Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 4.354
1.
Food Res Int ; 188: 114496, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823843

Agro-industrial co-products, such as fish gelatin, stand out for their capacity in forming biopolymeric films, being biocompatible and non-toxic; however, its hydrophilicity poses a challenge. Essential oils, rich in bioactives, attract research interest aiming to enhance the protective barrier of films and enable their application in packaging. This study produced films based on cross-linked Nile tilapia skin gelatin, incorporating garlic essential oil. Gelatin obtained through partial collagen hydrolysis from the fish skin and cross-linked with gallic acid had hydroxyproline content of 10.02 g 100 g-1 and gel strength of 287 g, which were consistent with other studies. Oil extraction used supercritical CO2 as a solvent and ethanol as a cosolvent, following a factorial experimental design, evaluating the extraction temperature (40 °C and 70 °C) and cosolvent ratio (1:1 and 1:3), with three central points. Extraction was successful, with higher yields on a dry basis at 70 °C (88.35 %), using a 1:1 cosolvent ratio. Films incorporated with oil exhibited lower water vapor permeability (WVP) than those with only cross-linked gelatin (1.59 (g m-1 s-1 Pa-1) 1011). The film with the most suitable tensile strength (19.07 MPa), elongation (120.91 %), and WVP (1.09 (g m-1 s-1 Pa-1) 1011) properties contained garlic oil extracted at the central point (55 °C and 1:2). Thermal analysis indicated increased melting temperatures in films with added oil, suggesting low thermal degradation. These results suggest that garlic oil addition can improve the properties of fish gelatin-based films, making them promising for biodegradable packaging.


Food Packaging , Garlic , Gelatin , Oils, Volatile , Permeability , Gelatin/chemistry , Oils, Volatile/chemistry , Animals , Garlic/chemistry , Food Packaging/methods , Tensile Strength , Steam , Sulfides/chemistry , Hydrophobic and Hydrophilic Interactions , Skin/chemistry
2.
Food Res Int ; 188: 114484, 2024 Jul.
Article En | MEDLINE | ID: mdl-38823870

The aim of the present study was to provide a first characterization of lacto-fermented garlic manufactured by local small-scale artisanal producers in the Lower Silesia Region (Poland). The lacto-fermented garlic samples showed high nutritional features in terms of antioxidant activity. A total of 86 compounds, belonging to various chemical classes, were identified by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC/MS). Most of these compounds belonged to six main classes, being sulfur compounds, esters and acetates, oxygenated monoterpenes, monoterpene hydrocarbons, and alcohols. Aldehydes, acids, ketones, furans, and phenols were also identified. In the analyzed samples, counts up to 8 log cfu g-1 were observed for lactic acid bacteria. Metataxonomic analysis revealed the presence of Levilactobacillus, Lactiplantibacillus, Latilactobacillus, Secundilactobacillus, Weissella, Leuconostoc, Lactococcus, Pediococcus, and Lacticaseibacillus among the major taxa. These results were confirmed by the isolation and characterization of viable lactic acid bacteria. Indeed, the presence of the closest relatives to Lacticaseibacillus casei group, Pediococcus parvulus, Levilactobacillus brevis, Levilactobacillus parabrevis, and Lactiplantibacillus plantarum group was observed. A good acidification performance in salty garlic-based medium was observed for all the isolates that, between 8 and 15 days of fermentation, reached pH values comprised between 4 and 3.5, depending on the tested species. Of note, 15 out of the 37 lactic acid bacteria isolates (Levilactobacillus parabrevis, Pediococcus parvulus, Lactiplantibacillus plantarum group, and Lacticaseibacillus casei group) showed the presence of the hdcA gene of Gram-positive bacteria encoding for histidine decarboxylase. Furthermore, for 8 out of the 37 isolates the in-vitro exopolysaccharides production was observed. No isolate showed inhibitory activity against the three Listeria innocua strains used as surrogate for Listeria monocytogenes.


