Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 385
Filter
1.
Mol Biol Rep ; 51(1): 1017, 2024 Sep 26.
Article in English | MEDLINE | ID: mdl-39327364

ABSTRACT

Rodents are commonly used as animal models in studies investigating various experimental conditions, often requiring gene expression analysis. Quantitative real-time reverse transcription PCR (RT-qPCR) is the most widely used tool to quantify target gene expression levels under different experimental conditions in various biological samples. Relative normalization with reference genes is a crucial step in RT-qPCR to obtain reliable quantification results. In this work, the main reference genes used in gene expression studies among the three rodents commonly employed in scientific research-hamster, rat, and mouse-are analyzed and described. An individual literature search for each rodent was conducted using specific search terms in three databases: PubMed, Scopus, and Web of Science. A total of 157 articles were selected (rats = 73, mice = 79, and hamsters = 5), identifying various reference genes. The most commonly used reference genes were analyzed according to each rodent, sample type, and experimental condition evaluated, revealing a great variability in the stability of each gene across different samples and conditions. Classic genes, which are expected to be stably expressed in both samples and conditions analyzed, demonstrated greater variability, corroborating existing concerns about the use of these genes. Therefore, this review provides important insights for researchers seeking to identify suitable reference genes for their validation studies in rodents.


Subject(s)
Gene Expression Profiling , Reference Standards , Rodentia , Animals , Mice , Rats , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Profiling/standards , Real-Time Polymerase Chain Reaction/standards , Real-Time Polymerase Chain Reaction/methods , Rodentia/genetics
2.
Rev Assoc Med Bras (1992) ; 70(6): e20231673, 2024.
Article in English | MEDLINE | ID: mdl-39045957

ABSTRACT

OBJECTIVE: Investigating the potential role of CYR61 in recurrent pregnancy loss is critical for developing diagnostic approaches and treatments for recurrent pregnancy loss. METHODS: In this prospective case-control study, we have investigated the expression patterns of CYR61 in blood samples from participants with recurrent pregnancy loss in their medical history and control group (n=20 vs n=10). Peripheral blood mononuclear cells from study and control groups were isolated and the expression patterns of the CYR61 gene were determined by real-time semi-quantitative reverse transcriptase PCR. RESULTS: A significant decrease in CYR61 gene expression was demonstrated in patients with two or more clinically recognized miscarriages compared with patients without miscarriages or with a history of miscarriage (p<0.01), which may make the CYR61 gene a potential candidate for predicting the risk of recurrent pregnancy loss. DISCUSSION: This study provides a basis for a detailed investigation of candidate biomarkers and molecular players involved in the development of recurrent pregnancy loss and for the development of potential treatment approaches to prevent recurrent pregnancy loss.


Subject(s)
Abortion, Habitual , Cysteine-Rich Protein 61 , Humans , Female , Cysteine-Rich Protein 61/genetics , Abortion, Habitual/genetics , Case-Control Studies , Pregnancy , Prospective Studies , Adult , Real-Time Polymerase Chain Reaction , Biomarkers/blood , Gene Expression/genetics , Reverse Transcriptase Polymerase Chain Reaction , Leukocytes, Mononuclear/metabolism
3.
Mol Biol Rep ; 51(1): 594, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683374

ABSTRACT

BACKGROUND: Metacaspases comprise a family of cysteine proteases implicated in both cell death and cell differentiation of protists that has been considered a potential drug target for protozoan parasites. However, the biology of metacaspases in Plasmodium vivax - the second most prevalent and most widespread human malaria parasite worldwide, whose occurrence of chemoresistance has been reported in many endemic countries, remains largely unexplored. Therefore, the present study aimed to address, for the first time, the expression pattern of metacaspases in P. vivax parasites. METHODS AND RESULTS: P. vivax blood-stage parasites were obtained from malaria patients in the Brazilian Amazon and the expression of the three putative P. vivax metacaspases (PvMCA1-3) was detected in all isolates by quantitative PCR assay. Of note, the expression levels of each PvMCA varied noticeably across isolates, which presented different frequencies of parasite forms, supporting that PvMCAs may be expressed in a stage-specific manner as previously shown in P. falciparum. CONCLUSION: The detection of metacaspases in P. vivax blood-stage parasites reported herein, allows the inclusion of these proteases as a potential candidate drug target for vivax malaria, while further investigations are still required to evaluate the activity, role and essentiality of metacaspases in P. vivax biology.


Subject(s)
Malaria, Vivax , Plasmodium vivax , Protozoan Proteins , Plasmodium vivax/genetics , Plasmodium vivax/isolation & purification , Brazil , Humans , Malaria, Vivax/parasitology , Protozoan Proteins/genetics , Protozoan Proteins/metabolism , Caspases/genetics , Caspases/metabolism , Gene Expression/genetics
4.
Article in English | MEDLINE | ID: mdl-38267766

ABSTRACT

Alzheimer's disease (AD) is an irreversible and neurodegenerative disorder. Its etiology is not clear, but the involvement of genetic components plays a central role in the onset of the disease. In the present study, the expression of 10 genes (APP, PS1 and PS2, APOE, APBA2, LRP1, GRIN2B, INSR, GJB1, and IDE) involved in the main pathways related to AD were analyzed in auditory cortices and cerebellum from 29 AD patients and 29 healthy older adults. Raw analysis revealed tissue-specific changes in genes LRP1, INSR, and APP. A correlation analysis showed a significant effect also tissue-specific AD in APP, GRIN2B, INSR, and LRP1. Furthermore, the E4 allele of the APOE gene revealed a significant correlation with change expression tissue-specific in ABPA2, APP, GRIN2B, LRP1, and INSR genes. To assess the existence of a correction between changes in target gene expression and a probability of AD in each tissue (auditory cortices and cerebellum) an analysis of the effect of expressions was realized and showed that the reduction in the expression of the APP in auditory cortex and GRIN2B cerebellum had a significant effect in increasing the probability of AD, in the same logic, our result also suggesting that increased expression of the LRP1 and INSR genes had a significant effect on increasing the probability of AD. Our results showed tissue-specific gene expression alterations associated with AD and certainly opened new perspectives to characterize factors involved in gene regulation and to obtain possible biomarkers for AD.


