Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 691
Filter
1.
Genes (Basel) ; 15(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927753

ABSTRACT

Galectins are innate immune system regulators associated with disease progression in cancer. This paper aims to investigate the correlation between mutated cancer-critical genes and galectin levels in breast cancer patients to determine whether galectins and genetic profiles can be used as biomarkers for disease and potential therapy targets. Prisma Health Cancer Institute's Biorepository provided seventy-one breast cancer samples, including all four stages spanning the major molecular subtypes and histologies. Hotspot mutation statuses of cancer-critical genes were determined using multiplex PCR in tumor samples from the same patients by Precision Genetics and the University of South Carolina Functional Genomics Core Facility. The galectin-1, -3, and -9 levels in patients' sera were analyzed using Enzyme-linked Immunosorbent Assay (ELISA). An analysis was performed using JMP software to compare mean and median serum galectin levels between samples with and without specific cancer-critical genes, including pooled t-test, Wilcoxon Rank Sum Test, ANOVA, and Steel Dwass Test (α=0.05). Our analysis indicates that KIT mutations correlate with elevated serum levels of galectin-9 in patients with breast cancer. In patients with Luminal A subtype, FLT3 mutation correlates with lower serum galectin-1 and -9 levels and TP53 mutations correlate with higher serum galectin-3 levels. Patients with invasive ductal carcinoma had significantly higher serum galectin-3 levels than patients with ductal carcinoma in situ. Patients with both TP53 and PIK3CA mutations exhibit elevated serum galectin-3 levels, while patients with one or neither mutation show no significant difference in serum galectin-3 levels. In addition, metastatic breast cancer samples were more likely to have a KIT or PIK3CA mutation compared to primary breast cancer samples. The relationship between genetic mutations and galectin levels has the potential to identify appropriate candidates for combined therapy, targeting genetic mutations and galectins. Further understanding of the effect of genetic mutations and galectin levels on cancer progression and metastasis could aid in the search for biomarkers for breast cancer diagnosis, disease progression, and prognosis.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms , Galectins , Mutation , Humans , Breast Neoplasms/genetics , Breast Neoplasms/blood , Breast Neoplasms/pathology , Female , Galectins/genetics , Galectins/blood , Biomarkers, Tumor/genetics , Biomarkers, Tumor/blood , Galectin 1/genetics , Galectin 1/blood , Middle Aged , Galectin 3/genetics , Galectin 3/blood , Adult , Blood Proteins
2.
Nat Commun ; 15(1): 4724, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830855

ABSTRACT

Respiratory infection by Pseudomonas aeruginosa, common in hospitalized immunocompromised and immunocompetent ventilated patients, can be life-threatening because of antibiotic resistance. This raises the question of whether the host's immune system can be educated to combat this bacterium. Here we show that prior exposure to a single low dose of lipopolysaccharide (LPS) protects mice from a lethal infection by P. aeruginosa. LPS exposure trained the innate immune system by promoting expansion of neutrophil and interstitial macrophage populations distinguishable from other immune cells with enrichment of gene sets for phagocytosis- and cell-killing-associated genes. The cell-killing gene set in the neutrophil population uniquely expressed Lgals3, which encodes the multifunctional antibacterial protein, galectin-3. Intravital imaging for bacterial phagocytosis, assessment of bacterial killing and neutrophil-associated galectin-3 protein levels together with use of galectin-3-deficient mice collectively highlight neutrophils and galectin-3 as central players in LPS-mediated protection. Patients with acute respiratory failure revealed significantly higher galectin-3 levels in endotracheal aspirates (ETAs) of survivors compared to non-survivors, galectin-3 levels strongly correlating with a neutrophil signature in the ETAs and a prognostically favorable hypoinflammatory plasma biomarker subphenotype. Taken together, our study provides impetus for harnessing the potential of galectin-3-expressing neutrophils to protect from lethal infections and respiratory failure.


Subject(s)
Galectin 3 , Lipopolysaccharides , Mice, Inbred C57BL , Neutrophils , Pseudomonas Infections , Pseudomonas aeruginosa , Animals , Galectin 3/metabolism , Galectin 3/genetics , Neutrophils/immunology , Neutrophils/metabolism , Humans , Mice , Pseudomonas Infections/immunology , Male , Female , Respiratory Insufficiency/metabolism , Mice, Knockout , Phagocytosis , Immunity, Innate , Galectins/metabolism , Galectins/genetics
3.
Protein Expr Purif ; 221: 106516, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38801985

ABSTRACT

Galectins are a large and diverse protein family defined by the presence of a carbohydrate recognition domain (CRD) that binds ß-galactosides. They play important roles in early development, tissue regeneration, immune homeostasis, pathogen recognition, and cancer. In many cases, studies that examine galectin biology and the effect of manipulating galectins are aided by, or require the ability to express and purify, specific members of the galectin family. In many cases, E. coli is employed as a heterologous expression system, and galectin expression is induced with isopropyl ß-galactoside (IPTG). Here, we show that galectin-3 recognizes IPTG with micromolar affinity and that as IPTG induces expression, newly synthesized galectin can bind and sequester cytosolic IPTG, potentially repressing further expression. To circumvent this putative inhibitory feedback loop, we utilized an autoinduction protocol that lacks IPTG, leading to significantly increased yields of galectin-3. Much of this work was done within the context of a course-based undergraduate research experience, indicating the ease and reproducibility of the resulting expression and purification protocols.