Fermentation , Food Microbiology , Garlic , Gas Chromatography-Mass Spectrometry , Solid Phase Microextraction , Volatile Organic Compounds , Volatile Organic Compounds/analysis , Garlic/chemistry , Antioxidants/analysis , Lactobacillales/metabolism , Lactobacillales/isolation & purification , Fermented Foods/microbiology , Fermented Foods/analysis
3.
Pak J Pharm Sci ; 37(2(Special)): 459-462, 2024 Mar.
Article En | MEDLINE | ID: mdl-38822550

The purpose of this study was to examine the potential hypoglycemic effects of administering ginger (Zingiber officinale) and garlic (Allium sativum) to rats with induced type 2 diabetes. A total of forty-five male adult albino rats were randomly assigned to five groups. The groups were named Normal Control, Diabetic Control, Ginger group, Garlic group and a combination group of ginger and garlic. Diabetes was produced in all groups, except the normal control group, using an intraperitoneal injection of streptozotocin at a dosage of 60 mg/body weight. During the course of two months, rats were administered varying amounts of ginger and garlic powders as part of their treatment After the experiment concluded, measurements were taken for glycated hemoglobin, serum glucose, insulin, cholesterol, high density protein, low density protein and liver glycogen levels. These groups exhibited considerably greater serum insulin and high-density lipoprotein concentrations (P<0.05) compared to the diabetic control group. Conversely, body weight, fasting blood glucose, total cholesterol, low density lipoprotein, and glycated hemoglobin levels were significantly lower (P<0.05) in all groups compared to the diabetic control group. A statistically significant increase (P<0.05) increase shown in liver glycogen levels. This study proposes that the utilization of ginger and garlic powders improve the condition of type 2 diabetes and maybe reduce the risk of subsequent diabetic complications.


Blood Glucose , Diabetes Mellitus, Experimental , Garlic , Hypoglycemic Agents , Insulin , Powders , Zingiber officinale , Animals , Garlic/chemistry , Zingiber officinale/chemistry , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/blood , Male , Blood Glucose/drug effects , Blood Glucose/metabolism , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Rats , Insulin/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Glycated Hemoglobin/metabolism , Plant Extracts/pharmacology , Phytotherapy , Liver Glycogen/metabolism , Streptozocin
5.
Anim Biotechnol ; 35(1): 2344208, 2024 Nov.
Article En | MEDLINE | ID: mdl-38741260

Garlic, known for its immune-modulating and antibiotic properties, contains lectins that possess antimicrobial and immunomodulatory effects. Galectins (Gals), which bind ß-galactosides, play a role in modulating immunity and pathological processes. It is hypothesized that garlic's lectin components interfere with animal lectins. St. Croix sheep, known for their resistance to parasites and adaptability, are influenced by dietary supplements for innate immunity. This study evaluated the impact of garlic drench on Galectin gene expression in St. Croix sheep. Adult non-lactating ewes received either garlic juice concentrate or sterile distilled water for four weeks. Blood samples were collected, and plasma and whole blood cells were separated. Galectin secretion was assessed using a Sheep-specific ELISA, while Galectin gene transcription was analyzed through real-time PCR. Garlic administration upregulated LGALS-3 gene expression and significantly increased total plasma protein concentration. Garlic supplementation also affected Galectin secretion, with Gal-1, Gal-3, and Gal-9 showing differential effects.


Galectins , Garlic , Animals , Garlic/chemistry , Galectins/genetics , Galectins/metabolism , Sheep , Female , Dietary Supplements , Gene Expression Regulation/drug effects , Gene Expression/drug effects , Animal Feed/analysis
6.
Cells ; 13(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38786044

Breast cancer includes tumor subgroups with morphological, molecular, and clinical differences. Intrinsic heterogeneity especially characterizes breast tumors with a triple negative phenotype, often leading to the failure of even the most advanced therapeutic strategies. To improve breast cancer treatment, the use of natural agents to integrate conventional therapies is the subject of ever-increasing attention. In this context, garlic (Allium sativum) shows anti-cancerous potential, interfering with the proliferation, motility, and malignant progression of both non-invasive and invasive breast tumor cells. As heterogeneity could be at the basis of variable effects, the main objective of our study was to evaluate the anti-tumoral activity of a garlic extract in breast cancer cells with a triple negative phenotype. Established triple negative breast cancer (TNBC) cell lines from patient-derived xenografts (PDXs) were used, revealing subtype-dependent effects on morphology, cell cycle, and invasive potential, correlated with the peculiar down-modulation of Akt signaling, a crucial regulator in solid tumors. Our results first demonstrate that the effects of garlic on TNBC breast cancer are not unique and suggest that only more precise knowledge of the mechanisms activated by this natural compound in each tumor will allow for the inclusion of garlic in personalized therapeutic approaches to breast cancer.