Subject(s)
Alzheimer Disease , Antigens, CD , Low Density Lipoprotein Receptor-Related Protein-1 , Humans , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Male , Female , Aged , Low Density Lipoprotein Receptor-Related Protein-1/genetics , Cerebellum/metabolism , Receptors, N-Methyl-D-Aspartate/genetics , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Auditory Cortex/metabolism , Amyloid beta-Protein Precursor/genetics , Aged, 80 and over , Apolipoproteins E/genetics , Gene Expression/genetics , Case-Control Studies
5.
Anim Biotechnol ; 34(7): 2400-2413, 2023 Dec.
Article in English | MEDLINE | ID: mdl-35792778

ABSTRACT

In industrial poultry, quail production has gained increasing prominence over the years. It is known that the intensification of genetic studies has contributed greatly to this growth, through techniques, such as analysis of gene expression by PCR, for example. This study aimed to evaluate stability and recommend reference genes for quantitative real-time PCR in different tissues from male and female broiler quails. The stability of 10 housekeeping genes (GAPDH, RPL5, MRPS27, MRPS30, TFRC, HMBS, EEF1, LDHA, B2M, and UBC) by means Bestkeeper, NormFinder, GeNorm softwares with ΔCq method. The tissues analyzed were: heart, thigh muscle, brain, and spleen, considering that they are tissues commonly used in nutrigenomic, immunological, and poultry performance research. As expected, the reference genes tested showed varying stability depending on the tissue evaluated. According to the present study, the most stable housekeeping genes were MRPS30, TFRC, and HMBS in heart; MRPS30, EEF1, and HMBS in thigh muscle; B2M, GAPDH, and UBC in brain; and EEF1, LDHA, and HMBS in spleen. Therefore, it is recommended to be used as reference genes for gene expression studies of male and female quails.


Subject(s)
Chickens , Gene Expression Profiling , Male , Animals , Female , Gene Expression Profiling/methods , Chickens/genetics , Muscle, Skeletal/metabolism , Software , Real-Time Polymerase Chain Reaction , Gene Expression/genetics
6.
Arq. ciências saúde UNIPAR ; 26(2): 159-174, maio-ago. 2022.
Article in Portuguese | LILACS | ID: biblio-1372969

ABSTRACT

A obesidade é definida pelo excesso de gordura corporal acumulada no tecido adiposo quando o indivíduo atinge valores de IMC igual ou superior a 30 Kg/m2. Constitui um dos principais fatores de risco para várias doenças não transmissíveis (DNTs) como por exemplo, diabetes mellitus tipo 2 (DM2), doenças cardiovasculares, hipertensão arterial, acidente vascular cerebral e até mesmo o câncer. Embora a obesidade esteja diretamente relacionada com o consumo calórico excessivo em relação ao gasto energético diário, sua etiologia pode estar associada aos baixos níveis de atividade física, às alterações neuroendócrinas e aos fatores genéticos. Considerando o componente genético, esta pode ser classificada como sindrômicas e estar associada às alterações cromossômicas estruturais ou numéricas, ou como não sindrômica, quando relacionada, principalmente, com os polimorfismos de nucleotídeos simples (SNPs) em alelos que atuam como herança monogênica, ou ainda com a interação vários genes (poligênica multifatorial). Apesar de existirem muitas etiologias diferentes, normalmente a obesidade é tratada a partir da mesma abordagem, desconsiderando a fisiologia que a desencadeou. Dessa forma, o objetivo do presente trabalho foi abordar a obesidade genética não sindrômica por meio a) da descrição breve de perspectiva histórica sobre seu entendimento; b) da exposição dos principais mecanismos moleculares envolvidos com o controle de peso; c) da compilação dos principais genes e SNPs relacionados; d) da definição dos principais genes; e e) da abordagem das principais perspectivas de intervenção.


Obesity is defined as excess body fat accumulated in the adipose tissue when the individual reaches BMI values equal to or greater than 30 kg/m2. It is one of the main risk factors for several non-communicable diseases (NCDs), such as Type 2 Diabetes mellitus (T2D), cardiovascular diseases, high blood pressure, stroke and even cancer. Although obesity is directly related to excessive calorie intake in relation to daily energy expenditure, its etiology may be associated with low levels of physical activity, neuroendocrine changes, and genetic factors. Considering the genetic component, it can be classified as syndromic and be associated with chromosomal or numerical changes, or as non-syndromic and being related mainly to single nucleotide polymorphisms (SNPs) in alleles that act as monogenic inheritance, or with an interaction of several genes (multifactorial polygenic). Although there are many different etiologies, obesity is usually treated using the same approach, disregarding the physiology that triggered it. Thus, the aim of this study was to address non-syndromic genetic obesity through a) a brief description of a historical perspective on its understanding; b) the exposure of the main molecular mechanisms involved in weight control, c) the compilation of the key genes and related SNPs, d) the definition of the key genes and e) the approach of the main intervention representations.