Subject(s)
Escherichia coli , Galectin 3 , Isopropyl Thiogalactoside , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/biosynthesis , Galectin 3/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Isopropyl Thiogalactoside/pharmacology , Gene Expression , Galectins/genetics , Galectins/metabolism , Galectins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Blood Proteins/genetics , Blood Proteins/metabolism
4.
Viruses ; 16(5)2024 05 07.
Article in English | MEDLINE | ID: mdl-38793619

ABSTRACT

BACKGROUND AND AIMS: The outcomes of HBV infections are related to complex immune imbalances; however, the precise mechanisms by which HBV induces immune dysfunction are not well understood. METHODS: HBV transgenic (HBs-Tg) mice were used to investigate intrahepatic NK cells in two distinct subsets: conventional NK (cNK) and liver-resident NK (LrNK) cells during a chronic HBV infection. RESULTS: The cNK cells, but not the LrNK cells, were primarily responsible for the increase in the number of bulk NK cells in the livers of ageing HBs-Tg mice. The hepatic cNK cells showed a stronger ability to produce IL-10, coupled with a higher expression of CD69, TIGIT and PD-L1, and lower NKG2D expression in ageing HBs-Tg mice. A lower mitochondrial mass and membrane potential, and less polarized localization were observed in the hepatic cNK cells compared with the splenic cNK cells in the HBs-Tg mice. The enhanced galectin-3 (Gal-3) secreted from HBsAg+ hepatocytes accounted for the IL-10 production of hepatic cNK cells via ITGB1 signaling. For humans, LGALS3 and ITGB1 expression is positively correlated with IL-10 expression, and negatively correlated with the poor clinical progression of HCC. CONCLUSIONS: Gal-3-ITGB1 signaling shapes hepatic cNK cells but not LrNK cells during a chronic HBV infection, which may correlate with HCC progression.


Subject(s)
Carcinoma, Hepatocellular , Galectin 3 , Hepatitis B virus , Interleukin-10 , Killer Cells, Natural , Liver Neoplasms , Liver , Mice, Transgenic , Signal Transduction , Animals , Mice , Killer Cells, Natural/immunology , Humans , Hepatitis B virus/genetics , Hepatitis B virus/immunology , Interleukin-10/genetics , Interleukin-10/metabolism , Carcinoma, Hepatocellular/immunology , Carcinoma, Hepatocellular/virology , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/immunology , Liver Neoplasms/virology , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver/pathology , Liver/immunology , Liver/virology , Liver/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Disease Progression , Male , Female , Hepatocytes/virology , Hepatocytes/metabolism , Hepatocytes/immunology , Mice, Inbred C57BL , Galectins/genetics , Galectins/metabolism
5.
Anim Biotechnol ; 35(1): 2344208, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38741260

ABSTRACT

Garlic, known for its immune-modulating and antibiotic properties, contains lectins that possess antimicrobial and immunomodulatory effects. Galectins (Gals), which bind ß-galactosides, play a role in modulating immunity and pathological processes. It is hypothesized that garlic's lectin components interfere with animal lectins. St. Croix sheep, known for their resistance to parasites and adaptability, are influenced by dietary supplements for innate immunity. This study evaluated the impact of garlic drench on Galectin gene expression in St. Croix sheep. Adult non-lactating ewes received either garlic juice concentrate or sterile distilled water for four weeks. Blood samples were collected, and plasma and whole blood cells were separated. Galectin secretion was assessed using a Sheep-specific ELISA, while Galectin gene transcription was analyzed through real-time PCR. Garlic administration upregulated LGALS-3 gene expression and significantly increased total plasma protein concentration. Garlic supplementation also affected Galectin secretion, with Gal-1, Gal-3, and Gal-9 showing differential effects.


Subject(s)
Galectins , Garlic , Animals , Garlic/chemistry , Galectins/genetics , Galectins/metabolism , Sheep , Female , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression/drug effects , Animal Feed/analysis
6.
Int J Mol Sci ; 25(9)2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38732132

ABSTRACT

Insects possess an effective immune system, which has been extensively characterized in several model species, revealing a plethora of conserved genes involved in recognition, signaling, and responses to pathogens and parasites. However, some taxonomic groups, characterized by peculiar trophic niches, such as plant-sap feeders, which are often important pests of crops and forestry ecosystems, have been largely overlooked regarding their immune gene repertoire. Here we annotated the immune genes of soft scale insects (Hemiptera: Coccidae) for which omics data are publicly available. By using immune genes of aphids and Drosophila to query the genome of Ericerus pela, as well as the transcriptomes of Ceroplastes cirripediformis and Coccus sp., we highlight the lack of peptidoglycan recognition proteins, galectins, thaumatins, and antimicrobial peptides in Coccidae. This work contributes to expanding our knowledge about the evolutionary trajectories of immune genes and offers a list of promising candidates for developing new control strategies based on the suppression of pests' immunity through RNAi technologies.