Garlic , Proto-Oncogene Proteins c-akt , Signal Transduction , Triple Negative Breast Neoplasms , Humans , Garlic/chemistry , Triple Negative Breast Neoplasms/pathology , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/drug therapy , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Female , Cell Line, Tumor , Animals , Phenotype , Cell Proliferation/drug effects , Mice , Plant Extracts/pharmacology , Down-Regulation/drug effects , Cell Movement/drug effects , Xenograft Model Antitumor Assays
7.
Stud Health Technol Inform ; 314: 178-182, 2024 May 23.
Article En | MEDLINE | ID: mdl-38785027

The characterization of local improved varieties as well as the reduction of synthetic chemical fertilizers are sustainable approaches in the vision of a new precision Farming. Aim of our study was to improve the geographical characterization of local ecotypes and to identify peculiar features of new crops in terms of bioactive compounds. NMR and LC-MS metabolite profiling approaches followed by multivariate data analysis were applied to characterize local rosemary and garlic ecotypes. With the aim of applying for a protected designation of origin, orthogonal partial least squares discriminant analysis (OPLS-DA) was used to identify representative sensory quality indicators for Vessalico garlic and rosemary "Eretto Liguria" local ecotypes, Variable Influence on Projections (VIP) values of OPLS-DA indicated six metabolites as quality indicators for Vessalico garlic and sixteen metabolites as quality indicators for rosemary "Eretto Liguria". Finally, to discover and utilize new ecotypes in a sustainable way, Vessalico garlic extracts antiviral activity, previously evaluated against Tomato brown rugose fruit virus (ToBRFV), a Tobamovirus affecting tomato crops, was extended to Pepino mosaic virus (PepMV) with positive results.


Ecotype , Plant Extracts/therapeutic use , Garlic/chemistry , Rosmarinus/chemistry , Agrochemicals
8.
Int J Mol Sci ; 25(10)2024 May 08.
Article En | MEDLINE | ID: mdl-38791153

Garlic is known to have diverse effects on mammalian cells, being cytotoxic, especially to cancer cells, but also protect against oxidative stress. Mammalian erythrocyte is a simple cell devoid of intracellular organelles, protein synthesis ability, and most signaling pathways. Therefore, examination of the effects of garlic on erythrocytes allows for revealing primary events in the cellular action of garlic extract. In this study, human erythrocytes or erythrocyte membranes were exposed to garlic extract at various dilutions. Hemoglobin oxidation to methemoglobin, increased binding of hemoglobin to the membrane, and formation of Heinz bodies were observed. Garlic extract depleted acid-soluble thiols, especially glutathione, and induced a prooxidative shift in the cellular glutathione redox potential. The extract increased the osmotic fragility of erythrocytes, induced hemolysis, and inhibited hemolysis in isotonic ammonium chloride, indicative of decreased membrane permeability for Cl- and increased the membrane fluidity. Fluorescent probes indicated an increased level of reactive oxygen species and induction of lipid peroxidation, but these results should be interpreted with care since the extract alone induced oxidation of the probes (dichlorodihydrofluorescein diacetate and BODIPY C11). These results demonstrate that garlic extract induces oxidative changes in the erythrocyte, first of all, thiol and hemoglobin oxidation.


Erythrocytes , Garlic , Hemolysis , Oxidation-Reduction , Plant Extracts , Garlic/chemistry , Humans , Plant Extracts/pharmacology , Erythrocytes/drug effects , Erythrocytes/metabolism , Hemolysis/drug effects , Oxidation-Reduction/drug effects , Lipid Peroxidation/drug effects , Hemoglobins/metabolism , Erythrocyte Membrane/drug effects , Erythrocyte Membrane/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Glutathione/metabolism , Osmotic Fragility/drug effects
9.
Nutrients ; 16(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732560

Cardiovascular diseases are a broadly understood concept focusing on vascular and heart dysfunction. Lack of physical exercise, type 2 diabetes, obesity, hypertension, dyslipidemia, thromboembolism, and kidney and lung diseases all contribute to the development of heart and blood vessel dysfunction. Although effective and important, traditional treatment with diuretics, statins, beta blockers, calcium inhibitors, ACE inhibitors, and anti-platelet drugs remains a second-line treatment after dietary interventions and lifestyle changes. Scientists worldwide are still looking for an herbal product that would be effective and free from side effects, either taken together with or before the standard pharmacological intervention. Such herbal-originated medication therapy may include Morus alba L. (white mulberry), Elaeagnus rhamnoides (L.) A. Nelson (sea-buckthorn), Allium sativum L. (garlic), Convallaria majalis L. (lily of the valley), Leonurus cardiaca L. (motherwort), and Crataegus spp. (hawthorn). Valuable herbal raw materials include leaves, fruits, seeds, and even thorns. This short review focuses on six herbs that can constitute an interesting and potential therapeutic option in the management of cardiovascular disorders.


