Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.102
Filter
1.
Nat Commun ; 15(1): 5610, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969652

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) are a subset of innate lymphocytes that produce type 2 cytokines, including IL-4, IL-5, and IL-13. GATA3 is a critical transcription factor for ILC2 development at multiple stages. However, when and how GATA3 is induced to the levels required for ILC2 development remains unclear. Herein, we identify ILC2-specific GATA3-related tandem super-enhancers (G3SE) that induce high GATA3 in ILC2-committed precursors. G3SE-deficient mice exhibit ILC2 deficiency in the bone marrow, lung, liver, and small intestine with minimal impact on other ILC lineages or Th2 cells. Single-cell RNA-sequencing and subsequent flow cytometry analysis show that GATA3 induction mechanism, which is required for entering the ILC2 stage, is lost in IL-17RB+PD-1- late ILC2-committed precursor stage in G3SE-deficient mice. Cnot6l, part of the CCR4-NOT deadenylase complex, is a possible GATA3 target during ILC2 development. Our findings implicate a stage-specific regulatory mechanism for GATA3 expression during ILC2 development.


Subject(s)
Cell Lineage , GATA3 Transcription Factor , Immunity, Innate , Lymphocytes , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Mice , Lymphocytes/immunology , Lymphocytes/metabolism , Lymphocytes/cytology , Mice, Inbred C57BL , Mice, Knockout , Enhancer Elements, Genetic/genetics , Th2 Cells/immunology , Cell Differentiation/immunology , Single-Cell Analysis
2.
Cells ; 13(12)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38920701

ABSTRACT

While the transcription factor GATA-3 is well-established for its crucial role in T cell development, its specific influence on invariant natural killer T (iNKT) cells remains relatively unexplored. Using flow cytometry and single-cell transcriptomic analysis, we demonstrated that GATA-3 deficiency in mice leads to the absence of iNKT2 and iNKT17 cell subsets, as well as an altered distribution of iNKT1 cells. Thymic iNKT cells lacking GATA-3 exhibited diminished expression of PLZF and T-bet, key transcription factors involved in iNKT cell differentiation, and reduced production of Th2, Th17, and cytotoxic effector molecules. Single-cell transcriptomics revealed a comprehensive absence of iNKT17 cells, a substantial reduction in iNKT2 cells, and an increase in iNKT1 cells in GATA-3-deficient thymi. Differential expression analysis highlighted the regulatory role of GATA-3 in T cell activation signaling and altered expression of genes critical for iNKT cell differentiation, such as Icos, Cd127, Eomes, and Zbtb16. Notably, restoration of Icos, but not Cd127, expression could rescue iNKT cell development in GATA-3-deficient mice. In conclusion, our study demonstrates the pivotal role of GATA-3 in orchestrating iNKT cell effector lineage differentiation through the regulation of T cell activation pathways and Icos expression, providing insights into the molecular mechanisms governing iNKT cell development and function.


Subject(s)
Cell Differentiation , Cell Lineage , GATA3 Transcription Factor , Natural Killer T-Cells , Animals , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Natural Killer T-Cells/cytology , Natural Killer T-Cells/metabolism , Cell Differentiation/genetics , Mice , Cell Lineage/genetics , Mice, Inbred C57BL , RNA-Seq , Single-Cell Analysis , Mice, Knockout , Single-Cell Gene Expression Analysis
3.
Int J Gynecol Pathol ; 43(4): 362-372, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38870078

ABSTRACT

Ovarian mesonephric-like adenocarcinoma (MLA) is a rare tumor with potential origins in endometriosis and Müllerian-type epithelial tumors. The morphologic patterns of MLA overlap with those of endometrioid ovarian carcinoma (EnOC). We speculated that a subset of MLAs would be classified as EnOCs. In this study, we attempted to identify MLAs from malignant endometrioid tumors. Given that the study patients with MLAs had both endometrioid-like and mesonephric-like morphologies, we defined mesonephric-like differentiation (MLD) as an endometrioid tumor with focal or diffuse MLA morphology and immunophenotype. Twelve patients exhibited mesonephric-like morphologic patterns. Immunohistochemistry analysis for CD10, TTF-1, estrogen receptor (ER), GATA3, calretinin, and PAX8 expression was done using whole-section slides. Two patients without the MLA immunophenotype were excluded. Ten patients with EnOCs with MLD (8.3%) were identified from a cohort of 121 patients with malignant endometrioid tumors. All 10 patients were positive for TTF-1 and/or GATA3. Most patients were ER-negative. Morphologically, MLD was associated with papillary thyroid carcinoma-like nuclei, flattened cells, tubular, nested, reticular, or glomeruloid architecture, and infiltrative growth. All 10 patients had pre-existing endometriosis and/or adenofibromas. Among the EnOCs with MLD, 5 had coexisting components such as EnOC grade 1 [(G1), cases 4, 7, and 9], mucinous borderline tumor (case 1), and dedifferentiated carcinoma (case 10), with distinct borders between EnOC with MLD and the other components. Nine of the 10 MLA patients (90%) harbored KRAS hotspot mutations. In addition, 4 patients harboring other components shared common KRAS hotspot mutations. No significant prognostic differences were observed between patients with and without MLD. Based on our findings, we suggest that EnOC with MLD, especially in the early stages and without high-grade components, should be considered a subtype of EnOC. Overtreatment should be avoided in such patients, particularly in the early stages. In this study, as the characteristics between EnOC with MLD and MLA were not distinguishable, we considered both conditions to be on the same spectrum. EnOCs with MLD exhibit the MLA phenotype during disease progression and are prematurely classified as MLA. Nevertheless, more patients with EnOC who have MLD/MLA are required for a more robust comparison between conventional EnOC according to staging and grading.