Subject(s)
Hemiptera , Insect Proteins , Animals , Hemiptera/genetics , Hemiptera/immunology , Insect Proteins/genetics , Insect Proteins/immunology , Transcriptome/genetics , Phylogeny , Antimicrobial Peptides/genetics , Galectins/genetics , Galectins/metabolism , Carrier Proteins
7.
Parasit Vectors ; 17(1): 232, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769548

ABSTRACT

BACKGROUND: Schistosoma japonicum eggs lodge in the liver and induce a fibrotic granulomatous immune response in the liver of host. Galectin 3 (Gal-3) is a protein implicated in fibrosis in multiple organs. However, the pathology and molecular mechanisms promoting hepatic granuloma formation remain poorly understood. METHODS: To investigate the effect of blocking galectin-receptor interactions by α-lactose on liver immunopathology in mice with S. japonicum infection, C57BL/6 mice were infected with S. japonicum and alpha (α)-lactose was intraperitoneally injected to block the interactions of galectins and their receptors. RESULTS: Compared with S. japonicum-infected mice, there were significantly decreased Gal-3 mRNA and protein expression levels, decreased intensity of Gal-3 fluorescence in the liver, decreased serum ALT and AST levels, decreased egg numbers of S. japonicum in the liver section, attenuated hepatic and spleen pathology, and alleviated liver fibrosis accompanied with decreased protein expression levels of fibrosis markers [α-smooth muscle actin (α-SMA), collagen I, and collagen IV] in the liver of S. japonicum-infected mice blocked galectin-receptor interactions with hematoxylin-eosin staining, Masson's trichrome staining, immunohistochemistry, or Western blot analysis. Compared with S. japonicum-infected mice, blocking galectin-receptor interactions led to increased eosinophil infiltration and higher eosinophil cationic protein (ECP) expression in the liver, accompanied by increased mRNA levels of eosinophil granule proteins [ECP and eosinophil peroxidase (EPO)], IL-5, CCL11, and CCR3 in the liver and decreased mRNA levels of Gal-3 and M2 macrophage cytokines (TGF-ß, IL-10, and IL-4) in the liver and spleen by using quantitative real-time reverse transcription-polymerase chain reaction. In addition, there were increased Beclin1 protein expression and protein expression ratio of LC3B-II/LC3B-I and decreased p62 protein expression and protein expression ratios of phospho-mTOR/mTOR and phospho-AKT/AKT by Western blot; increased double-labeled F4/80+/LC3B+ cells by immunofluorescence staining; increased M1 macrophage polarization in the liver of S. japonicum-infected mice blocked galectin-receptor interactions by flow cytometric analysis and immunofluorescence staining. CONCLUSIONS: Our data found that blockage of galectin-receptor interactions downregulated Gal-3, which in turn led to reduced liver functional damage, elevated liver eosinophil recruitment, promoted macrophage autophagy through the Akt/mTOR signaling pathway, and alleviated liver pathology and fibrosis. Therefore, Gal-3 plays a pivotal role during S. japonicum infection and could be a target of pharmacologic potential for liver fibrosis induced by S. japonicum infection.


Subject(s)
Galectin 3 , Liver Cirrhosis , Mice, Inbred C57BL , Schistosoma japonicum , Schistosomiasis japonica , Animals , Schistosomiasis japonica/parasitology , Schistosomiasis japonica/complications , Liver Cirrhosis/parasitology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Mice , Galectin 3/metabolism , Galectin 3/genetics , Liver/parasitology , Liver/pathology , Liver/metabolism , Female , Lactose/pharmacology , Lactose/analogs & derivatives , Galectins/metabolism , Galectins/genetics
8.
Biol Res ; 57(1): 14, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38570874

ABSTRACT

Galectins are soluble glycan-binding proteins that interact with a wide range of glycoproteins and glycolipids and modulate a broad spectrum of physiological and pathological processes. The expression and subcellular localization of different galectins vary among tissues and cell types and change during processes of tissue repair, fibrosis and cancer where epithelial cells loss differentiation while acquiring migratory mesenchymal phenotypes. The epithelial-mesenchymal transition (EMT) that occurs in the context of these processes can include modifications of glycosylation patterns of glycolipids and glycoproteins affecting their interactions with galectins. Moreover, overexpression of certain galectins has been involved in the development and different outcomes of EMT. This review focuses on the roles and mechanisms of Galectin-1 (Gal-1), Gal-3, Gal-4, Gal-7 and Gal-8, which have been involved in physiologic and pathogenic EMT contexts.