Subject(s)
Humans , Male , Female , Body Weight/genetics , Epigenomics , Genes/genetics , Obesity/genetics , Body Mass Index , Gene Expression/genetics , Polymorphism, Single Nucleotide/genetics , Receptor, Melanocortin, Type 4/genetics , Melanocortins/genetics , Receptors, Leptin/genetics , Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics , Hypothalamus/physiopathology , Obesity/physiopathology
7.
PLoS Genet ; 18(2): e1010019, 2022 02.
Article in English | MEDLINE | ID: mdl-35120121

ABSTRACT

Accurate prediction of vectors dispersal, as well as identification of adaptations that allow blood-feeding vectors to thrive in built environments, are a basis for effective disease control. Here we adopted a landscape genomics approach to assay gene flow, possible local adaptation, and drivers of population structure in Rhodnius ecuadoriensis, an important vector of Chagas disease. We used a reduced-representation sequencing technique (2b-RADseq) to obtain 2,552 SNP markers across 272 R. ecuadoriensis samples from 25 collection sites in southern Ecuador. Evidence of high and directional gene flow between seven wild and domestic population pairs across our study site indicates insecticide-based control will be hindered by repeated re-infestation of houses from the forest. Preliminary genome scans across multiple population pairs revealed shared outlier loci potentially consistent with local adaptation to the domestic setting, which we mapped to genes involved with embryogenesis and saliva production. Landscape genomic models showed elevation is a key barrier to R. ecuadoriensis dispersal. Together our results shed early light on the genomic adaptation in triatomine vectors and facilitate vector control by predicting that spatially-targeted, proactive interventions would be more efficacious than current, reactive approaches.


Subject(s)
Chagas Disease/epidemiology , Chagas Disease/genetics , Rhodnius/genetics , Adaptation, Biological/genetics , Animals , Disease Vectors , Ecosystem , Ecuador/epidemiology , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Flow , Insect Vectors/genetics , Metagenomics/methods , Polymorphism, Single Nucleotide/genetics , Population Density , Rhodnius/pathogenicity , Transcriptome/genetics , Trypanosoma cruzi/genetics
8.
Sci Rep ; 12(1): 2038, 2022 02 07.
Article in English | MEDLINE | ID: mdl-35132125

ABSTRACT

Insulin-like growth factor 2 (IGF2) and autophagy-related genes have been proposed as biomolecules of interest related to idiopathic Parkinson's disease (PD). The objective of this study was to determine the IGF2 and IGF1 levels in plasma and peripheral blood mononuclear cells (PBMCs) from patients with moderately advanced PD and explore the potential correlation with autophagy-related genes in the same blood samples. IGF1 and IGF2 levels in patients' plasma were measured by ELISA, and the IGF2 expression levels were determined by real-time PCR and Western blot in PBMCs. The expression of autophagy-related genes was evaluated by real-time PCR. The results show a significant decrease in IGF2 plasma levels in PD patients compared with a healthy control group. We also report a dramatic decrease in IGF2 mRNA and protein levels in PBMCs from PD patients. In addition, we observed a downregulation of key components of the initial stages of the autophagy process. Although IGF2 levels were not directly correlated with disease severity, we found a correlation between its levels and autophagy gene profile expression in a sex-dependent pattern from the same samples. To further explore this correlation, we treated mice macrophages cell culture with α-synuclein and IGF2. While α-synuclein treatment decreased levels Atg5, IGF2 treatment reverted these effects, increasing Atg5 and Beclin1 levels. Our results suggest a relationship between IGF2 levels and the autophagy process in PD and their potential application as multi-biomarkers to determine PD patients' stages of the disease.


Subject(s)
Autophagy/genetics , Gene Expression Regulation/genetics , Gene Expression/genetics , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Parkinson Disease/diagnosis , Parkinson Disease/genetics , Animals , Autophagy-Related Protein 5/metabolism , Beclin-1/metabolism , Cells, Cultured , Humans , Insulin-Like Growth Factor II/pharmacology , Mice , RNA, Messenger/genetics , RNA, Messenger/metabolism , Severity of Illness Index , alpha-Synuclein/pharmacology
9.
PLoS Genet ; 18(2): e1010017, 2022 02.
Article in English | MEDLINE | ID: mdl-35108269

ABSTRACT

Slash pine (Pinus elliottii Engelm.) is an important timber and resin species in the United States, China, Brazil and other countries. Understanding the genetic basis of these traits will accelerate its breeding progress. We carried out a genome-wide association study (GWAS), transcriptome-wide association study (TWAS) and weighted gene co-expression network analysis (WGCNA) for growth, wood quality, and oleoresin traits using 240 unrelated individuals from a Chinese slash pine breeding population. We developed high quality 53,229 single nucleotide polymorphisms (SNPs). Our analysis reveals three main results: (1) the Chinese breeding population can be divided into three genetic groups with a mean inbreeding coefficient of 0.137; (2) 32 SNPs significantly were associated with growth and oleoresin traits, accounting for the phenotypic variance ranging from 12.3% to 21.8% and from 10.6% to 16.7%, respectively; and (3) six genes encoding PeTLP, PeAP2/ERF, PePUP9, PeSLP, PeHSP, and PeOCT1 proteins were identified and validated by quantitative real time polymerase chain reaction for their association with growth and oleoresin traits. These results could be useful for tree breeding and functional studies in advanced slash pine breeding program.