Subject(s)
Carcinoma, Endometrioid , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/pathology , Ovarian Neoplasms/classification , Ovarian Neoplasms/diagnosis , Carcinoma, Endometrioid/pathology , Carcinoma, Endometrioid/classification , Middle Aged , Adult , Aged , Immunohistochemistry , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Adenocarcinoma/pathology , Adenocarcinoma/classification , GATA3 Transcription Factor/analysis , GATA3 Transcription Factor/metabolism , PAX8 Transcription Factor/analysis , PAX8 Transcription Factor/metabolism , Cell Differentiation , Endometriosis/pathology
4.
Article in English | MEDLINE | ID: mdl-38902848

ABSTRACT

Despite the success of antiretroviral therapy, human immunodeficiency virus (HIV) cannot be cured because of a reservoir of latently infected cells that evades therapy. To understand the mechanisms of HIV latency, we employed an integrated single-cell RNA sequencing (scRNA-seq) and single-cell assay for transposase-accessible chromatin with sequencing (scATAC-seq) approach to simultaneously profile the transcriptomic and epigenomic characteristics of ∼ 125,000 latently infected primary CD4+ T cells after reactivation using three different latency reversing agents. Differentially expressed genes and differentially accessible motifs were used to examine transcriptional pathways and transcription factor (TF) activities across the cell population. We identified cellular transcripts and TFs whose expression/activity was correlated with viral reactivation and demonstrated that a machine learning model trained on these data was 75%-79% accurate at predicting viral reactivation. Finally, we validated the role of two candidate HIV-regulating factors, FOXP1 and GATA3, in viral transcription. These data demonstrate the power of integrated multimodal single-cell analysis to uncover novel relationships between host cell factors and HIV latency.


Subject(s)
CD4-Positive T-Lymphocytes , GATA3 Transcription Factor , HIV-1 , Single-Cell Analysis , Virus Activation , Virus Latency , Virus Latency/genetics , Humans , Virus Activation/genetics , Single-Cell Analysis/methods , HIV-1/genetics , HIV-1/physiology , CD4-Positive T-Lymphocytes/virology , CD4-Positive T-Lymphocytes/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , HIV Infections/virology , HIV Infections/genetics , HIV Infections/metabolism , Repressor Proteins/metabolism , Repressor Proteins/genetics , Transcriptome/genetics , Gene Expression Regulation, Viral
5.
Sci Adv ; 10(23): eadk2693, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38838155

ABSTRACT

T helper 1 (TH1) cell identity is defined by the expression of the lineage-specifying transcription factor T-bet. Here, we examine the influence of T-bet expression heterogeneity on subset plasticity by leveraging cell sorting of distinct in vivo-differentiated TH1 cells based on their quantitative expression of T-bet and interferon-γ. Heterogeneous T-bet expression states were regulated by virus-induced type I interferons and were stably maintained even after secondary viral infection. Exposed to alternative differentiation signals, the sorted subpopulations exhibited graded levels of plasticity, particularly toward the TH2 lineage: T-bet quantities were inversely correlated with the ability to express the TH2 lineage-specifying transcription factor GATA-3 and TH2 cytokines. Reprogramed TH1 cells acquired graded mixed TH1 + TH2 phenotypes with a hybrid epigenetic landscape. Continuous presence of T-bet in differentiated TH1 cells was essential to ensure TH1 cell stability. Thus, innate cytokine signals regulate TH1 cell plasticity via an individual cell-intrinsic rheostat to enable T cell subset adaptation to subsequent challenges.


Subject(s)
Cell Differentiation , Cell Lineage , Cell Plasticity , T-Box Domain Proteins , Th1 Cells , Th2 Cells , Th1 Cells/immunology , Th1 Cells/metabolism , T-Box Domain Proteins/metabolism , T-Box Domain Proteins/genetics , Animals , Cell Lineage/genetics , Th2 Cells/immunology , Th2 Cells/metabolism , Mice , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , Gene Expression Regulation , Cytokines/metabolism
6.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38923989