Subject(s)
Galectins , Neoplasms , Humans , Galectins/genetics , Galectins/metabolism , Fibrosis , Glycoproteins , Epithelial-Mesenchymal Transition , Glycolipids
9.
J Cell Physiol ; 239(6): e31288, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38685860

ABSTRACT

Galectin-12 is a tissue-specific galectin that has been largely defined by its role in the regulation of adipocyte differentiation and lipogenesis. This study aimed to evaluate the role of galectin-12 in the differentiation and polarization of neutrophils within a model of acute myeloid leukemia HL-60 cells. All-trans retinoic acid and dimethyl sulfoxide were used to induce differentiation of HL-60 cells which led to the generation of two phenotypes of neutrophil-like cells with opposite changes in galectin-12 gene (LGALS12) expression and different functional responses to N-formyl- l-methionyl- l-leucyl- l-phenylalanine. These phenotypes showed significant differences of differentially expressed genes on a global scale based on bioinformatics analysis of available Gene Expression Omnibus (GEO) data sets. We also demonstrated that HL-60 cells could secrete and accumulate galectin-12 in cell culture medium under normal growth conditions. This secretion was found to be entirely inhibited upon neutrophilic differentiation and was accompanied by an increase in intracellular lipid droplet content and significant enrichment of 22 lipid gene ontology terms related to lipid metabolism in differentiated cells. These findings suggest that galectin-12 could serve as a marker of neutrophilic plasticity or polarization into different phenotypes and that galectin-12 secretion may be influenced by lipid droplet biogenesis.


Subject(s)
Galectins , Leukemia, Promyelocytic, Acute , Neutrophils , Humans , Cell Differentiation , Galectins/metabolism , Galectins/genetics , HL-60 Cells , Leukemia, Promyelocytic, Acute/metabolism , Leukemia, Promyelocytic, Acute/genetics , Leukemia, Promyelocytic, Acute/pathology , Lipid Metabolism/genetics , Neutrophils/metabolism , Phenotype , Tretinoin/pharmacology
10.
Int Immunopharmacol ; 133: 112058, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38613883

ABSTRACT

Fetal growth restriction (FGR) is a major cause of premature and low-weight births, which increases the risk of necrotizing enterocolitis (NEC); however, the association remains unclear. We report a close correlation between placental polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and NEC. Newborns with previous FGR exhibited intestinal inflammation and more severe NEC symptoms than healthy newborns. Placental PMN-MDSCs are vital regulators of fetal development and neonatal gut inflammation. Placental single-cell transcriptomics revealed that PMN-MDSCs populations and olfactomedin-4 gene (Olfm4) expression levels were significantly increased in PMN-MDSCs in later pregnancy compared to those in early pregnancy and non-pregnant females. Female mice lacking Olfm4 in myeloid cells mated with wild-type males showed FGR during pregnancy, with a decreased placental PMN-MDSCs population and expression of growth-promoting factors (GPFs) from placental PMN-MDSCs. Galectin-3 (Gal-3) stimulated the OLFM4-mediated secretion of GPFs by placental PMN-MDSCs. Moreover, GPF regulation via OLFM4 in placental PMN-MDSCs was mediated via hypoxia inducible factor-1α (HIF-1α). Notably, the offspring of mothers lacking Olfm4 exhibited intestinal inflammation and were susceptible to NEC. Additionally, OLFM4 expression decreased in placental PMN-MDSCs from pregnancies with FGR and was negatively correlated with neonatal morbidity. These results revealed that placental PMN-MDSCs contributed to fetal development and ameliorate newborn intestinal inflammation.


Subject(s)
Fetal Growth Retardation , Myeloid-Derived Suppressor Cells , Placenta , Animals , Female , Pregnancy , Humans , Placenta/immunology , Placenta/metabolism , Infant, Newborn , Myeloid-Derived Suppressor Cells/immunology , Myeloid-Derived Suppressor Cells/metabolism , Fetal Growth Retardation/immunology , Mice , Mice, Knockout , Enterocolitis, Necrotizing/immunology , Enterocolitis, Necrotizing/metabolism , Granulocyte Colony-Stimulating Factor/metabolism , Granulocyte Colony-Stimulating Factor/genetics , Mice, Inbred C57BL , Male , Galectins/metabolism , Galectins/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Intestines/immunology , Intestines/pathology
11.
Dev Comp Immunol ; 157: 105182, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38636700

ABSTRACT

Galectin 8 belongs to the tandem repeat subclass of the galectin superfamily. It possesses two homologous carbohydrate recognition domains linked by a short peptide and preferentially binds to ß-galactoside-containing glycol-conjugates in a calcium-independent manner. This study identified Galectin-8-like isoform X1 (PhGal8X1) from red-lip mullet (Planiliza haematocheilus) and investigated its role in regulating fish immunity. The open reading frame of PhGal8X1 was 918bp, encoding a soluble protein of 305 amino acids. The protein had a theoretical isoelectric (pI) point of 7.7 and an estimated molecular weight of 34.078 kDa. PhGal8X1 was expressed in various tissues of the fish, with prominent levels in the brain, stomach, and intestine. PhGal8X1 expression was significantly (p < 0.05) induced in the blood and spleen upon challenge with different immune stimuli, including polyinosinic:polycytidylic acid, lipopolysaccharide, and Lactococcus garvieae. The recombinant PhGal8X1 protein demonstrated agglutination activity towards various bacterial pathogens at a minimum effective concentration of 50 µg/mL or 100 µg/mL. Subcellular localization observations revealed that PhGal8X1 was primarily localized in the cytoplasm. PhGal8X1 overexpression in fathead minnow cells significantly (p < 0.05) inhibited viral hemorrhagic septicemia virus (VHSV) replication. The expression levels of four proinflammatory cytokines and two chemokines were significantly (p < 0.05) upregulated in PhGal8X1 overexpressing cells in response to VHSV infection. Furthermore, overexpression of PhGal8X1 exhibited protective effects against oxidative stress induced by H2O2 through the upregulation of antioxidant enzymes. Taken together, these findings provide compelling evidence that PhGal8X1 plays a crucial role in enhancing innate immunity and promoting cell survival through effective regulation of antibacterial, antiviral, and antioxidant defense mechanisms in red-lip mullet.