Cardiovascular Diseases , Crataegus , Garlic , Hippophae , Morus , Plant Extracts , Crataegus/chemistry , Morus/chemistry , Animals , Hippophae/chemistry , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Leonurus/chemistry , Elaeagnaceae/chemistry , Humans , Phytotherapy
10.
J Dairy Res ; 91(1): 19-24, 2024 Feb.
Article En | MEDLINE | ID: mdl-38757385

The objective of this study was to determine the effect of dietary calcium soaps from garlic (Allium sativum) and willow (Salix babylonica) extracts on nematode loads, nutrient intake and digestibility, nitrogen balance and rumen fermentation kinetics in dairy goats. Nine adult non-lactating Saanen goats were grouped into a complete randomized block design with 3 treatments (n = 3) over a period of 28 d. Animals were fed a diet based on alfalfa hay and a concentrate that was supplemented (65 g/kg DM) with calcium soaps of safflower (control), garlic or willow. Intake of dry matter (DM), organic matter (OM) and neutral detergent fiber (NDF) were not affected by dietary calcium soaps. However, the highest digestibility of DM and OM were observed in willow supplemented goats. In vitro gas kinetics and fermentation profile were not affected by diets. Results from fecal egg count indicated a reduction in total count, Haemonchus spp. and Trychostrongylus spp. for both garlic and willow compared to control. Our results suggest that calcium soaps of garlic or willow extracts can be used to reduce gastrointestinal parasites in goats without compromising productive traits or rumen function.


Animal Feed , Diet , Digestion , Fermentation , Garlic , Goats , Nitrogen , Plant Extracts , Rumen , Salix , Animals , Goats/physiology , Garlic/chemistry , Salix/chemistry , Rumen/parasitology , Rumen/metabolism , Digestion/drug effects , Nitrogen/metabolism , Female , Plant Extracts/pharmacology , Animal Feed/analysis , Diet/veterinary , Goat Diseases/parasitology , Goat Diseases/prevention & control , Dietary Supplements , Nematoda/drug effects , Nutrients , Feces/parasitology , Feces/chemistry , Parasite Egg Count/veterinary , Animal Nutritional Physiological Phenomena , Calcium
11.
Molecules ; 29(10)2024 May 11.
Article En | MEDLINE | ID: mdl-38792119

To investigate the bioactivities of fresh garlic and its processed product, black garlic, we conducted comparative analyses of antioxidant, anti-inflammatory, innate immune activation, and anti-cancer activities in addition to the chemical composition (sugar, amino acid, and polyphenol contents) of these materials. Simultaneous assay using neutrophil-like cells showed that fresh garlic exhibited antioxidant and innate immunostimulatory activities, whereas black garlic displayed a potent anti-inflammatory effect. The antioxidant activity index was correlated with phenol and flavonoid contents, while the innate immunostimulatory activity was correlated with fructan content. Furthermore, some black garlics with low fructose content were found to inhibit the proliferation of UM-UC-3 cancer cells, while other black garlics rich in fructose increased UM-UC-3 cell proliferation. It was shown that the processing of fresh garlic could change the composition of sugars, antioxidants, and amino acids, which have different effects on neutrophil-like cells and UM-UC-3 cells, as well as on bioactivities.


Antioxidants , Cell Proliferation , Garlic , Garlic/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Humans , Cell Proliferation/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Cell Line, Tumor , Amino Acids/analysis , Amino Acids/chemistry , Polyphenols/analysis , Polyphenols/chemistry , Polyphenols/pharmacology , Phenols/analysis , Phenols/chemistry , Phenols/pharmacology , Neutrophils/drug effects , Neutrophils/metabolism , Flavonoids/analysis , Flavonoids/chemistry , Flavonoids/pharmacology
12.
BMC Plant Biol ; 24(1): 421, 2024 May 18.
Article En | MEDLINE | ID: mdl-38760734