Subject(s)
Pinus/growth & development , Pinus/genetics , Plant Extracts/genetics , Brazil , China , Gene Expression/genetics , Gene Expression Regulation, Plant/genetics , Genome-Wide Association Study/methods , Plant Breeding/methods , Polymorphism, Single Nucleotide/genetics , Transcriptome/genetics , Wood/genetics , Wood/growth & development
10.
Sci Rep ; 12(1): 2890, 2022 02 21.
Article in English | MEDLINE | ID: mdl-35190586

ABSTRACT

Malignant melanoma is the main cause of death in patients with skin cancer. Overexpression of Proteolipid protein 2 (PLP2) increased tumor metastasis and the knockdown of PLP2 inhibited the growth and metastasis of melanoma cells. In the present work, we studied the antitumor activity of peptide Rb4 derived from protein PLP2. In vitro, Rb4 induced F-actin polymerization, prevented F-actin depolymerization and increased the ER-derived cytosolic calcium. Such effects were associated with necrosis of murine melanoma B16F10-Nex2 cells and with inhibition of the viability of human cancer cell lines. Loss of plasma membrane integrity, dilation of mitochondria, cytoplasm vacuolation and absence of chromatin condensation characterized tumor cell necrosis. Cleavage of PARP-1 and inhibition of RIP1 expression were also observed. In vivo, peptide Rb4 reduced the lung metastasis of tumor cells and delayed the subcutaneous melanoma growth in a syngeneic model. Rb4 induced the expression of two DAMPs molecules, HMGB1 and calreticulin, in B16F10-Nex2. Our results suggest that peptide Rb4 acts directly on tumor cells inducing the expression of DAMPs, which trigger the immunoprotective effect in vivo against melanoma cells. We suggest that peptide Rb4 is a promising compound to be developed as an anticancer drug.


Subject(s)
Cell Death/genetics , Gene Expression/genetics , Gene Expression/physiology , MARVEL Domain-Containing Proteins/genetics , MARVEL Domain-Containing Proteins/pharmacology , Melanoma/genetics , Melanoma/pathology , Poly (ADP-Ribose) Polymerase-1/physiology , Proteolipids/genetics , Proteolipids/pharmacology , Skin Neoplasms/genetics , Skin Neoplasms/pathology , Animals , Antineoplastic Agents , Calreticulin/genetics , Calreticulin/metabolism , Cell Line, Tumor , Gene Expression/drug effects , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Humans , MARVEL Domain-Containing Proteins/metabolism , MARVEL Domain-Containing Proteins/physiology , Mice , Necrosis , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism , Peptides , Poly (ADP-Ribose) Polymerase-1/genetics , Poly (ADP-Ribose) Polymerase-1/metabolism , Proteolipids/metabolism , Proteolipids/physiology , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
11.
Anim. Reprod. (Online) ; 19(3): e20210131, set. 2022. tab, graf, ilus
Article in English | VETINDEX | ID: biblio-1403210

ABSTRACT

Yak is the livestock on which people live in plateau areas, but its fecundity is low. Follicular development plays a decisive role in yak reproductive performance. As an important regulatory factor, the expression of long non-coding RNA (lncRNAs) in yak follicular development and its regulatory mechanism remains unclear. To explore the differentially expressed lncRNAs between healthy and atretic follicular in yaks. We used RNA-seq to construct lncRNA, miRNA, and mRNA expression profiles in yak atretic and healthy follicles, and the RNA sequence results were identified by qPCR. In addition, the correlation of lncRNA and targeted mRNA was also analyzed by Starbase software. Moreover, lncRNA/miRNA/mRNA networks were constructed by Cytoscape software, and the network was verified by dual-luciferase analysis. A total of 682 novel lncRNAs, 259 bta-miRNAs, and 1704 mRNAs were identified as differentially expressed between healthy and atretic follicles. Among them, 135 mRNAs were positively correlated with lncRNA expression and 97 were negatively correlated, which may be involved in the yak follicular development. In addition, pathway enrichment analysis of differentially expressed lncRNA host genes by Kyoto Genome Encyclopedia (KEGG) showed that host genes were mainly involved in hormone secretion, granulosa cell apoptosis, and follicular development. In conclusion, we identified a series of novel lncRNAs, constructed the lncRNA ceRNA regulatory network, and provided comprehensive resources for exploring the role of lncRNAs in yak ovarian follicular development.(AU)


Subject(s)
Animals , Female , Cattle/genetics , Gene Expression/genetics , Follicular Atresia/physiology , RNA-Seq/veterinary
12.
São Paulo; s.n; 2022. 59 p.
Thesis in Portuguese | LILACS, Inca | ID: biblio-1367281