Subject(s)
Antioxidants , Fish Proteins , Galectins , Smegmamorpha , Animals , Fish Proteins/genetics , Fish Proteins/metabolism , Fish Proteins/immunology , Smegmamorpha/immunology , Smegmamorpha/genetics , Galectins/metabolism , Galectins/genetics , Antioxidants/metabolism , Fish Diseases/immunology , Cytokines/metabolism , Immunity, Innate , Poly I-C/immunology , Lactococcus/physiology , Lipopolysaccharides/immunology , Chemokines/metabolism , Chemokines/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Novirhabdovirus/physiology , Novirhabdovirus/immunology , Antiviral Agents/metabolism
12.
Cancer Lett ; 591: 216879, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38636895

ABSTRACT

Galectin-3 (Gal-3) is a multifunctional protein that plays a pivotal role in the initiation and progression of various central nervous system diseases, including cancer. Although the involvement of Gal-3 in tumour progression, resistance to treatment and immunosuppression has long been studied in different cancer types, mainly outside the central nervous system, its elevated expression in myeloid and glial cells underscores its profound impact on the brain's immune response. In this context, microglia and infiltrating macrophages, the predominant non-cancerous cells within the tumour microenvironment, play critical roles in establishing an immunosuppressive milieu in diverse brain tumours. Through the utilisation of primary cell cultures and immortalised microglial cell lines, we have elucidated the central role of Gal-3 in promoting cancer cell migration, invasion, and an immunosuppressive microglial phenotypic activation. Furthermore, employing two distinct in vivo models encompassing primary (glioblastoma) and secondary brain tumours (breast cancer brain metastasis), our histological and transcriptomic analysis show that Gal-3 depletion triggers a robust pro-inflammatory response within the tumour microenvironment, notably based on interferon-related pathways. Interestingly, this response is prominently observed in tumour-associated microglia and macrophages (TAMs), resulting in the suppression of cancer cells growth.


Subject(s)
Brain Neoplasms , Cell Movement , Cell Proliferation , Galectin 3 , Glioblastoma , Microglia , Tumor Microenvironment , Microglia/metabolism , Microglia/pathology , Galectin 3/metabolism , Galectin 3/genetics , Humans , Animals , Glioblastoma/pathology , Glioblastoma/metabolism , Glioblastoma/genetics , Glioblastoma/immunology , Brain Neoplasms/pathology , Brain Neoplasms/metabolism , Brain Neoplasms/genetics , Brain Neoplasms/immunology , Cell Line, Tumor , Female , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology , Macrophages/metabolism , Macrophages/immunology , Neoplasm Invasiveness , Blood Proteins/metabolism , Galectins/metabolism , Galectins/genetics , Signal Transduction , Mice , Gene Expression Regulation, Neoplastic
13.
Adv Sci (Weinh) ; 11(20): e2306059, 2024 May.
Article in English | MEDLINE | ID: mdl-38528665

ABSTRACT

Tumor-initiating cells (TICs) resilience and an immunosuppressive microenvironment are aggressive oncogenic phenotypes that contribute to unsatisfactory long-term outcomes in lung adenocarcinoma (LUAD) patients. The molecular mechanisms mediating the interaction between TICs and immune tolerance have not been elucidated. The role of Galectin-9 in oncogenesis and immunosuppressive microenvironment is still unknown. This study explored the potential role of galectin-9 in TIC regulation and immune modulation in LUAD. The results show that galectin-9 supports TIC properties in LUAD. Co-culture of patient-derived organoids and matched peripheral blood mononuclear cells showed that tumor-secreted galectin-9 suppressed T cell cytotoxicity and induced regulatory T cells (Tregs). Clinically, galectin-9 is upregulated in human LUAD. High expression of galectin-9 predicted poor recurrence-free survival and correlated with high levels of Treg infiltration. LGALS9, the gene encoding galectin-9, is found to be transcriptionally regulated by the nuclear factor of activated T cells 2 (NFATc2), a previously reported TIC regulator, via in silico prediction and luciferase reporter assays. Overall, the results suggest that the NFATc2/galectin-9 axis plays a dual role in TIC regulation and immune suppression.


Subject(s)
Adenocarcinoma of Lung , Galectins , Lung Neoplasms , NFATC Transcription Factors , Neoplastic Stem Cells , Humans , Adenocarcinoma of Lung/immunology , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/pathology , Adenocarcinoma of Lung/metabolism , Cell Line, Tumor , Galectins/genetics , Galectins/metabolism , Galectins/immunology , Lung Neoplasms/immunology , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplastic Stem Cells/immunology , Neoplastic Stem Cells/metabolism , NFATC Transcription Factors/metabolism , NFATC Transcription Factors/genetics , Phenotype , Tumor Microenvironment
14.
Gastroenterology ; 167(2): 298-314, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38467382

ABSTRACT

BACKGROUND & AIMS: Pancreatic ductal adenocarcinoma (PDAC) has a desmoplastic tumor stroma and immunosuppressive microenvironment. Galectin-3 (GAL3) is enriched in PDAC, highly expressed by cancer cells and myeloid cells. However, the functional roles of GAL3 in the PDAC microenvironment remain elusive. METHODS: We generated a novel transgenic mouse model (LSL-KrasG12D/+;Trp53loxP/loxP;Pdx1-Cre;Lgals3-/- [KPPC;Lgals3-/-]) that allows the genetic depletion of GAL3 from both cancer cells and myeloid cells in spontaneous PDAC formation. Single-cell RNA-sequencing analysis was used to identify the alterations in the tumor microenvironment upon GAL3 depletion. We investigated both the cancer cell-intrinsic function and immunosuppressive function of GAL3. We also evaluated the therapeutic efficacy of GAL3 inhibition in combination with immunotherapy. RESULTS: Genetic deletion of GAL3 significantly inhibited the spontaneous pancreatic tumor progression and prolonged the survival of KPPC;Lgals3-/- mice. Single-cell analysis revealed that genetic deletion of GAL3 altered the phenotypes of immune cells, cancer cells, and other cell populations. GAL3 deletion significantly enriched the antitumor myeloid cell subpopulation with high major histocompatibility complex class II expression. We also identified that GAL3 depletion resulted in CXCL12 upregulation, which could act as a potential compensating mechanism on GAL3 deficiency. Combined inhibition of the CXCL12-CXCR4 axis and GAL3 enhanced the efficacy of anti-PD-1 immunotherapy, leading to significantly inhibited PDAC progression. In addition, deletion of GAL3 also inhibited the basal/mesenchymal-like phenotype of pancreatic cancer cells. CONCLUSIONS: GAL3 promotes PDAC progression and immunosuppression via both cancer cell-intrinsic and immune-related mechanisms. Combined treatment targeting GAL3, CXCL12-CXCR4 axis, and PD-1 represents a novel therapeutic strategy for PDAC.


Subject(s)
Carcinoma, Pancreatic Ductal , Disease Progression , Galectin 3 , Pancreatic Neoplasms , Tumor Microenvironment , Animals , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/immunology , Pancreatic Neoplasms/therapy , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/pathology , Carcinoma, Pancreatic Ductal/immunology , Carcinoma, Pancreatic Ductal/therapy , Galectin 3/genetics , Galectin 3/metabolism , Galectin 3/antagonists & inhibitors , Tumor Microenvironment/immunology , Mice , Humans , Receptors, CXCR4/genetics , Receptors, CXCR4/metabolism , Disease Models, Animal , Cell Line, Tumor , Gene Deletion , Mice, Transgenic , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism , Programmed Cell Death 1 Receptor/genetics , Mice, Knockout , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Immunotherapy/methods , Signal Transduction , Galectins/genetics , Galectins/metabolism
15.
Br J Cancer ; 130(9): 1463-1476, 2024 May.
Article in English | MEDLINE | ID: mdl-38438589

ABSTRACT

BACKGROUND: Uterine serous cancer (USC) comprises around 10% of all uterine cancers. However, USC accounts for approximately 40% of uterine cancer deaths, which is attributed to tumor aggressiveness and limited effective treatment. Galectin 3 (Gal3) has been implicated in promoting aggressive features in some malignancies. However, Gal3's role in promoting USC pathology is lacking. METHODS: We explored the relationship between LGALS3 levels and prognosis in USC patients using TCGA database, and examined the association between Gal3 levels in primary USC tumors and clinical-pathological features. CRISPR/Cas9-mediated Gal3-knockout (KO) and GB1107, inhibitor of Gal3, were employed to evaluate Gal3's impact on cell function. RESULTS: TCGA analysis revealed a worse prognosis for USC patients with high LGALS3. Patients with no-to-low Gal3 expression in primary tumors exhibited reduced clinical-pathological tumor progression. Gal3-KO and GB1107 reduced cell proliferation, stemness, adhesion, migration, and or invasion properties of USC lines. Furthermore, Gal3-positive conditioned media (CM) stimulated vascular tubal formation and branching and transition of fibroblast to cancer-associated fibroblast compared to Gal3-negative CM. Xenograft models emphasized the significance of Gal3 loss with fewer and smaller tumors compared to controls. Moreover, GB1107 impeded the growth of USC patient-derived organoids. CONCLUSION: These findings suggest inhibiting Gal3 may benefit USC patients.


Subject(s)
Blood Proteins , Cystadenocarcinoma, Serous , Galectin 3 , Uterine Neoplasms , Humans , Female , Uterine Neoplasms/pathology , Uterine Neoplasms/genetics , Uterine Neoplasms/metabolism , Galectin 3/genetics , Galectin 3/metabolism , Cystadenocarcinoma, Serous/pathology , Cystadenocarcinoma, Serous/genetics , Cystadenocarcinoma, Serous/metabolism , Cell Proliferation , Cell Line, Tumor , Prognosis , Animals , Mice , Galectins/genetics , Galectins/metabolism , Cell Movement
16.
Life Sci Alliance ; 7(5)2024 May.
Article in English | MEDLINE | ID: mdl-38395460

ABSTRACT

In overactive human osteoclasts, we previously identified an alternative splicing event in LGALS8, encoding galectin-8, resulting in decreased expression of the long isoform. Galectin-8, which modulates cell-matrix interactions and functions intracellularly as a danger recognition receptor, has never been associated with osteoclast biology. In human osteoclasts, inhibition of galectin-8 expression revealed its roles in bone resorption, osteoclast nuclearity, and mTORC1 signaling regulation. Galectin-8 isoform-specific inhibition asserted a predominant role for the short isoform in bone resorption. Moreover, a liquid chromatography with tandem mass spectrometry (LC-MS/MS) proteomic analysis of galectin-8 isoforms performed in HEK293T cells identified 22 proteins shared by both isoforms. Meanwhile, nine interacting partners were specific for the short isoform, and none were unique to the long isoform. Interactors specific for the galectin-8 short isoform included cell adhesion proteins and lysosomal proteins. We confirmed the interactions of galectin-8 with CLCN3, CLCN7, LAMP1, and LAMP2, all known to localize to secretory vesicles, in human osteoclasts. Altogether, our study reveals direct roles of galectin-8 in osteoclast activity, mostly attributable to the short isoform.


Subject(s)
Bone Resorption , Galectins , Osteoclasts , Humans , Bone Resorption/metabolism , Chloride Channels/metabolism , Chromatography, Liquid , Galectins/genetics , Galectins/metabolism , HEK293 Cells , Osteoclasts/metabolism , Protein Isoforms/genetics , Protein Isoforms/metabolism , Proteomics , Tandem Mass Spectrometry
17.
Biomed Pharmacother ; 172: 116283, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38377735

ABSTRACT

BACKGROUND: Galectins (Gal's) are a family of carbohydrate-binding proteins that are known to support the tumour microenvironment through their immunosuppressive activity and ability to promote metastasis. As such they are attractive therapeutic targets, but little is known about the cellular expression pattern of galectins within the tumour and its neighbouring stromal microenvironment. Here we investigated the cellular expression pattern of Gals within pancreatic ductal adenocarcinoma (PDAC). METHODS: Galectin gene and protein expression were analysed by scRNAseq (n=4) and immunofluorescence imaging (n=19) in fibroblasts and epithelial cells of pancreatic biopsies from PDAC patients. Galectin surface expression was also assessed on tumour adjacent normal fibroblasts and cancer associated primary fibroblasts from PDAC biopsies using flow cytometry. RESULTS: scRNAseq revealed higher Gal-1 expression in fibroblasts and higher Gal-3 and -4 expression in epithelial cells. Both podoplanin (PDPN+, stromal/fibroblast) cells and EpCAM+ epithelial cells expressed Gal-1 protein, with highest expression seen in the stromal compartment. By contrast, significantly more Gal-3 and -4 protein was expressed in ductal cells expressing either EpCAM or PDPN, when compared to the stroma. Ductal Gal-4 cellular expression negatively correlated with ductal Gal-1, but not Gal-3 expression. Higher ductal cellular expression of Gal-1 correlated with smaller tumour size and better patient survival. CONCLUSIONS: In summary, the intricate interplay and cell-specific expression patterns of galectins within the PDAC tissue, particularly the inverse correlation between Gal-1 and Gal-4 in ducts and its significant association with patient survival, highlights the complex molecular landscape underlying PDAC and provides valuable insights for future therapeutic interventions.


Subject(s)
Benzamides , Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Tyrosine/analogs & derivatives , Humans , Epithelial Cell Adhesion Molecule , Pancreatic Neoplasms/genetics , Carcinoma, Pancreatic Ductal/genetics , Transcription Factors , Galectins/genetics , Tumor Microenvironment
18.
Fish Shellfish Immunol ; 145: 109348, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38163493