ABSTRACT

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Subject(s)
Asthma , Cell Differentiation , Enhancer Elements, Genetic , GATA3 Transcription Factor , Th2 Cells , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Animals , Th2 Cells/immunology , Mice , Cell Differentiation/immunology , Asthma/immunology , Asthma/genetics , Asthma/pathology , Humans , Mice, Knockout , Inflammation/immunology , Inflammation/genetics , Hypersensitivity/immunology , Hypersensitivity/genetics , Polymorphism, Single Nucleotide , Mice, Inbred C57BL
7.
Science ; 384(6703): eadl0370, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38935708

ABSTRACT

Innate lymphoid cells (ILCs) and adaptive T lymphocytes promote tissue homeostasis and protective immune responses. Their production depends on the transcription factor GATA3, which is further elevated specifically in ILC2s and T helper 2 cells to drive type-2 immunity during tissue repair, allergic disorders, and anti-helminth immunity. The control of this crucial up-regulation is poorly understood. Using CRISPR screens in ILCs we identified previously unappreciated myocyte-specific enhancer factor 2d (Mef2d)-mediated regulation of GATA3-dependent type-2 lymphocyte differentiation. Mef2d-deletion from ILC2s and/or T cells specifically protected against an allergen lung challenge. Mef2d repressed Regnase-1 endonuclease expression to enhance IL-33 receptor production and IL-33 signaling and acted downstream of calcium-mediated signaling to translocate NFAT1 to the nucleus to promote type-2 cytokine-mediated immunity.


Subject(s)
GATA3 Transcription Factor , Immunity, Innate , Interleukin-33 , MEF2 Transcription Factors , NFATC Transcription Factors , Pneumonia , Th2 Cells , Animals , Mice , MEF2 Transcription Factors/metabolism , MEF2 Transcription Factors/genetics , Th2 Cells/immunology , Interleukin-33/metabolism , NFATC Transcription Factors/metabolism , Pneumonia/immunology , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Mice, Inbred C57BL , Cell Differentiation , Calcium Signaling , Hypersensitivity/immunology , Lung/immunology , Allergens/immunology , Lymphocytes/immunology , Interleukin-1 Receptor-Like 1 Protein
8.
Tissue Cell ; 88: 102402, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38759523

ABSTRACT

GATA3 plays critical roles in the development and function of various tissues and organs throughout the body. Likewise, TGF-ß signaling is critical for placental development and can interact with GATA3. We aimed to investigate the involvement of the multifunctional cytokine and transcription factor in trophoblast development. By using immunohistochemistry, we evaluated the localization and expression level of GATA3 and TGF-ß in placentas at term of normal pregnancy and with pre-eclampsia. Up-regulation of both GATA3 and TGF-ß was observed in pathological placentas, with localization in the villus epithelium (syncytiotrophoblast) stroma and decidua. Our data show altered expression of TGF-ß and GATA3, which downstream could lead to a cascade of events that negatively influence trophoblast development and contribute to the pathogenesis of pre-eclampsia.


Subject(s)
GATA3 Transcription Factor , Placenta , Pre-Eclampsia , Transforming Growth Factor beta , Pre-Eclampsia/metabolism , Pre-Eclampsia/pathology , Humans , Pregnancy , Female , GATA3 Transcription Factor/metabolism , Placenta/metabolism , Placenta/pathology , Transforming Growth Factor beta/metabolism , Adult , Trophoblasts/metabolism , Trophoblasts/pathology
9.
Cell Mol Biol (Noisy-le-grand) ; 70(5): 150-154, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38814224

ABSTRACT

We aimed to observe the effects of adipose-derived mesenchymal stem cells (ADSCs) on T helper 17 (Th17)/regulatory T cells (Treg) and T-box transcription factor (T-bet)/GATA-binding protein 3 (GATA-3) in model mice with primary immune thrombocytopenia (ITP). 32 BALB/C mice were selected. ADSCs were isolated from 2 mice and cultured. The other 30 mice were randomly divided into the normal control group, the ITP model control group, and the ITP experimental group. Platelet count (PLT), Th17/Treg cells, related serum cytokines [interleukin-6 (IL-6), IL-17A, IL-10, and transforming growth factor ß1 (TGF-ß1)], T-bet and GATA-3 mRNA levels in peripheral blood mononuclear cells (PBMCs) in the 3 groups were detected. PLT and Treg in the ITP experimental group were significantly lower than those in the normal control group (P<0.05), but significantly higher than those in the ITP model control group (P<0.05). Th17 and Th17/Treg in the ITP experimental group were significantly higher than those in the normal control group (P<0.05), but significantly lower than those in the ITP model control group (P<0.05). Serum IL-6 and IL-17A levels, and T-bet mRNA levels in the ITP experimental group were significantly higher than those in the normal control group (P<0.05), but significantly lower than those in the ITP model control group (P<0.05). Serum IL-10 and TGF-ß levels, and GATA-3 mRNA levels in the ITP experimental group were significantly lower than those in the normal control group (P<0.05), but significantly higher than those in the ITP model control group (P<0.05). ADSCs can effectively regulate Th17/Treg balance and improve T-bet/GATA-3 mRNA expression levels in ITP model mice.