ABSTRACT

Introdução: O carcinoma endometrial (CE) foi classificado pelo sistema de Bokhman em tipos I e II com base em observações clínicas e epidemiológicas. O tipo I corresponde aos tumores de baixo grau e o tipo II aos tumores de alto grau. Adicionalmente, estudos recentes propuseram que a classificação também fosse baseada em aspectos histológicos e moleculares com base nos dados do TCGA (The Cancer Genome Atlas). Foram identificados quatro grupos moleculares distintos de CE: (1) com mutações no POLE (fenótipo "ultramutado"), (2) "alto número de cópias" (mutações em TP53), (3) !baixo número de cópias" (em que os tumores não apresentam nenhuma das alterações descritas nos outros tipos) e (4) tumores com predomínio de instabilidade de microssatélites. A imunohistoquímica (IHC) para proteínas do gene de reparo é usada para identificar a deficiência de genes de reparo do DNA (Mismatch Repair ­ MMR) associada à instabilidade de microssatélites(MSI). A coloração nuclear positiva representa a expressão retida de proteínas MMR, enquanto a perda completa representa deficiência de MMR. O padrão de expressão heterogênea (HEP), ou seja, concomitância em um mesmo espécime de áreas positivas e totalmente negativas tem sido observada em CE. No presente momento, as principais diretrizes determinam que a presença de HEP seja interpretada como expressão retida de proteínas MMR. Não há, porém, consenso quanto à classificação e interpretação de HEP, nem conhecimento do impacto da classificação de HEP como subtipo molecular diferente em relação às características clínicas e prognósticas. Objetivos: realizar a classificação molecular dos casos de CE com HEP das proteínas relacionadas aos genes de reparo do DNA e comparação do perfil molecular entre áreas positivas e negativas no estudo imunohistoquímico. Materiais e Métodos: De janeiro/2007 a dezembro/2017 foram identificados 356 casos de CE, 16 deles com HEP. A classificação molecular foi feita com base no protocolo PROMISE para CE. Cada área (expressão retida ou perdida) foi macrodissecada e o status molecular foi avaliado separadamente quanto ao status MSI (Idylla), metilação do promotor MLH1 (NGS - ponto de corte para positividade ≥ 15%), status POLE (NGS) e status p53 (IHC). Variáveis clínicas e patológicas também foram avaliadas e correlacionadas com cada caso. Resultados: A histologia endometrioide foi predominante (15 casos), bem como ausência de invasão linfovascular (11 casos), ausência de padrão MELF (10 casos), graus FIGO 1 e 2 (13 casos), invasão miometrial < 50% (13 casos) e estadiamento T1 (13 casos). Todos os pacientes estavam vivos e sem evidência de doença no último acompanhamento, exceto por um caso, cujo status de sobrevida era desconhecido. Dois casos que seriam descritos como apresentando expressão retida de proteínas relacionadas a genes de reparo do DNA por IHC apresentaram-se na análise molecular com instabilidade de microssatélites(MSI-H). Nos casos de HEP, a proteína MSH6 foi a maisfrequentemente envolvida (9 casos, 7 isolados). A proteína MLH1 apresentou-se alterada em 6 casos, sendo a única proteína associada a co-alterações (com MSH6 e PMS2). Seis casos apresentaram-se metilados por MLH1, padrão encontrado tanto em áreas com perda quanto em áreas com retenção das proteínas relacionadas a MMR por IHC e dois casos apresentaram metilação em apenas uma das áreas. Em relação ao status de POLE, 6 casos apresentaram mutação, 2 com mutações tanto em áreas com perda quanto em áreas com retenção de expressão, 3 apenas na área com perda e 1 apenas na área com retenção. Dois casos apresentam padrão aberrante de p53 (MSH6 alterados) em ambas as áreas. Conclusão: em pacientes portadoras CE e com tumores apresentando HEP a correlação entre a IHC e os achados moleculares é heterogênea e o diagnóstico entre casos com retenção ou das proteínas relacionadas a MMR não é factível apenas com realização de IHC. A análise molecular deve ser realizada em todos os casos de CE com HEP para determinar adequadamente as característicasintrínsecas de cada tumor. Devido à raridade desse achado, esta proposta é financeiramente viável e tem o potencial de mudar a prática clínica em um subconjunto de pacientes, permitindo tratamentos inovadores. HEP deve ser relatado como um padrão distinto e não considerado como uma expressão sinônimo de expressão retida de proteínas MMR em CE.


Introduction: Endometrial adenocarcinoma is classified by the Bokhman system in type I and II based on clinical and epidemiological observations, whereas the type I represents low grade tumors and type II high grade tumors. Additionally, a classification based on histological aspects and molecular profile has been proposed. The TCGA (The Cancer Genome Atlas) identified four molecular groups of endometrial adenocarcinomas: (1) mutations in POLE ("ultramutated" phenotype), (2) "high copy number" (mutations in TP53), (3) "low number of copies " (in which the tumors do not exhibit any of the changes described in the other types) and (4) tumors with predominance of microsatellite instability. In a small number of patients, heterogeneous staining is observed in the evaluation protein expression for mismatch repair genes. Objectives: to evaluate and perform the molecular classifications of cases of endometrial carcinoma with heterogeneous staining by IHC of proteins related to mismatch repair genes and comparison of the molecular profile of positive and negative areas in the IHC study. Cases and Methods: From January/2007 to December/2017 354 cases with EC were identified, 16 of those with HEP. Molecular classification was made based on the PROMISE protocol for EC. Each area (retained and lost expression) was macrodissected and molecular status was evaluated separately regarding MSI status (Idylla), MLH1 promoter methylation (NGS - cutoff for positivity ≥ 15%), POLE status (NGS) and p53 status (IHC). Clinical and pathologic variables were also evaluated and correlated with each case. Results: Endometrioid histology was predominant (15 cases), as absent lymphovascular invasion (11 cases), absence of MELF pattern (10 cases), FIGO Grade 1 and 2 (13 cases), and T1 stage (13 cases). All patients were alive and disease-free at the last follow-up. Two cases that would be described as retained by IHC presented in the molecular analysis as MSI-H. In HEP cases MSH6 was more frequent (9 cases, 7 isolated). MLH1 was altered in 6 cases, and wasthe only protein associated with co-alterations (with MSH6 and PMS2). Six cases were MLH1 methylated, found both in lost and retained areas. As POLE status, there were 6 mutated cases, 2 of those with mutations both in lost and retained areas, and 3 the lost area. Two cases had p53 aberrant pattern (MSH6 altered), that was seen both in the retained and in the lost areas. Conclusion: Correlation between IHC and molecular findings is heterogeneous, and determination between retained or lost expression of MMR proteins by IHC when HEP occurs, however feasible, does not represent the actual molecular alterations. Thus, molecular analysis should be performed every case to adequately determine the intrinsic features of each tumor. Due to the rarity of this finding, this is financially viable and has the potential to change clinical practice in a subset of patients. HEP should be reported as a distinct pattern, and not considered as a synonym expression of retained expression of MMR proteins in EC.