BACKGROUND: The heat shock transcription factor (HSF) plays a crucial role in the regulatory network by coordinating responses to heat stress as well as other stress signaling pathways. Despite extensive studies on HSF functions in various plant species, our understanding of this gene family in garlic, an important crop with nutritional and medicinal value, remains limited. In this study, we conducted a comprehensive investigation of the entire garlic genome to elucidate the characteristics of the AsHSF gene family. RESULTS: In this study, we identified a total of 17 AsHSF transcription factors. Phylogenetic analysis classified these transcription factors into three subfamilies: Class A (9 members), Class B (6 members), and Class C (2 members). Each subfamily was characterized by shared gene structures and conserved motifs. The evolutionary features of the AsHSF genes were investigated through a comprehensive analysis of chromosome location, conserved protein motifs, and gene duplication events. These findings suggested that the evolution of AsHSF genes is likely driven by both tandem and segmental duplication events. Moreover, the nucleotide diversity of the AsHSF genes decreased by only 0.0002% from wild garlic to local garlic, indicating a slight genetic bottleneck experienced by this gene family during domestication. Furthermore, the analysis of cis-acting elements in the promoters of AsHSF genes indicated their crucial roles in plant growth, development, and stress responses. qRT-PCR analysis, co-expression analysis, and protein interaction prediction collectively highlighted the significance of Asa6G04911. Subsequent experimental investigations using yeast two-hybridization and yeast induction experiments confirmed its interaction with HSP70/90, reinforcing its significance in heat stress. CONCLUSIONS: This study is the first to unravel and analyze the AsHSF genes in garlic, thereby opening up new avenues for understanding their functions. The insights gained from this research provide a valuable resource for future investigations, particularly in the functional analysis of AsHSF genes.


Garlic , Heat Shock Transcription Factors , Phylogeny , Plant Proteins , Garlic/genetics , Garlic/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Heat Shock Transcription Factors/genetics , Heat Shock Transcription Factors/metabolism , Genome, Plant , Multigene Family , Gene Expression Regulation, Plant , Transcription Factors/genetics , Transcription Factors/metabolism , Heat-Shock Response/genetics
13.
J Int Soc Sports Nutr ; 21(1): 2336095, 2024 Dec.
Article En | MEDLINE | ID: mdl-38576169

PURPOSE: Garlic extract (GA) is purported to enhance antioxidant and anti-inflammatory activity and glucose regulation in humans. The present study investigated the effects of post-exercise GA supplementation on GLUT4 expression, glycogen replenishment, and the transcript factors involved with mitochondrial biosynthesis in exercised human skeletal muscle. METHODS: The single-blinded crossover counterbalanced study was completed by 12 participants. Participants were randomly divided into either GA (2000 mg of GA) or placebo trials immediately after completing a single bout of cycling exercise at 75% Maximal oxygen uptake (VO2max) for 60 minutes. Participants consumed either GA (2000 mg) or placebo capsules with a high glycemic index carbohydrate meal (2 g carb/body weight) immediately after exercise. Muscle samples were collected at 0-h and 3-h post-exercise. Muscle samples were used to measure glycogen levels, GLUT4 protein expression, as well as transcription factors for glucose uptake, and mitochondria biogenesis. Plasma glucose, insulin, glycerol, non-esterified fatty acid (NEFA) concentrations, and respiratory exchange ratio (RER) were also analyzed during the post-exercise recovery periods. RESULTS: Skeletal muscle glycogen replenishment was significantly elevated during the 3-h recovery period for GA concurrent with no difference in GLUT4 protein expression between the garlic and placebo trials. PGC1-α gene expression was up-regulated for both GA and placebo after exercise (p < 0.05). Transcript factors corresponding to muscle mitochondrial biosynthesis were significantly enhanced under acute garlic supplementation as demonstrated by TFAM and FIS1. However, the gene expression of SIRT1, ERRα, NFR1, NFR2, MFN1, MFN2, OPA1, Beclin-1, DRP1 were not enhanced, nor were there any improvements in GLUT4 expression, following post-exercise garlic supplementation. CONCLUSION: Acute post-exercise garlic supplementation may improve the replenishment of muscle glycogen, but this appears to be unrelated to the gene expression for glucose uptake and mitochondrial biosynthesis in exercised human skeletal muscle.


Garlic , Glycogen , Humans , Glycogen/metabolism , Antioxidants/metabolism , Garlic/metabolism , Glucose Transporter Type 4/genetics , Glucose Transporter Type 4/metabolism , Glucose/metabolism , Muscle, Skeletal , Dietary Supplements , RNA, Messenger/metabolism , Mitochondria/metabolism , Blood Glucose/metabolism
14.
Food Res Int ; 184: 114276, 2024 May.
Article En | MEDLINE | ID: mdl-38609208

Inulin, a polysaccharide characterized by a ß-2,1 fructosyl-fructose structure terminating in a glucosyl moiety, is naturally present in plant roots and tubers. Current methods provide average degrees of polymerization (DP) but lack information on the distribution and absolute concentration of each DP. To address this limitation, a reproducible (CV < 10 %) high throughput (<2 min/sample) MALDI-MRMS approach capable of characterizing and quantifying inulin molecules in plants using matched-matrix consisting of α-cyano-4-hydroxycinnamic acid butylamine salt (CHCA-BA), chicory inulin-12C and inulin-13C was developed. The method identified variation in chain lengths and concentration of inulin across various plant species. Globe artichoke hearts, yacón and elephant garlic yielded similar concentrations at 15.6 g/100 g dry weight (DW), 16.8 g/100 g DW and 17.7 g/100 g DW, respectively, for DP range between 9 and 22. In contrast, Jerusalem artichoke demonstrated the highest concentration (53.4 g/100 g DW) within the same DP ranges. Jerusalem artichoke (DPs 9-32) and globe artichoke (DPs 9-36) showed similar DP distributions, while yacón and elephant garlic displayed the narrowest and broadest DP ranges (DPs 9-19 and DPs 9-45, respectively). Additionally, qualitative measurement for all inulin across all plant samples was feasible using the peak intensities normalized to Inulin-13C, and showed that the ratio of yacón, elephant garlic and Jerusalem was approximately one, two and three times that of globe artichoke. This MALDI-MRMS approach provides comprehensive insights into the structure of inulin molecules, opening avenues for in-depth investigations into how DP and concentration of inulin influence gut health and the modulation of noncommunicable diseases, as well as shedding light on refining cultivation practices to elevate the beneficial health properties associated with specific DPs.


Biological Products , Cynara scolymus , Garlic , Helianthus , Inulin , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Antioxidants , Magnetic Resonance Spectroscopy , Lasers
15.
Sci Rep ; 14(1): 9299, 2024 04 23.
Article En | MEDLINE | ID: mdl-38653843

Phthorimaea absoluta is a global constraint to tomato production and can cause up to 100% yield loss. Farmers heavily rely on synthetic pesticides to manage this pest. However, these pesticides are detrimental to human, animal, and environmental health. Therefore, exploring eco-friendly, sustainable Integrated Pest Management approaches, including biopesticides as potential alternatives, is of paramount importance. In this context, the present study (i) evaluated the efficacy of 10 Bacillus thuringiensis isolates, neem, garlic, and fenugreek; (ii) assessed the interactions between the most potent plant extracts and B. thuringiensis isolates, and (iii) evaluated the gut microbial diversity due to the treatments for the development of novel formulations against P. absoluta. Neem recorded the highest mortality of 93.79 ± 3.12% with an LT50 value of 1.21 ± 0.24 days, Bt HD263 induced 91.3 ± 3.68% mortality with LT50 of 2.63 ± 0.11 days, compared to both Bt 43 and fenugreek that caused < 50% mortality. Larval mortality was further enhanced to 99 ± 1.04% when Bt HD263 and neem were combined. Furthermore, the microbiome analyses showed that Klebsiella, Escherichia and Enterobacter had the highest abundance in all treatments with Klebsiella being the most abundant. In addition, a shift in the abundance of the bacterial genera due to the treatments was observed. Our findings showed that neem, garlic, and Bt HD263 could effectively control P. absoluta and be integrated into IPM programs after validation by field efficacy trials.


Bacillus thuringiensis , Plant Extracts , Trigonella , Animals , Plant Extracts/pharmacology , Plant Extracts/chemistry , Trigonella/chemistry , Pest Control, Biological/methods , Moths/drug effects , Moths/microbiology , Larva/drug effects , Larva/microbiology , Garlic/chemistry , Gastrointestinal Microbiome/drug effects , Solanum lycopersicum/microbiology
16.
PLoS One ; 19(4): e0301621, 2024.
Article En | MEDLINE | ID: mdl-38630691

Diabetes mellitus adversely affects the contractile ability of the small intestine. However, there is a paucity of studies investigating the impact of garlic oil on small intestinal motility. This study aimed to evaluate the potential beneficial effects of garlic oil on type 2 diabetes mellitus in rats. Thirty-six adult female Wistar rats (n = 36) were divided into four groups: control, non-diabetic rats supplemented with garlic oil, diabetic rats, and diabetic rats treated with garlic oil. The rats were anesthetized using pentobarbitone (40 mg/kg BW); various motility parameters and oxidative markers were determined in small intestinal segments. Measurements were taken for naso-anal length, waist circumference, fasting blood glucose level (FBG), and plasma insulin level. Compared to the control group, the diabetic rats exhibited a reduction in the average force of contraction and motility index in all small intestinal segments. Furthermore, the rats exhibited a reduction in the average duration of muscle contraction only in the jejunum. The rats also exhibited hyperglycemia, insulin resistance, significant oxidative stress, and obesity. This was proven by changes in motility parameters, fasting blood glucose levels, HOMA-IR values, intestinal MDA levels, and waist circumference. The non-diabetic rats supplemented with garlic oil also exhibited a decrease in the average force of contraction and motility index in all small intestinal segments, despite having consistently higher Lee index and waist circumference values. However, the diabetic rats treated with garlic oil demonstrated improved small intestinal motility in nearly all small intestinal segments and a reduction in oxidative stress. In conclusion, rats with diabetes mellitus experienced a decrease in small intestinal motility, which is primarily driven by oxidative stress. Normal rats administered with garlic oil supplements exhibited similar effects. In contrast, garlic oil treatment in diabetic rats led to enhanced small intestinal motility and a notable anti-hyperglycemic effect, which can be attributed to the potent antioxidant properties of garlic oil.