ABSTRACT

Galectins are lectins that bind to ß-galactose and are widely expressed in immune system tissues, playing pivotal roles in innate immunity through their conserved carbohydrate-recognition domains (CRDs). In this present investigation, a tandem-repeat galectin was discovered in the largemouth bass, Micropterus salmoides (designated as MsGal-9). The open reading frame of MsGal-9 encodes two CRDs, each containing two consensus motifs that are essential for ligand binding. MsGal-9 is expressed in various tissues of the largemouth bass, with particularly high expression levels in the liver and spleen. The full-length form of MsGal-9, as well as the N-terminal (MsGal-9-N) and C-terminal (MsGal-9-C) CRDs, were individually recombined. Their ability for nonself recognition was studied. The three recombinant proteins were able to bind to glucan (GLU), peptidoglycan (PGN), and lipopolysaccharide (LPS), with MsGal-9 displaying the highest binding activity. Furthermore, rMsGal-9-N exhibited higher binding activity towards GLU in comparison to rMsGal-9-C. Further investigations revealed that the full-length rMsGal-9 could significantly bind to Gram-positive bacteria, Gram-negative bacteria, and fungi, while rMsGal-9-C specifically bound to Escherichia coli. However, rMsGal-9-N did not exhibit significant binding activity towards any microbes. These findings indicate that MsGal-9 requires both CRDs to cooperate in order to fulfill its nonself recognition function. All three recombinant proteins demonstrated agglutination activity towards various microbes, with MsGal-9 and MsGal-9-N displaying a similar broad binding spectrum, while MsGal-9-C agglutinated three types of bacteria. Moreover, both MsGal-9 and MsGal-9-N were capable of coagulating largemouth bass red blood cells, whereas MsGal-9-C lacked this ability. However, MsGal-9-C played a significant role in enhancing the encapsulation of leukocytes in comparison to MsGal-9-N. All three proteins acted as potential damage-associated molecular patterns (DAMPs), inducing apoptosis in leukocytes.


Subject(s)
Bass , Galectins , Animals , Galectins/genetics , Bass/metabolism , Amino Acid Sequence , Sequence Alignment , Receptors, Pattern Recognition/metabolism , Immunity, Innate , Recombinant Proteins , Carbohydrates , Phylogeny
19.
Gastroenterology ; 166(3): 466-482, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38065340

ABSTRACT

BACKGROUND & AIMS: Although immunotherapy shows substantial advancement in colorectal cancer (CRC) with microsatellite instability high, it has limited efficacy for CRC with microsatellite stability (MSS). Identifying combinations that reverse immune suppression and prime MSS tumors for current immunotherapy approaches remains an urgent need. METHODS: An in vitro CRISPR screen was performed using coculture models of primary tumor cells and autologous immune cells from MSS CRC patients to identify epigenetic targets that could enhance immunotherapy efficacy in MSS tumors. RESULTS: We revealed EHMT2, a histone methyltransferase, as a potential target for MSS CRC. EHMT2 inhibition transformed the immunosuppressive microenvironment of MSS tumors into an immunomodulatory one by altering cytokine expression, leading to T-cell-mediated cytotoxicity activation and improved responsiveness to anti-PD1 treatment. We observed galectin-7 up-regulation upon EHMT2 inhibition, which converted a "cold" MSS tumor environment into a T-cell-inflamed one. Mechanistically, CHD4 repressed galectin-7 expression by recruiting EHMT2 to form a cotranscriptional silencing complex. Galectin-7 administration enhanced anti-PD1 efficacy in MSS CRC, serving as a potent adjunct cytokine therapy. CONCLUSIONS: Our findings suggest that targeting the EHMT2/galectin-7 axis could provide a novel combination strategy for immunotherapy in MSS CRC.


Subject(s)
Colorectal Neoplasms , Humans , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Immunotherapy , Cytokines , Galectins/genetics , Microsatellite Repeats , Microsatellite Instability , Tumor Microenvironment , Histocompatibility Antigens , Histone-Lysine N-Methyltransferase
20.
Hum Immunol ; 85(1): 110741, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38092632

ABSTRACT

Psoriasis is a chronic, immune-mediated disorder that mainly affects the skin, with an estimated global prevalence of 2-3%. Galectin-9 (Gal-9) is a ß-galactoside-binding lectin capable of promoting or suppressing the progression of infectious and immune-mediated diseases. Here, we determined if the expression of Gal-9 is observed in psoriasis. Gal-9 levels were measured in plasma of psoriasis (n = 62) and healthy control (HC) (n = 31) using an enzyme-linked immunosorbent assay. In addition, skin samples from seven patients were screened for RNA transcriptomes and the expression of Gal-9 was compared with inflammatory, immune checkpoint molecules (ICMs) and Foxp3. The plasma Gal-9 levels in patients with psoriasis were significantly higher (841 pg/mL) than in HCs (617 pg/mL) (P < 0.0001) and were associated with white blood cell numbers, eosinophils (%) and alanine transaminase. The levels of inflammatory molecules IL-36B, IL-17RA, IL-6R, IL-10, IRF8, TGFb1, and IL-37, and those of ICMs of Tim-3, CTLA-4, CD86, CD80, PD-1LG2, CLEC4G, and Foxp3 were significantly correlated with Gal-9 (LGALS9) in skin. However, HMGB1, CD44, CEACAM1 and PDL1-known to be associated with a variety of Gal-9 biological functions were not correlated with LGALS9. Thus, it is likely that Gal-9 expression affects the disease state of PS.


Subject(s)
Immune Checkpoint Proteins , Psoriasis , Humans , Galectins/genetics , Galectins/metabolism , Enzyme-Linked Immunosorbent Assay , Forkhead Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...