Subject(s)
Humans , Female , Adenocarcinoma/genetics , Gene Expression/genetics , Endometrial Neoplasms/genetics , DNA Repair/genetics , Immunohistochemistry , Retrospective Studies
13.
São Paulo; s.n; s.n; 2022. 77 p. graf, tab.
Thesis in Portuguese | LILACS | ID: biblio-1379350

ABSTRACT

A bactéria Gram-negativa Pseudomonas aeruginosa é um patógeno oportunista frequentemente associado a vítimas de queimaduras graves ou indivíduos com fibrose cística, sendo os isolados resistentes a carbepenêmicos dessa espécie considerados pela OMS como uma das maiores ameaças ao controle de infecções. O estabelecimento da infecção por esse patógeno é dependente de uma série de fatores de virulência, entre eles o pilus tipo IV (T4P), que possui papel importante na adesão a superfícies e motilidade do tipo twitching, essenciais para a colonização do hospedeiro. Uma das moléculas importantes na diferenciação entre as formas séssil e planctônica de P. aeruginosa é o segundo mensageiro bis-(3,5)-di-guanosina monofosfato cíclico (c-di-GMP), cuja síntese é feita enzimaticamente por diguanilato ciclases (DGCs). DgcP é uma DGC localizada nos polos da célula, que tem sua atividade de síntese de c-di-GMP aumentada na presença da proteína FimV, essencial para a montagem do T4P em P. aeruginosa. Neste trabalho, ensaios de microscopia de fluorescência, organização e expressão gênica foram realizados com o objetivo de aumentar a compreensão sobre o papel de DgcP em relação a sua expressão e aos fatores que regulam o T4P de P. aeruginosa. A proteína DgcP em fusão com mNeonGreen no C-terminal, expressa a partir do locus cromossômico, se localiza de maneira predominantemente bipolar tanto na linhagem selvagem quanto nos mutantes ΔpilA, ΔpilR e ΔchpA, evidenciando que seu padrão de localização não depende dos sistemas de regulação Pil-Chp e PilS-PilR. Ensaios de RT-PCRmostraram que dgcP se encontra em operon com PA14_72430 e dsbA1, indicando um papel celular conjunto entre esses genes, até o momento, desconhecido. Por fim, ensaios de qRT-PCR revelaram que os níveis de mRNA de dgcP são invariáveis nas linhagens WT, ΔpilA, ΔpilR, ΔchpA e ΔfimV, cultivadas em meio líquido ou meio sólido. Os resultados aqui mostrados, combinados com trabalhos prévios do nosso e de outros grupos, sugerem que DgcP é uma diguanilato ciclase responsável por geração constante de c-di-GMP nos polos da célula, possivelmente, atuando na sinalização local dependente do dinucleotídeo cíclico, cuja localização e atividade não são dependentes dos sistemas de regulação que atuam sobre o T4P


The Gram-negative bacterium Pseudomonas aeruginosa is an opportunistic pathogen often associated with severe burn victims or individuals with cystic fibrosis, which carbapenem-resistant isolates were classified by th World Health Organization classified one of the greatest threats to infection control. The establishment of infection by this pathogen is dependent on a series of virulence factors, including the type IV pilus (T4P), which plays an important role in adhesion to surfaces and twitching motility, essential features for host colonization. Bis-(3',5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a second messenger that involved in processes of biofilm formation, motility, and virulence. The diguanylate cyclase DgcP synthetizes cdi-GMP and it is located at the cell poles, and its activity depends on the scaffold protein FimV, essential for T4P assembly in P. aeruginosa. By increasing c-di-GMP levels, DgcP decreases flagellum-dependent motility and increases biofilm formation. In this work, fluorescence microscopy, gene organization and expression assays were performed to understand the whether DgcP localization and expression are under the control of T4P regulatory proteins. Fluorescence microscopy analysis showed that DgcP localizes predominantly at both cell poles in ΔpilA, ΔpilR, and ΔchpA mutants, showing that its localization pattern does not depend on the Pil-Chp and PilS-PilR systems. Furthermore, RT-PCR assays showed that dgcP is found in an operon with PA14_72430 and dsbA1, indicating an unknown putative related cellular role for these genes. Finally, qRT-PCR assays indicated that DgcP expression is invariant in ΔpilA, ΔpilR, ΔchpA, and ΔfimV mutants, either in liquid or solid medium. The results shownhere, combined with previous work by ours and other groups, suggest that DgcP is a diguanylate cyclase responsible for constant generation of c-di-GMP at the cell poles, possibly acting in local signaling dependent on the cyclic dinucleotide, but that is not under the control of the known T4P regulatory systems


Subject(s)
Operon , Pseudomonas aeruginosa/classification , Infection Control/instrumentation , World Health Organization , Burns , Gene Expression/genetics , Cells , Virulence Factors/adverse effects , Infections/complications , Microscopy, Fluorescence/methods
14.
Braz. J. Pharm. Sci. (Online) ; 58: e19946, 2022. tab, graf
Article in English | LILACS | ID: biblio-1383979

ABSTRACT

Abstract The present study evaluated 56 patients diagnosed with Chronic Lymphocytic Leukemia (CLL) and a control group of 44 clinically healthy subjects with no previous history of leukemia. Genetic expressions of AKT and microRNAs were evaluated by quantitative PCR (qPCR). A significant increase in AKT gene expression in patients when compared to controls was observed (p = 0.017). When the patients were stratified according to Binet subgroups, a significant difference was observed between the subgroups, with this protein kinase appearing more expressed in the B+C subgroup (p = 0.013). Regarding miRNA expression, miR-let-7b and miR-26a were reduced in CLL patients, when compared to controls. However, no significant differences were observed in these microRNA expressions between the Binet subgroups (A versus B+C). By contrast, miR-21 to miR-27a oncogenes showed no expression difference between CLL patients and controls. AKT protein kinase is involved in the signaling cascade that occurs with BCR receptor activation, leading to increased lymphocyte survival and protection against the induction of cell death in CLL. Thus, increased AKT protein kinase expression and the reduction of miR-let-7b and miR-26a, both tumor suppressors, may explain increased lymphocyte survival in CLL patients and may be promising markers for the prognostic evaluation of this disease.