Allyl Compounds , Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Garlic , Sulfides , Rats , Female , Animals , Rats, Wistar , Blood Glucose , Oxidative Stress
17.
Mol Nutr Food Res ; 68(8): e2300820, 2024 Apr.
Article En | MEDLINE | ID: mdl-38600874

Garlic is rich in bioactive compounds that are effective against colon cancer cells. This study tests the antioxidant and antiproliferative effects of cold-extracted white and black garlic extracts. Black garlic extracted in water (SSU) exhibits the highest antioxidant activity, phenolic content, and flavonoid content, while black garlic extracted in ethanol (SET) shows the lowest values. Caspase-3 activity is notably higher in the white garlic extracted in methanol (BME), white garlic extracted in methanol combines with 5-FU, black garlic extracted in ethanol (SET), black garlic extracted in ethanol combines with 5-fluorouracil (5-FU), and 5-FU treatments compare to the control group (p > 0.05). BME+5-FU displays the highest caspase-8 activity (p < 0.05). A decrease in NF-κB levels is observed in the SET+5-FU group (p>0.05), while COX-2 activities decrease in the BME, SET+5-FU, SET, and 5-FU groups (p>0.05). Wound healing increases in the BME, BME+5-FU, SET+5-FU, and 5-FU groups (p < 0.05). In conclusion, aqueous black garlic extract may exhibit pro-oxidant activity despite its high antioxidant capacity. It is worth noting that exposure to heat-treated food and increased sugar content may lead to heightened inflammation and adverse health effects. This study is the first to combine garlic with chemo-preventive drugs like 5-FU in Caco-2 cells.


Antioxidants , Cell Proliferation , Fluorouracil , Garlic , Plant Extracts , Humans , Garlic/chemistry , Plant Extracts/pharmacology , Fluorouracil/pharmacology , Cell Proliferation/drug effects , Caco-2 Cells , Antioxidants/pharmacology , Adenocarcinoma/drug therapy , Adenocarcinoma/pathology , NF-kappa B/metabolism , Colorectal Neoplasms/drug therapy , Phenols/pharmacology , Phenols/analysis , Cyclooxygenase 2/metabolism , Caspase 3/metabolism , Flavonoids/pharmacology , Flavonoids/analysis
18.
Food Funct ; 15(8): 4436-4445, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38563400

Background: Garlic has antioxidant, anti-inflammatory, cardiovascular improvement and other beneficial effects on human health. However, few studies have evaluated the association of garlic intake with the risk of depressive symptoms. The aim of this prospective cohort was to examine the association between the frequency of raw garlic consumption and depressive symptoms in the general adult population. Methods: A total of 7427 participants (mean ± standard deviation: 39.7 ± 10.5 years) without baseline depressive symptoms were included in the cohort study. Garlic consumption was assessed using a validated food frequency questionnaire, and depressive symptoms were assessed by a Chinese version of the Self-rating Depression Scale score (SDS score ≥ 45). Multivariable Cox proportional hazards models were used to determine the association between garlic consumption and the risk of depressive symptoms. Results: This study identified 1070 cases of depressive symptoms during a median follow-up of 2.0 years, with a depression prevalence of 73.4 cases per 1000 person-years. After multivariate adjustment, the hazard ratios (95% confidence intervals) for depressive symptoms in males were 1.00 (reference) for almost never, 1.05 (0.84, 1.32) for ≤1 time per week, 1.16 (0.90, 1.49) for 2-3 times per week, and 1.31 (0.97, 1.78) for ≥4 times per week, and in females, they were 1.00 (reference) for almost never, 0.85 (0.69, 1.06) for ≤1 time per week, 0.72 (0.54, 0.97) for 2-3 times per week, and 0.78 (0.53, 1.13) for ≥4 times per week. Conclusion: In a large general population, we demonstrate for the first time that moderate raw garlic consumption is associated with a reduced risk of depressive symptoms in females, but not in males. Additional prospective studies with long-term follow-up and randomized controlled trials are necessary to confirm the preliminary results of the current study.


Depression , Garlic , Humans , Garlic/chemistry , Male , Female , Adult , Depression/epidemiology , Middle Aged , Prospective Studies , Cohort Studies , Proportional Hazards Models , Risk Factors , China/epidemiology
19.
BMC Vet Res ; 20(1): 126, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561770

BACKGROUND: Ethno-veterinary practices could be used as a sustainable developmental tool by integrating traditional phytotherapy and husbandry. Phytotherapeutics are available and used worldwide. However, evidence of their antiparasitic efficacy is currently very limited. Parasitic diseases have a considerable effect on pig production, causing economic losses due to high morbidity and mortality. In this respect, especially smallholders and organic producers face severe challenges. Parasites, as disease causing agents, often outcompete other pathogens in such extensive production systems. A total of 720 faecal samples were collected in two farms from three age categories, i.e. weaners, fatteners, and sows. Flotation (Willis and McMaster method), modified Ziehl-Neelsen stained faecal smear, centrifugal sedimentation, modified Blagg technique, and faecal cultures were used to identify parasites and quantify the parasitic load. RESULTS: The examination confirmed the presence of infections with Eimeria spp., Cryptosporidium spp., Balantioides coli (syn. Balantidium coli), Ascaris suum, Oesophagostomum spp., Strongyloides ransomi, and Trichuris suis, distributed based on age category. A dose of 180 mg/kg bw/day of Allium sativum L. and 90 mg/kg bw/day of Artemisia absinthium L. powders, administered for 10 consecutive days, revealed a strong, taxonomy-based antiprotozoal and anthelmintic activity. CONCLUSIONS: The results highlighted the therapeutic potential of both A. sativum and A. absinthium against gastrointestinal parasites in pigs. Their therapeutic effectiveness may be attributed to the content in polyphenols, tocopherols, flavonoids, sterols, sesquiterpene lactones, and sulfoxide. Further research is required to establish the minimal effective dose of both plants against digestive parasites in pigs.


Anti-Infective Agents , Artemisia absinthium , Cryptosporidiosis , Cryptosporidium , Garlic , Intestinal Diseases, Parasitic , Parasites , Swine Diseases , Animals , Swine , Female , Antiparasitic Agents/pharmacology , Antiparasitic Agents/therapeutic use , Farms , Intestinal Diseases, Parasitic/drug therapy , Intestinal Diseases, Parasitic/veterinary , Intestinal Diseases, Parasitic/parasitology , Swine Diseases/drug therapy , Swine Diseases/parasitology , Feces/parasitology , Prevalence
20.
Biomed Mater ; 19(3)2024 Apr 29.
Article En | MEDLINE | ID: mdl-38682577

Fabrication of gold nanoparticles (GNPs) with phytochemicals is an emerging green nanotechnology approach with therapeutic implications. Garlic, known for its culinary and medicinal properties, has been extensively investigated for its anticancer properties. Here, we report a method to substantially enhance the antiproliferative potency of garlic by functionalizing its phytochemicals to GNPs and demonstrate a possible mechanism of action of these nanoparticles in the triple-negative breast cancer cell line, MDA-MB-231. Garlic gold nanoparticles (As-GNPs) were synthesized using garlic extract (As-EX) and gold chloride and characterized using a variety of spectroscopy techniques, and transmission electron microscopy (TEM). Compared to As-EX, which has a negligible effect on the viability of the cells, As-GNPs inhibited cell viability with an IC50of 0.310 ± 0.04 mg ml-1and strongly inhibited the clonogenic and migratory propensities of these cells. As indicated by TEM, the As-GNPs entered the cells via endocytosis and dispersed in the cellular milieu. Since tubulin, the protein involved in cell division, is a verified target for several antiproliferative drugs, we next examined whether the As-GNPs interact with this protein. The As-GNPs showed concentration-dependent binding to purified tubulin, slightly but consistently perturbing its secondary helical integritywithout grossly damaging the tertiary structure of the protein or the net polymer mass of the microtubules, as indicated by a tryptophan-quenching assay, far UV-circular dichroism spectroscopy, anilinonaphthalene sulfonate-binding assay, and polymer mass analysis, respectively. In cells, As-GNPs killed the cancer cells without cell cycle arrest, as evidenced by flow cytometry.


Cell Proliferation , Cell Survival , Garlic , Gold , Metal Nanoparticles , Triple Negative Breast Neoplasms , Humans , Garlic/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Cell Proliferation/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Phytochemicals/pharmacology , Phytochemicals/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Female , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Tubulin/metabolism , Cell Movement/drug effects , Microscopy, Electron, Transmission
...