce type 2 cytokines, including IL-4, IL-5, and IL-13. GATA3 is a critical transcription factor for ILC2 development at multiple stages. However, when and how GATA3 is induced to the levels required for ILC2 development remains unclear. Herein, we identify ILC2-specific GATA3-related tandem super-enhancers (G3SE) that induce high GATA3 in ILC2-committed precursors. G3SE-deficient mice exhibit ILC2 deficiency in the bone marrow, lung, liver, and small intestine with minimal impact on other ILC lineages or Th2 cells. Single-cell RNA-sequencing and subsequent flow cytometry analysis show that GATA3 induction mechanism, which is required for entering the ILC2 stage, is lost in IL-17RB+PD-1- late ILC2-committed precursor stage in G3SE-deficient mice. Cnot6l, part of the CCR4-NOT deadenylase complex, is a possible GATA3 target during ILC2 development. Our findings implicate a stage-specific regulatory mechanism for GATA3 expression during ILC2 development.


Subject(s)
Cell Lineage , GATA3 Transcription Factor , Immunity, Innate , Lymphocytes , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Mice , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/cytology , Mice, Inbred C57BL , Mice, Knockout , Enhancer Elements, Genetic/genetics , Th2 Cells/immunology , Cell Differentiation/immunology , Single-Cell Analysis
13.
Sci Rep ; 14(1): 15884, 2024 07 10.
Article in English | MEDLINE | ID: mdl-38987624

ABSTRACT

Behçet's disease (BD) is a multifaceted autoimmune disorder affecting multiple organ systems. Vascular complications, such as venous thromboembolism (VTE), are highly prevalent, affecting around 50% of individuals diagnosed with BD. This study aimed to identify potential biomarkers for VTE in BD patients. Three microarray datasets (GSE209567, GSE48000, GSE19151) were retrieved for analysis. Differentially expressed genes (DEGs) associated with VTE in BD were identified using the Limma package and weighted gene co-expression network analysis (WGCNA). Subsequently, potential diagnostic genes were explored through protein-protein interaction (PPI) network analysis and machine learning algorithms. A receiver operating characteristic (ROC) curve and a nomogram were constructed to evaluate the diagnostic performance for VTE in BD patients. Furthermore, immune cell infiltration analyses and single-sample gene set enrichment analysis (ssGSEA) were performed to investigate potential underlying mechanisms. Finally, the efficacy of listed drugs was assessed based on the identified signature genes. The limma package and WGCNA identified 117 DEGs related to VTE in BD. A PPI network analysis then selected 23 candidate hub genes. Four DEGs (E2F1, GATA3, HDAC5, and MSH2) were identified by intersecting gene sets from three machine learning algorithms. ROC analysis and nomogram construction demonstrated high diagnostic accuracy for these four genes (AUC: 0.816, 95% CI: 0.723-0.909). Immune cell infiltration analysis revealed a positive correlation between dysregulated immune cells and the four hub genes. ssGSEA provided insights into potential mechanisms underlying VTE development and progression in BD patients. Additionally, therapeutic agent screening identified potential drugs targeting the four hub genes. This study employed a systematic approach to identify four potential hub genes (E2F1, GATA3, HDAC5, and MSH2) and construct a nomogram for VTE diagnosis in BD. Immune cell infiltration analysis revealed dysregulation, suggesting potential macrophage involvement in VTE development. ssGSEA provided insights into potential mechanisms underlying BD-induced VTE, and potential therapeutic agents were identified.


Subject(s)
Behcet Syndrome , Biomarkers , Computational Biology , Gene Expression Profiling , Protein Interaction Maps , Humans , Behcet Syndrome/genetics , Behcet Syndrome/complications , Behcet Syndrome/diagnosis , Computational Biology/methods , Protein Interaction Maps/genetics , Biomarkers/blood , Gene Regulatory Networks , Venous Thrombosis/genetics , Venous Thrombosis/etiology , Venous Thrombosis/diagnosis , Venous Thromboembolism/genetics , Venous Thromboembolism/etiology , Venous Thromboembolism/diagnosis , Venous Thromboembolism/blood , GATA3 Transcription Factor/genetics , ROC Curve , Histone Deacetylases/genetics , Machine Learning
14.
Mediators Inflamm ; 2024: 6263447, 2024.
Article in English | MEDLINE | ID: mdl-39015676

ABSTRACT

Group 2 innate lymphoid cells (ILC2) strongly modulate COPD pathogenesis. However, the significance of microbiota in ILC2s remains unelucidated. Herein, we investigated the immunomodulatory role of short-chain fatty acids (SCFAs) in regulating ILC2-associated airway inflammation and explores its associated mechanism in COPD. In particular, we assessed the SCFA-mediated regulation of survival, proliferation, and cytokine production in lung sorted ILC2s. To elucidate butyrate action in ILC2-driven inflammatory response in COPD models, we administered butyrate to BALB/c mice via drinking water. We revealed that SCFAs, especially butyrate, derived from dietary fiber fermentation by gut microbiota inhibited pulmonary ILC2 functions and suppressed both IL-13 and IL-5 synthesis by murine ILC2s. Using in vivo and in vitro experimentation, we validated that butyrate significantly ameliorated ILC2-induced inflammation. We further demonstrated that butyrate suppressed ILC2 proliferation and GATA3 expression. Additionally, butyrate potentially utilized histone deacetylase (HDAC) inhibition to enhance NFIL3 promoter acetylation, thereby augmenting its expression, which eventually inhibited cytokine production in ILC2s. Taken together, the aforementioned evidences demonstrated a previously unrecognized role of microbial-derived SCFAs on pulmonary ILC2s in COPD. Moreover, our evidences suggest that metabolomics and gut microbiota modulation may prevent lung inflammation of COPD.


Subject(s)
Butyrates , Dietary Fiber , Lymphocytes , Mice, Inbred BALB C , Pulmonary Disease, Chronic Obstructive , Animals , Pulmonary Disease, Chronic Obstructive/immunology , Pulmonary Disease, Chronic Obstructive/metabolism , Mice , Butyrates/pharmacology , Lymphocytes/metabolism , Dietary Fiber/pharmacology , Dietary Fiber/therapeutic use , Fatty Acids, Volatile/metabolism , Inflammation/metabolism , Gastrointestinal Microbiome , Male , Cytokines/metabolism , Humans , GATA3 Transcription Factor/metabolism
15.
Sci Immunol ; 9(97): eadl1903, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-39028828

ABSTRACT

Regulatory T cells (Tregs) control adaptive immunity and restrain type 2 inflammation in allergic disease. Interleukin-33 promotes the expansion of tissue-resident Tregs and group 2 innate lymphoid cells (ILC2s); however, how Tregs locally coordinate their function within the inflammatory niche is not understood. Here, we show that ILC2s are critical orchestrators of Treg function. Using spatial, cellular, and molecular profiling of the type 2 inflamed niche, we found that ILC2s and Tregs engage in a direct (OX40L-OX40) and chemotaxis-dependent (CCL1-CCR8) cellular dialogue that enforces the local accumulation of Gata3high Tregs, which are transcriptionally and functionally adapted to the type 2 environment. Genetic interruption of ILC2-Treg communication resulted in uncontrolled type 2 lung inflammation after allergen exposure. Mechanistically, we found that Gata3high Tregs can modulate the local bioavailability of the costimulatory molecule OX40L, which subsequently controlled effector memory T helper 2 cell numbers. Hence, ILC2-Treg interactions represent a critical feedback mechanism to control adaptive type 2 immunity.


Subject(s)
Adaptive Immunity , GATA3 Transcription Factor , Mice, Inbred C57BL , T-Lymphocytes, Regulatory , Animals , T-Lymphocytes, Regulatory/immunology , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Mice , Adaptive Immunity/immunology , Lymphocytes/immunology , Immunity, Innate/immunology , Mice, Knockout , Th2 Cells/immunology , Female
16.
Eur J Pharmacol ; 979: 176826, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-39033840

ABSTRACT

Allergic asthma is a major health burden on society as a chronic respiratory disease characterized by inflammation and muscle tightening around the airways in response to inhaled allergens. Daphne kiusiana Miquel is a medicinal plant that can suppress allergic airway inflammation; however, its specific molecular mechanisms of action are unclear. In this study, we aimed to elucidate the mechanisms by which D. kiusiana inhibits allergic airway inflammation. We evaluated the anti-inflammatory effects of the ethyl acetate (EA) fraction of D. kiusiana and its major compound, daphnetin, on murine T lymphocyte EL4 cells stimulated with phorbol 12-myristate 13-acetate and ionomycin in vitro and on asthmatic mice stimulated with ovalbumin in vivo. The EA fraction and daphnetin inhibited T-helper type 2 (Th2) cytokine secretion, serum immunoglobulin E production, mucus secretion, and inflammatory cell recruitment in vivo. In vitro, daphnetin suppressed intracellular Ca2+ mobilization (a critical regulator of nuclear factor of activated T cells) and functions of the activator protein 1 transcription factor to reduce interleukin (IL)-4 and IL-13 expression. Daphnetin effectively suppressed the IL-4/-13-induced activation of Janus kinase (JAK)/signal transducer and activator of transcription 6 (STAT6) signaling in vitro and in vivo, thereby inhibiting the expression of GATA3 and PDEF, two STAT6-target genes responsible for producing Th2 cytokines and mucins. These findings indicate that daphnetin suppresses allergic airway inflammation by stabilizing intracellular Ca2+ levels and subsequently inactivating the JAK/STAT6/GATA3/PDEF pathway, suggesting that daphnetin is a promising alternative to existing asthma treatments.


Subject(s)
Asthma , Janus Kinases , STAT6 Transcription Factor , Signal Transduction , Umbelliferones , Animals , Umbelliferones/pharmacology , Umbelliferones/therapeutic use , STAT6 Transcription Factor/metabolism , Signal Transduction/drug effects , Mice , Asthma/drug therapy , Asthma/immunology , Asthma/metabolism , Janus Kinases/metabolism , Lymphocyte Activation/drug effects , Mice, Inbred BALB C , Female , Cytokines/metabolism , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Th2 Cells/drug effects , Th2 Cells/immunology , Cell Line , Daphne/chemistry , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Calcium/metabolism
17.
Oncologist ; 29(8): e1094-e1097, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38908022

ABSTRACT

HER2, encoded by the ERBB2 gene, is an important druggable driver of human cancer gaining increasing importance as a therapeutic target in urothelial carcinoma (UC). The genomic underpinnings of HER2 overexpression in ERBB2 nonamplified UC are poorly defined. To address this knowledge gap, we investigated 172 UC tumors from patients treated at the University of California San Francisco, using immunohistochemistry and next-generation sequencing. We found that GATA3 and PPARG copy number gains individually predicted HER2 protein expression independently of ERBB2 amplification. To validate these findings, we interrogated the Memorial Sloan Kettering/The Cancer Genome Atlas (MSK/TCGA) dataset and found that GATA3 and PPARG copy number gains individually predicted ERBB2 mRNA expression independently of ERBB2 amplification. Our findings reveal a potential link between the luminal marker HER2 and the key transcription factors GATA3 and PPARG in UC and highlight the utility of examining GATA3 and PPARG copy number states to identify UC tumors that overexpress HER2 in the absence of ERBB2 amplification. In summary, we found that an increase in copy number of GATA3 and PPARG was independently associated with higher ERBB2 expression in patient samples of UC. This finding provides a potential explanation for HER2 overexpression in UC tumors without ERBB2 amplification and a way to identify these tumors for HER2-targeted therapies.


Subject(s)
DNA Copy Number Variations , GATA3 Transcription Factor , PPAR gamma , Receptor, ErbB-2 , Aged , Female , Humans , Male , Middle Aged , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Gene Amplification , Gene Expression Regulation, Neoplastic , PPAR gamma/genetics , PPAR gamma/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Urologic Neoplasms/genetics , Urologic Neoplasms/pathology
18.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
19.
Int J Gynecol Pathol ; 43(4): 362-372, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38870078

ABSTRACT

Ovarian mesonephric-like adenocarcinoma (MLA) is a rare tumor with potential origins in endometriosis and Müllerian-type epithelial tumors. The morphologic patterns of MLA overlap with those of endometrioid ovarian carcinoma (EnOC). We speculated that a subset of MLAs would be classified as EnOCs. In this study, we attempted to identify MLAs from malignant endometrioid tumors. Given that the study patients with MLAs had both endometrioid-like and mesonephric-like morphologies, we defined mesonephric-like differentiation (MLD) as an endometrioid tumor with focal or diffuse MLA morphology and immunophenotype. Twelve patients exhibited mesonephric-like morphologic patterns. Immunohistochemistry analysis for CD10, TTF-1, estrogen receptor (ER), GATA3, calretinin, and PAX8 expression was done using whole-section slides. Two patients without the MLA immunophenotype were excluded. Ten patients with EnOCs with MLD (8.3%) were identified from a cohort of 121 patients with malignant endometrioid tumors. All 10 patients were positive for TTF-1 and/or GATA3. Most patients were ER-negative. Morphologically, MLD was associated with papillary thyroid carcinoma-like nuclei, flattened cells, tubular, nested, reticular, or glomeruloid architecture, and infiltrative growth. All 10 patients had pre-existing endometriosis and/or adenofibromas. Among the EnOCs with MLD, 5 had coexisting components such as EnOC grade 1 [(G1), cases 4, 7, and 9], mucinous borderline tumor (case 1), and dedifferentiated carcinoma (case 10), with distinct borders between EnOC with MLD and the other components. Nine of the 10 MLA patients (90%) harbored KRAS hotspot mutations. In addition, 4 patients harboring other components shared common KRAS hotspot mutations. No significant prognostic differences were observed between patients with and without MLD. Based on our findings, we suggest that EnOC with MLD, especially in the early stages and without high-grade components, should be considered a subtype of EnOC. Overtreatment should be avoided in such patients, particularly in the early stages. In this study, as the characteristics between EnOC with MLD and MLA were not distinguishable, we considered both conditions to be on the same spectrum. EnOCs with MLD exhibit the MLA phenotype during disease progression and are prematurely classified as MLA. Nevertheless, more patients with EnOC who have MLD/MLA are required for a more robust comparison between conventional EnOC according to staging and grading.


Subject(s)
Carcinoma, Endometrioid , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/classification , Ovarian Neoplasms/diagnosis , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/classification , Middle Aged , Adult , Aged , Immunohistochemistry , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/classification , GATA3 Transcription Factor/analysis , GATA3 Transcription Factor/metabolism , PAX8 Transcription Factor/analysis , PAX8 Transcription Factor/metabolism , Cell Differentiation , Endometriosis/pathology
20.
Science ; 384(6703): eadl0370, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935708

ABSTRACT

Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.


Subject(s)
GATA3 Transcription Factor , Immunity, Innate , Interleukin-33 , MEF2 Transcription Factors , NFATC Transcription Factors , Pneumonia , Th2 Cells , Animals , Mice , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Th2 Cells/immunology , Interleukin-33/metabolism , NFATC Transcription Factors/metabolism , Pneumonia/immunology , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Mice, Inbred C57BL , Cell Differentiation , Calcium Signaling , Hypersensitivity/immunology , Lung/immunology , Allergens/immunology , Lymphocytes/immunology , Interleukin-1 Receptor-Like 1 Protein
SELECTION OF CITATIONS
SEARCH DETAIL