Subject(s)
Humans , Male , Female , Protein Kinases , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Patients , Gene Expression/genetics , Apoptosis , MicroRNAs/pharmacology , Healthy Volunteers
15.
Biomed Res Int ; 2021: 5262000, 2021.
Article in English | MEDLINE | ID: mdl-34901273

ABSTRACT

Cystic fibrosis (CF) is an autosomal recessive disorder, caused by diverse genetic variants for the CF transmembrane conductance regulator (CFTR) protein. Among these, p.Phe508del is the most prevalent variant. The effects of this variant on the physiology of each tissue remains unknown. This study is aimed at predicting cell signaling pathways present in different tissues of fibrocystic patients, homozygous for p.Phe508del. The study involved analysis of two microarray datasets, E-GEOD-15568 and E-MTAB-360 corresponding to the rectal and bronchial epithelium, respectively, obtained from the ArrayExpress repository. Particularly, differentially expressed genes (DEGs) were predicted, protein-protein interaction (PPI) networks were designed, and centrality and functional interaction networks were analyzed. The study reported that p.Phe508del-mutated CFTR-allele in homozygous state influenced the whole gene expression in each tissue differently. Interestingly, gene ontology (GO) term enrichment analysis revealed that only "neutrophil activation" was shared between both tissues; however, nonshared DEGs were grouped into the same GO term. For further verification, functional interaction networks were generated, wherein no shared nodes were reported between these tissues. These results suggested that the p.Phe508del-mutated CFTR-allele in homozygous state promoted tissue-specific pathways in fibrocystic patients. The generated data might further assist in prediction diagnosis to define biomarkers or devising therapeutic strategies.


Subject(s)
Cystic Fibrosis/genetics , Signal Transduction/genetics , Alleles , Biomarkers/metabolism , Epithelium/physiology , Gene Expression/genetics , Homozygote , Humans , Mutation/genetics , Protein Interaction Maps/genetics , Systems Biology/methods
16.
Genes (Basel) ; 12(12)2021 12 17.
Article in English | MEDLINE | ID: mdl-34946949

ABSTRACT

DNA methylation and histone posttranslational modifications are epigenetics processes that contribute to neurophenotype of Down Syndrome (DS). Previous reports present strong evidence that nonhistone high-mobility-group N proteins (HMGN) are epigenetic regulators. They play important functions in various process to maintain homeostasis in the brain. We aimed to analyze the differential expression of five human HMGN genes in some brain structures and age ranks from DS postmortem brain samples. Methodology: We performed a computational analysis of the expression of human HMGN from the data of a DNA microarray experiment (GEO database ID GSE59630). Using the transformed log2 data, we analyzed the differential expression of five HMGN genes in several brain areas associated with cognition in patients with DS. Moreover, using information from different genome databases, we explored the co-expression and protein interactions of HMNGs with the histones of nucleosome core particle and linker H1 histone. Results: We registered that HMGN1 and HMGN5 were significantly overexpressed in the hippocampus and areas of prefrontal cortex including DFC, OFC, and VFC of DS patients. Age-rank comparisons between euploid control and DS individuals showed that HMGN2 and HMGN4 were overexpressed in the DS brain at 16 to 22 gestation weeks. From the BioGRID database, we registered high interaction scores of HMGN2 and HMGN4 with Hist1H1A and Hist1H3A. Conclusions: Overall, our results give strong evidence to propose that DS would be an epigenetics-based aneuploidy. Remodeling brain chromatin by HMGN1 and HMGN5 would be an essential pathway in the modification of brain homeostasis in DS.


Subject(s)
Cognition/physiology , Down Syndrome/genetics , HMGN Proteins/genetics , Brain/metabolism , Brain Mapping/methods , Databases, Genetic , Down Syndrome/metabolism , Epigenesis, Genetic/genetics , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , HMGN Proteins/metabolism , HMGN1 Protein/genetics , HMGN2 Protein/genetics , Hippocampus/metabolism , Humans , Nucleosomes/genetics , Prefrontal Cortex/metabolism , Trans-Activators/genetics , Transcription Factors/genetics , Transcriptome/genetics
17.
Sci Rep ; 11(1): 23290, 2021 12 02.
Article in English | MEDLINE | ID: mdl-34857816

ABSTRACT

The Fuegians, ancient inhabitants of Tierra del Fuego, are an exemplary case of a cold-adapted population, since they were capable of living in extreme climatic conditions without any adequate clothing. However, the mechanisms of their extraordinary resistance to cold remain enigmatic. Brown adipose tissue (BAT) plays a crucial role in this kind of adaptation, besides having a protective role on the detrimental effect of low temperatures on bone structure. Skeletal remains of 12 adult Fuegians, collected in the second half of XIX century, were analyzed for bone mineral density and structure. We show that, despite the unfavorable climate, bone mineral density of Fuegians was close to that seen in modern humans living in temperate zones. Furthermore, we report significant differences between Fuegians and other cold-adapted populations in the frequency of the Homeobox protein Hox-C4 (HOXC4) rs190771160 variant, a gene involved in BAT differentiation, whose identified variant is predicted to upregulate HOXC4 expression. Greater BAT accumulation might therefore explain the Fuegians extreme cold-resistance and the protection against major cold-related damage. These results increase our understanding of how ecological challenges have been important drivers of human-environment interactions during Humankind history.