Subject(s)
Disease Models, Animal , GATA3 Transcription Factor , Mesenchymal Stem Cells , Mice, Inbred BALB C , T-Box Domain Proteins , T-Lymphocytes, Regulatory , Th17 Cells , Animals , Female , Male , Mice , Adipose Tissue/cytology , Adipose Tissue/metabolism , Cytokines/metabolism , Cytokines/blood , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Interleukin-10/genetics , Interleukin-10/blood , Interleukin-10/metabolism , Interleukin-17/blood , Interleukin-17/metabolism , Interleukin-17/genetics , Interleukin-6/blood , Interleukin-6/metabolism , Interleukin-6/genetics , Mesenchymal Stem Cells/metabolism , Platelet Count , Purpura, Thrombocytopenic, Idiopathic/blood , Purpura, Thrombocytopenic, Idiopathic/immunology , RNA, Messenger/genetics , RNA, Messenger/metabolism , T-Box Domain Proteins/genetics , T-Box Domain Proteins/metabolism , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/immunology , Th17 Cells/metabolism , Th17 Cells/immunology , Transforming Growth Factor beta1/metabolism , Transforming Growth Factor beta1/genetics , Transforming Growth Factor beta1/blood
10.
Breast Cancer Res Treat ; 206(1): 195-205, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38709373

ABSTRACT

BACKGROUND: Risk of recurrence from primary ER+ breast cancer continues for at least 20 years. We aimed to identify clinical and molecular features associated with risk of recurrence after 10 years. METHODS: ER+ breast cancers from patients with and without recurrence were analysed with the BC360 NanoString Panel and an 87 gene targeted-exome panel. Frequency of clinical, pathologic and molecular characteristics was compared between cases (recurred between 10 and 20 years) and controls (no recurrence by 20 years) in the Very Late Recurrence (VLR) cohort. Analogous data from METABRIC were examined to confirm or refute findings. RESULTS: VLR cases had larger tumours and higher node positivity. Both VLR and METABRIC cases had higher clinical treatment score at 5 years (CTS5). There was a trend for fewer GATA3 mutations in cases in both VLR and METABRIC but no statistically significant differences in mutation frequency. Cell cycle and proliferation genes were strongly expressed in VLR cases. Immune-related genes and cell cycle inhibitors were highly expressed in controls. Neither of these changes were significant after correction for multiple testing. CONCLUSIONS: Clinicopathologic features are prognostic beyond 10 years. Conversely, molecular features, such as copy number alterations, TP53 mutations and intrinsic subtype which have early prognostic significance, have little prognostic value after 10 years.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Mutation , Neoplasm Recurrence, Local , Receptors, Estrogen , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Receptors, Estrogen/metabolism , Receptors, Estrogen/genetics , Prognosis , Middle Aged , Biomarkers, Tumor/genetics , Adult , Aged , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
11.
Zhen Ci Yan Jiu ; 49(5): 456-462, 2024 May 25.
Article in English, Chinese | MEDLINE | ID: mdl-38764116

ABSTRACT

OBJECTIVES: To observe effects of acupuncture at "Die E acupoint" on the protein expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation factor 88 (MyD88), nuclear transcription factor κB (NF-κB), transcription factor T-bet (T-bet), and GATA-binding protein-3 (GATA-3) in the nasal mucosa and the serum contents of related inflammatory cytokines in rats with allergic rhinitis, so as to explore the mechanism of acupuncture in treating allergic rhinitis. METHODS: Twenty-four healthy SD rats were randomly divided into blank, model, acupuncture, and sham acupuncture groups, with 6 rats in each group. The rat model of allergic rhinitis was established by using ovalbumin induction. The rats in the acupuncture group received bilateral acupuncture at the "Die E acupoint" with a depth of 15-20 mm, while the rats in the sham acupuncture group received only sham acupuncture (light and shallow acupunture of the skin at the "Die E acupoint" ). Both interventions were performed once daily for a total of 6 days. Behavioral scores of rats in each group were recorded. Pathological changes of nasal mucosa were observed by H.E. staining. Serum contents of IgE, ovalbumin-specific IgE (OVA-sIgE), interferon(IFN)-γ, interleukin(IL)-4, IL-10 and IL-17 were measured by ELISA and the protein expression levels of T-bet, GATA-3, TLR4, MyD88 and NF-κB p65 in the nasal mucosa were detected by Western blot. RESULTS: After modeling, compared with the blank group, rats in the model group showed increased behavioral scores, serum IgE, OVA-sIgE, IL-4, and IL-17 contents, and nasal mucosal GATA-3, TLR4, MyD88, and NF-κB p65 protein expression levels (P<0.05), whereas the contents of serum IFN-γ, IL-10 and the protein expression level of T-bet in the nasal mucosa were decreased (P<0.05). Comparison between the EA and model groups showed that acupuncture intervention can decrease the behavioral scores of rats with allergic rhinitis, the contents of serum IgE, OVA-sIgE, IL-4, IL-17, and the protein expression levels of GATA-3, TLR4, MyD88, and NF-κB p65 in the nasal mucosa (P<0.05), and up-regulate the contents of serum IFN-γ, IL-10, and the nasal mucosal T-bet protein expression level. Sham acupuncture did not have a significant modulating effect on the above indicators. Inflammatory infiltration of nasal mucosa was seen in the model group and sham acupuncture, and the inflammatory reaction was milder in the acupuncture group. CONCLUSIONS: Acupuncture at "Die E acupoint" can alleviate the symptoms of allergic rhinitis and suppress the inflammation of nasal mucosa in rats, which may be related to inhibiting the TLR4/MyD88/NF-κB signaling and balancing the levels of cytokines of Th1/Th2 and Treg/Th17, and T-bet/GATA-3.


Subject(s)
Acupuncture Points , Acupuncture Therapy , Myeloid Differentiation Factor 88 , NF-kappa B , Rhinitis, Allergic , Toll-Like Receptor 4 , Animals , Female , Humans , Male , Rats , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/immunology , Immunoglobulin E/blood , Immunoglobulin E/immunology , Interleukin-4/genetics , Interleukin-4/immunology , Interleukin-4/metabolism , Myeloid Differentiation Factor 88/metabolism , Myeloid Differentiation Factor 88/genetics , Myeloid Differentiation Factor 88/immunology , NF-kappa B/metabolism , NF-kappa B/genetics , NF-kappa B/immunology , Rats, Sprague-Dawley , Rhinitis, Allergic/therapy , Rhinitis, Allergic/immunology , Rhinitis, Allergic/metabolism , Rhinitis, Allergic/genetics , Signal Transduction , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
12.
Cells ; 13(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38727273

ABSTRACT

Bovine Th2 cells have usually been characterized by IL4 mRNA expression, but it is unclear whether their IL4 protein expression corresponds to transcription. We found that grass-fed healthy beef cattle, which had been regularly exposed to parasites on the grass, had a low frequency of IL4+ Th2 cells during flow cytometry, similar to animals grown in feedlots. To assess the distribution of IL4+ CD4+ T cells across tissues, samples from the blood, spleen, abomasal (draining), and inguinal lymph nodes were examined, which revealed limited IL4 protein detection in the CD4+ T cells across the examined tissues. To determine if bovine CD4+ T cells may develop into Th2 cells, naïve cells were stimulated with anti-bovine CD3 under a Th2 differentiation kit in vitro. The cells produced primarily IFNγ proteins, with only a small fraction (<10%) co-expressing IL4 proteins. Quantitative PCR confirmed elevated IFNγ transcription but no significant change in IL4 transcription. Surprisingly, GATA3, the master regulator of IL4, was highest in naïve CD4+ T cells but was considerably reduced following differentiation. To determine if the differentiated cells were true Th2 cells, an unbiased proteomic assay was carried out. The assay identified 4212 proteins, 422 of which were differently expressed compared to those in naïve cells. Based on these differential proteins, Th2-related upstream components were predicted, including CD3, CD28, IL4, and IL33, demonstrating typical Th2 differentiation. To boost IL4 expression, T cell receptor (TCR) stimulation strength was reduced by lowering anti-CD3 concentrations. Consequently, weak TCR stimulation essentially abolished Th2 expansion and survival. In addition, extra recombinant bovine IL4 (rbIL4) was added during Th2 differentiation, but, despite enhanced expansion, the IL4 level remained unaltered. These findings suggest that, while bovine CD4+ T cells can respond to Th2 differentiation stimuli, the bovine IL4 pathway is not regulated in the same way as in mice and humans. Furthermore, Ostertagia ostertagi (OO) extract, a gastrointestinal nematode in cattle, inhibited signaling via CD3, CD28, IL4, and TLRs/MYD88, indicating that external pathogens can influence bovine Th2 differentiation. In conclusion, though bovine CD4+ T cells can respond to IL4-driven differentiation, IL4 expression is not a defining feature of differentiated bovine Th2 cells.


Subject(s)
Cell Differentiation , Th2 Cells , Animals , Cattle , Th2 Cells/immunology , Th2 Cells/metabolism , Interleukin-4/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Interferon-gamma/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/metabolism
13.
Cell Mol Life Sci ; 81(1): 208, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710919

ABSTRACT

Trophoblast stem cells (TSCs) can be chemically converted from embryonic stem cells (ESCs) in vitro. Although several transcription factors (TFs) have been recognized as essential for TSC formation, it remains unclear how differentiation cues link elimination of stemness with the establishment of TSC identity. Here, we show that PRDM14, a critical pluripotent circuitry component, is reduced during the formation of TSCs. The reduction is further shown to be due to the activation of Wnt/ß-catenin signaling. The extinction of PRDM14 results in the erasure of H3K27me3 marks and chromatin opening in the gene loci of TSC TFs, including GATA3 and TFAP2C, which enables their expression and thus the initiation of the TSC formation process. Accordingly, PRDM14 reduction is proposed here as a critical event that couples elimination of stemness with the initiation of TSC formation. The present study provides novel insights into how induction signals initiate TSC formation.


Subject(s)
Cell Differentiation , DNA-Binding Proteins , Transcription Factors , Trophoblasts , Wnt Signaling Pathway , Trophoblasts/metabolism , Trophoblasts/cytology , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Transcription Factor AP-2/metabolism , Transcription Factor AP-2/genetics , Stem Cells/metabolism , Stem Cells/cytology , RNA-Binding Proteins/metabolism , RNA-Binding Proteins/genetics , Histones/metabolism , Histones/genetics
14.
Bratisl Lek Listy ; 125(5): 311-317, 2024.
Article in English | MEDLINE | ID: mdl-38624056

ABSTRACT

OBJECTIVES: In this study, we analyzed pTa bladder cancer (BC) for molecular markers BCL2, TP53, FOXA1, and GATA3 in relation to cancer recurrence. METHODS: We analyzed samples of 79 patients with the pTa stage of BC using a real-time polymerase chain reaction (real-time PCR) between September 2018 and September 2020. The expression levels of BCL2, TP53, FOXA1, and GATA3 were compared with homologous non-tumor bladder tissue. RESULTS: Expression of FOXA1, GATA3, and TP53 was significantly higher (p<0.01) in NMIBC samples compared to homologous non-tumor tissue. The expression of TP53 and FOXA1 in pTa was significantly lower (p<0.01) in the high-grade (HG) tumor when compared to the low-grade (LG) tumor. In contrast, the relative quantification (RQ) of GATA3 was significantly higher (p<0.01) in HG pTa. Patients with recurrence (pTa=33) had significantly higher expression of TP53, and GATA3 (p<0.01), and the gene of FOXA1 (p<0.01) had a significantly lower expression when compared to pTa tumors without recurrence. The expression of Bcl-2 was not statistically significant. CONCLUSION: Our results, indicate, that comparing expression levels of these genes in cancer and cancer-free tissue could provide valuable data, as patients with pTa BC recurrence within up to 54 months of follow-up had a significantly higher RQ of TP53, GATA3, and FOXA1 when compared to pTa BC patients without recurrence (Tab. 2, Fig. 8, Ref. 54). Text in PDF www.elis.sk Keywords: bladder cancer, gene expression, recurrence, GATA3, FOXA1, TP53, BCL2.


Subject(s)
Urinary Bladder Neoplasms , Urinary Bladder , Humans , Urinary Bladder/chemistry , Urinary Bladder/metabolism , Urinary Bladder/pathology , Urinary Bladder Neoplasms/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/metabolism , Biomarkers, Tumor/analysis , Tumor Suppressor Protein p53/genetics , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Hepatocyte Nuclear Factor 3-alpha/genetics , Hepatocyte Nuclear Factor 3-alpha/metabolism
15.
Immunity ; 57(5): 987-1004.e5, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38614090

ABSTRACT

The development and function of the immune system are controlled by temporospatial gene expression programs, which are regulated by cis-regulatory elements, chromatin structure, and trans-acting factors. In this study, we cataloged the dynamic histone modifications and chromatin interactions at regulatory regions during T helper (Th) cell differentiation. Our data revealed that the H3K4me1 landscape established by MLL4 in naive CD4+ T cells is critical for restructuring the regulatory interaction network and orchestrating gene expression during the early phase of Th differentiation. GATA3 plays a crucial role in further configuring H3K4me1 modification and the chromatin interaction network during Th2 differentiation. Furthermore, we demonstrated that HSS3-anchored chromatin loops function to restrict the activity of the Th2 locus control region (LCR), thus coordinating the expression of Th2 cytokines. Our results provide insights into the mechanisms of how the interplay between histone modifications, chromatin looping, and trans-acting factors contributes to the differentiation of Th cells.


Subject(s)
Cell Differentiation , Chromatin , Histone Code , Histones , Th2 Cells , Cell Differentiation/immunology , Animals , Chromatin/metabolism , Mice , Th2 Cells/immunology , Histones/metabolism , GATA3 Transcription Factor/metabolism , Gene Expression Regulation , Mice, Inbred C57BL , T-Lymphocytes, Helper-Inducer/immunology , T-Lymphocytes, Helper-Inducer/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histone-Lysine N-Methyltransferase/genetics , Locus Control Region , Cytokines/metabolism
16.
Nat Commun ; 15(1): 3432, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38653778

ABSTRACT

Temporal regulation of super-enhancer (SE) driven transcription factors (TFs) underlies normal developmental programs. Neuroblastoma (NB) arises from an inability of sympathoadrenal progenitors to exit a self-renewal program and terminally differentiate. To identify SEs driving TF regulators, we use all-trans retinoic acid (ATRA) to induce NB growth arrest and differentiation. Time-course H3K27ac ChIP-seq and RNA-seq reveal ATRA coordinated SE waves. SEs that decrease with ATRA link to stem cell development (MYCN, GATA3, SOX11). CRISPR-Cas9 and siRNA verify SOX11 dependency, in vitro and in vivo. Silencing the SOX11 SE using dCAS9-KRAB decreases SOX11 mRNA and inhibits cell growth. Other TFs activate in sequential waves at 2, 4 and 8 days of ATRA treatment that regulate neural development (GATA2 and SOX4). Silencing the gained SOX4 SE using dCAS9-KRAB decreases SOX4 expression and attenuates ATRA-induced differentiation genes. Our study identifies oncogenic lineage drivers of NB self-renewal and TFs critical for implementing a differentiation program.


Subject(s)
Cell Differentiation , Gene Expression Regulation, Neoplastic , Neuroblastoma , SOXC Transcription Factors , Tretinoin , Neuroblastoma/metabolism , Neuroblastoma/genetics , Neuroblastoma/pathology , Tretinoin/pharmacology , Tretinoin/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , SOXC Transcription Factors/metabolism , SOXC Transcription Factors/genetics , Humans , Animals , Cell Line, Tumor , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/genetics , Cell Lineage/genetics , GATA2 Transcription Factor/metabolism , GATA2 Transcription Factor/genetics , CRISPR-Cas Systems , N-Myc Proto-Oncogene Protein/metabolism , N-Myc Proto-Oncogene Protein/genetics , Cell Proliferation/drug effects , Cell Proliferation/genetics
17.
Pathology ; 56(4): 516-527, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38570266

ABSTRACT

Matrix Gla protein (MGP) and trichorhinophalangeal syndrome type 1 (TRPS1) have recently emerged as novel breast-specific immunohistochemical (IHC) markers, particularly for triple-negative breast cancer (TNBC) and metaplastic carcinoma. The present study aimed to validate and compare the expression of MGP, TRPS1 and GATA binding protein 3 (GATA3) in metastatic breast carcinoma (MBC), invasive breast carcinoma (IBC) with special features, including special types of invasive breast carcinoma (IBC-STs) and invasive breast carcinoma of no special type with unique features, and mammary and non-mammary salivary gland-type tumours (SGTs). Among all enrolled cases, MGP, TRPS1 and GATA3 had comparable high positivity for ER/PR-positive (p=0.148) and HER2-positive (p=0.310) breast carcinoma (BC), while GATA3 positivity was significantly lower in TNBC (p<0.001). Similarly, the positive rates of MGP and TRPS1 in MBCs (99.4%), were higher than in GATA3 (90.9%, p<0.001). Among the IBC-STs, 98.4% of invasive lobular carcinomas (ILCs) were positive for all three markers. Among neuroendocrine tumours (NTs), all cases were positive for TRPS1 and GATA3, while MGP positivity was relatively low (81.8%, p=0.313). In the neuroendocrine carcinoma (NC) subgroup, all cases were positive for GATA3 and MGP, while one case was negative for TRPS1. All carcinomas with apocrine differentiation (APOs) were positive for GATA3 and MGP, while only 60% of the cases demonstrated moderate staining for TRPS1. Among mammary SGTs, MGP demonstrated the highest positivity (100%), followed by TRPS1 (96.0%) and GATA3 (72.0%). Positive staining for these markers was also frequently observed in non-mammary SGTs. Our findings further validate the high sensitivity of MGP and TRPS1 in MBCs, IBC-STs, and breast SGTs. However, none of these markers are capable of distinguishing between mammary and non-mammary SGTs.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , GATA3 Transcription Factor , Matrix Gla Protein , Salivary Gland Neoplasms , Transcription Factors , Female , Humans , Biomarkers, Tumor/metabolism , Biomarkers, Tumor/analysis , Breast Neoplasms/pathology , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Calcium-Binding Proteins/metabolism , Calcium-Binding Proteins/analysis , DNA-Binding Proteins/metabolism , Extracellular Matrix Proteins/metabolism , GATA3 Transcription Factor/metabolism , GATA3 Transcription Factor/analysis , Immunohistochemistry , Repressor Proteins/metabolism , Salivary Gland Neoplasms/pathology , Salivary Gland Neoplasms/diagnosis , Salivary Gland Neoplasms/metabolism , Sensitivity and Specificity , Transcription Factors/metabolism , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/diagnosis , Triple Negative Breast Neoplasms/metabolism
18.
Iran J Allergy Asthma Immunol ; 23(1): 107-114, 2024 Feb 11.
Article in English | MEDLINE | ID: mdl-38485905

ABSTRACT

T helper 1 (TH1) and TH2 lymphocytes are the most important components of the immune system affected by blood transfusion. This study aimed`` to evaluate the effect of blood transfusion on gene expression of transcription factors related to the development of TH1, TH2, TH17 and regulatory T cells (Tregs). In this cross-sectional study, 20 patients diagnosed with abdominal aortic aneurysms requiring surgical repair were studied from January 2018 to August 2020. We utilized real-time PCR to evaluate the expression of transcription factor genes associated with TH1, TH2, TH17, and Treg, namely T-box-expressed-in-T-cells (T-bet), GATA-binding protein 3 (GATA-3), retinoid-related orphan receptor (RORγt), and fork head box protein 3 (Foxp3), respectively. The sampling occurred before anesthesia, 24- and 72 hours post-transfusion, and at the time of discharge. The results showed that the T-bet gene expression, compared to the time before transfusion, was significantly decreased 24 hours after blood transfusion and upon discharge while GATA3 genes exhibited a significant reduction both 24 and 72 hours after the transfusion, as compared to the pre-transfusion levels and the time of patient discharge. The Foxp3 gene demonstrated an increase at all study stages, with a notable surge, particularly 72 hours after red blood cell (RBC) transfusion. Conversely, the expression of RORγt gene, consistently decreased throughout all stages of the study. RBC transfusion in abdominal aortic aneurysm patients altered the balance of transcription gene expression of TH1, TH2, TH17, and Treg cells.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3 , T-Lymphocytes, Regulatory , Humans , Nuclear Receptor Subfamily 1, Group F, Member 3/genetics , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Cross-Sectional Studies , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Blood Transfusion , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Th17 Cells/metabolism , T-Box Domain Proteins/genetics
19.
Genome Biol ; 25(1): 44, 2024 02 05.
Article in English | MEDLINE | ID: mdl-38317241

ABSTRACT

BACKGROUND: The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS: The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS: AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.


Subject(s)
Breast Neoplasms , GATA3 Transcription Factor , Receptors, Androgen , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Epithelial Cells/metabolism , GATA3 Transcription Factor/genetics , GATA3 Transcription Factor/metabolism , Jumonji Domain-Containing Histone Demethylases/genetics , Phenotype , Proteomics , Receptors, Androgen/genetics
20.
Histopathology ; 84(7): 1212-1223, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38356340

ABSTRACT

AIMS: Verruciform acanthotic vulvar intra-epithelial neoplasia (vaVIN) is an HPV-independent, p53 wild-type lesion with distinct morphology and documented risk of recurrence and cancer progression. vaVIN is rare, and prospective distinction from non-neoplastic hyperplastic lesions can be difficult. CK17, SOX2 and GATA3 immunohistochemistry has emerging value in the diagnosis of HPV-independent lesions, particularly differentiated VIN. We aimed to test the combined value of these markers in the diagnosis of vaVIN versus its non-neoplastic differentials in the vulva. METHODS AND RESULTS: CK17, SOX2 and GATA3 immunohistochemistry was evaluated on 16 vaVINs and 34 mimickers (verruciform xanthoma, lichen simplex chronicus, lichen sclerosus, psoriasis, pseudo-epitheliomatous hyperplasia). CK17 was scored as 3+ = full-thickness, 2+ = partial-thickness, 1+ = patchy, 0 = absent; SOX2 as 3+ = strong staining ≥ 10% cells, 2+ = moderate, 1 + =weak, 0 = staining in < 10% cells; and GATA3 as pattern 0 = loss in < 25% basal cells, 1 = loss in 25-75% basal cells, 2 = loss in > 75% basal cells. For analysis, results were recorded as positive (CK17 = 3+, SOX2 = 3+, GATA3 = patterns 1/2) or negative (CK17 = 2+/1+/0, SOX2 = 2+/1+/0, GATA3 = pattern 0). CK17, SOX2 and GATA3 positivity was documented in 81, 75 and 58% vaVINs, respectively, versus 32, 17 and 22% of non-neoplastic mimickers, respectively; ≥ 2 marker positivity conferred 83 sensitivity, 88 specificity and 86% accuracy in vaVIN diagnosis. Compared to vaVIN, SOX2 and GATA3 were differentially expressed in lichen sclerosus, lichen simplex chronicus and pseudo-epitheliomatous hyperplasia, whereas CK17 was differentially expressed in verruciform xanthoma and adjacent normal mucosa. CONCLUSIONS: CK17, SOX2 and GATA3 can be useful in the diagnosis of vaVIN and its distinction from hyperplastic non-neoplastic vulvar lesions. Although CK17 has higher sensitivity, SOX2 and GATA3 are more specific, and the combination of all markers shows optimal diagnostic accuracy.


Subject(s)
Biomarkers, Tumor , GATA3 Transcription Factor , Immunohistochemistry , Keratin-17 , SOXB1 Transcription Factors , Vulvar Neoplasms , Adult , Aged , Aged, 80 and over , Female , Humans , Middle Aged , Biomarkers, Tumor/analysis , Biomarkers, Tumor/metabolism , Carcinoma in Situ/diagnosis , Carcinoma in Situ/pathology , Carcinoma in Situ/metabolism , Diagnosis, Differential , GATA3 Transcription Factor/analysis , GATA3 Transcription Factor/immunology , GATA3 Transcription Factor/metabolism , Immunohistochemistry/methods , Keratin-17/analysis , Keratin-17/immunology , Keratin-17/metabolism , SOXB1 Transcription Factors/analysis , SOXB1 Transcription Factors/immunology , SOXB1 Transcription Factors/metabolism , Vulvar Neoplasms/pathology , Vulvar Neoplasms/diagnosis , Vulvar Neoplasms/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...