Subject(s)
Acclimatization/genetics , Adaptation, Physiological/genetics , Bone Density/genetics , Cold Temperature , Ecology , Gene-Environment Interaction , Genomics , Adipose Tissue, Brown/cytology , Adipose Tissue, Brown/physiology , Body Remains , Cell Differentiation/genetics , Chile , Gene Expression/genetics , Genetic Variation , Homeodomain Proteins/genetics , Humans , Up-Regulation/genetics
18.
Sci Rep ; 11(1): 21671, 2021 11 04.
Article in English | MEDLINE | ID: mdl-34737385

ABSTRACT

Trypanosoma cruzi-the causative agent of Chagas disease-like other kinetoplastids, relies mostly on post-transcriptional mechanisms for regulation of gene expression. However, trypanosomatids undergo drastic changes in nuclear architecture and chromatin structure along their complex life cycle which, combined with a remarkable set of reversible histone post-translational modifications, indicate that chromatin is also a target for control of gene expression and differentiation signals in these organisms. Chromatin-modifying enzymes have a direct impact on gene expression programs and DNA metabolism. In this work, we have investigated the function of T. cruzi histone deacetylase 4 (TcHDAC4). We show that, although TcHDAC4 is not essential for viability, metacyclic trypomastigote TcHDAC4 null mutants show a thin cell body and a round and less condensed nucleus located very close to the kinetoplast. Sixty-four acetylation sites were quantitatively evaluated, which revealed H2AT85ac, H4K10ac and H4K78ac as potential target sites of TcHDAC4. Gene expression analyses identified three chromosomes with overrepresented regions of differentially expressed genes in the TcHDAC4 knockout mutant compared with the wild type, showing clusters of either up or downregulated genes. The adjacent chromosomal location of some of these genes indicates that TcHDAC4 participates in gene expression regulation during T. cruzi differentiation.


Subject(s)
Gene Expression Regulation/genetics , Histone Deacetylases/deficiency , Histone Deacetylases/genetics , Trypanosoma cruzi/genetics , Acetylation , Animals , Cell Culture Techniques , Chagas Disease/genetics , Chlorocebus aethiops , Chromatin/metabolism , Gene Expression/genetics , Humans , Life Cycle Stages/genetics , Protein Processing, Post-Translational/genetics , Protozoan Proteins/genetics , Repressor Proteins/deficiency , Repressor Proteins/genetics , Trypanosoma cruzi/metabolism , Vero Cells
19.
Mol Biol Rep ; 48(12): 7947-7952, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34708341

ABSTRACT

BACKGROUND: Bladder cancer is the leading transitional cell carcinoma affecting men and women with high morbidity and mortality rates, justifying the need to develop new molecular target therapies using microRNAs. This study aimed to evaluate the behavior of the T24 cell line after transfection with miR-Let-7c precursor mimic through invasion, migration, apoptosis, and cell cycle assays. METHODS AND RESULTS: T24 cell was transfected with the Let-7c mimic and its respective control and evaluated after 24 h. The expression levels of miR-Let-7c were analyzed by qPCR. We performed wound healing, Matrigel and flow cytometry, apoptosis, and cell cycle assays to determine its effect on cellular processes. Cells transfected with miR-Let-7c showed increased apoptosis rates (p = 0.019), decreased migration 24 h (p = 0.031) and 48 h (p = 0.0006), invasion potential (p = 0.0007), and cell proliferation (p = 0.002). CONCLUSIONS: Our results demonstrate that miR-Let-7c can act in different pathways of the carcinogenic cellular processes of muscle-invasive urothelial carcinoma cells, inhibiting cell proliferation and increasing apoptosis levels, consequently limiting their invasion potential. However, further studies should be carried out better to elucidate this microRNA's role in high-grade urothelial carcinomas and unveil which targets this microRNA may present, which are intrinsically related to the cancer survival pathways.


Subject(s)
MicroRNAs/genetics , Urinary Bladder Neoplasms/genetics , Apoptosis/genetics , Carcinogenesis/genetics , Carcinoma, Transitional Cell/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/metabolism , Neoplasm Invasiveness/genetics , Transfection , Urinary Bladder Neoplasms/metabolism
20.
Life Sci ; 286: 120044, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34637792

ABSTRACT

AIM: To elucidate the mechanism behind the sustained high levels of phosphorylated eIF2α in HaCaT cells post-UVB. MAIN METHODS: In this study, expression levels of the machinery involved in the dephosphorylation of eIF2α (GADD34, CReP and PP1), as well as the PERK-eIF2α-ATF4-CHOP, IRE1α/XBP1s and ATF6α signaling cascades, were analyzed by western blot and fluorescence microscope. KEY FINDINGS: Our data showed that UVB induces the phosphorylation of eIF2α, which induces the translation of ATF4 and consequently the expression of CHOP and GADD34. Nevertheless, UVB also suppresses the translation of ATF4 and GADD34 in HaCaT cells via a p-eIF2α independent mechanism. Therefore, the lack of ATF4, GADD34 and CReP is responsible for the sustained phosphorylation of eIF2α. Finally, our data also showed that UVB selectively modifies PERK and downregulates ATF6α expression but does not induce activation of the IRE1α/XBP1s pathway in HaCaT cells. SIGNIFICANCE: Novel mechanism to explain the prolonged phosphorylation of eIF2α post-UVB irradiation.


Subject(s)
Eukaryotic Initiation Factor-2/metabolism , Keratinocytes/radiation effects , Activating Transcription Factor 4/metabolism , Cell Line , Endoribonucleases/metabolism , Gene Expression/genetics , Gene Expression Regulation/genetics , Humans , Keratinocytes/metabolism , Phosphorylation , Protein Biosynthesis , Protein Phosphatase 1/metabolism , Protein Serine-Threonine Kinases/metabolism , Signal Transduction/genetics , Transcription Factor CHOP/metabolism , Ultraviolet Rays/adverse effects , eIF-2 Kinase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL