Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.925
Filter
1.
Mol Biol Rep ; 51(1): 888, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39105829

ABSTRACT

OBJECTIVE: To explore the relationship between rs1410996 polymorphism of CFH gene and essential hypertension (EH) in the Yunnan Han population. METHODS: rs1410996 of CFH gene was genotyped based on the collected clinical phenotypes of the EH patients (n = 520) and healthy people (n = 494). RESULTS: On the genotype model and dominance model, there was no relationship between rs1410996 of CFH gene and EH after adjustment (P > 0.05). On the dominance model of male EH patients, the pulse pressure (PP) level of CC genotype carriers was higher than that of (CT + TT) genotype carriers after adjustment (P < 0.05). CONCLUSION: rs1410996 of CFH gene has no correlation with the genetic susceptibility to EH in the Yunnan Han population, but it is related to the PP level in male patients.


Subject(s)
Asian People , Complement Factor H , Essential Hypertension , Genetic Predisposition to Disease , Genotype , Polymorphism, Single Nucleotide , Humans , Male , Essential Hypertension/genetics , Middle Aged , Female , China , Complement Factor H/genetics , Polymorphism, Single Nucleotide/genetics , Asian People/genetics , Gene Frequency/genetics , Aged , Case-Control Studies , Adult , Hypertension/genetics , Genetic Association Studies/methods , Alleles , Blood Pressure/genetics
2.
J Neurogenet ; 38(2): 35-40, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38975976

ABSTRACT

Pathogenic, biallelic variants in SORD were identified in 2020 as a novel cause for autosomal-recessive Charcot-Marie-Tooth disease (CMT) type 2, an inherited neuropathy. SORD codes for the enzyme sorbitol dehydrogenase. Loss of this enzyme's activity leads to an increase of sorbitol in serum. We retrospectively screened 166 patients with axonal neuropathy (predominantly CMT type 2, but including intermediate form of CMT and distal hereditary motor neuropathy (dHMN)) without identified genetic etiology for SORD mutations at a single large German neuromuscular center. Clinical and electrophysiology exam findings were analyzed for genotype-phenotype correlation. Five patients of the total cohort of 166 patients harbored pathogenic variants in SORD (3%). The homozygous frameshift variant c.757delG (p.Ala253Glnfs*27) was the most common (4/5). One additional case carried this variant on one allele only and an additional pathogenic missense variant c.458C > A (p.Ala153Asp) on the other allele. Age of onset ranged from early infancy to mid-twenties, and phenotypes comprised axonal CMT (4) and dHMN (1). Our findings strengthen the importance of screening for pathogenic variants in SORD, especially in patients with genetically unconfirmed axonal neuropathy, especially CMT type 2 and dHMN.


Subject(s)
Charcot-Marie-Tooth Disease , Phenotype , Humans , Charcot-Marie-Tooth Disease/genetics , Female , Male , Adult , Mutation , Retrospective Studies , Genetic Association Studies/methods , Child , Adolescent , Axons/pathology , Young Adult , Child, Preschool
3.
Nat Genet ; 56(8): 1644-1653, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39039281

ABSTRACT

Individuals with ultrarare disorders pose a structural challenge for healthcare systems since expert clinical knowledge is required to establish diagnoses. In TRANSLATE NAMSE, a 3-year prospective study, we evaluated a novel diagnostic concept based on multidisciplinary expertise in Germany. Here we present the systematic investigation of the phenotypic and molecular genetic data of 1,577 patients who had undergone exome sequencing and were partially analyzed with next-generation phenotyping approaches. Molecular genetic diagnoses were established in 32% of the patients totaling 370 distinct molecular genetic causes, most with prevalence below 1:50,000. During the diagnostic process, 34 novel and 23 candidate genotype-phenotype associations were identified, mainly in individuals with neurodevelopmental disorders. Sequencing data of the subcohort that consented to computer-assisted analysis of their facial images with GestaltMatcher could be prioritized more efficiently compared with approaches based solely on clinical features and molecular scores. Our study demonstrates the synergy of using next-generation sequencing and phenotyping for diagnosing ultrarare diseases in routine healthcare and discovering novel etiologies by multidisciplinary teams.


Subject(s)
High-Throughput Nucleotide Sequencing , Phenotype , Humans , Female , Male , High-Throughput Nucleotide Sequencing/methods , Child , Germany , Exome Sequencing/methods , Adolescent , Genetic Association Studies/methods , Genetic Testing/methods , Child, Preschool , Prospective Studies , Adult , Neurodevelopmental Disorders/genetics , Neurodevelopmental Disorders/diagnosis , Infant , Young Adult
4.
Int J Cardiol ; 411: 132273, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38880420

ABSTRACT

BACKGROUND: Catalogues of pathogenic genetic mutations in hypertrophic cardiomyopathy (HCM) are disproportionately small when compared to that of the size of the population with South Asian ancestry and their collective increased risk of heart disease. METHODS: We conducted clinical exome sequencing of 200 HCM patients to identified cardiomyopathy-associated genetic mutations. The clinical and echocardiographic characteristics of genotype-positive and genotype-negative patients were compared, and the likelihood of detecting a positive genetic test result was evaluated. Allelic burden analysis was done to compare the minor allele frequencies (MAF) of the pathogenic or likely pathogenic (P/LP) variants and variants of uncertain significance (VUSs) identified in the cohort against various population genomics databases. RESULTS: The genetic yield was 40% for P/LP variants, with MYBPC3 and MYH7 as the predominant sarcomere genes. Younger age-at-diagnosis, family history of HCM, asymmetric hypertrophic (ASH) pattern, the ratio of the interventricular septum to posterior wall thickness (IVS/PW ratio), left atrial (LA) dimensions, severe mitral regurgitation grade (MR grade), late gadolinium enhancement (LGE) detected fibrosis and absence of hypertension were associated with an increased likelihood of HCM-associated variants. Patients who experienced ventricular tachycardia and premature cardiovascular death were significantly likely to carry MYBPC3 or loss-of-function variants. LA and interventricular septal (IVS) dimensions were associated with MYH7 variants. The rare variant burden for P/LP variants and VUSs was significantly enriched in HCM cases compared to population controls. CONCLUSION: Our study provides a comprehensive evaluation of HCM-associated genetic mutations from an Indian population. The identified genotype-phenotype associations could improve the yield of targeted genetic testing in HCM.


Subject(s)
Cardiomyopathy, Hypertrophic , Exome Sequencing , Humans , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/diagnosis , Male , Female , Middle Aged , Adult , Exome Sequencing/methods , Genetic Heterogeneity , Genetic Association Studies/methods , Mutation , Cohort Studies , Exome/genetics , Genotype , Carrier Proteins
5.
EBioMedicine ; 105: 105194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38941956

ABSTRACT

BACKGROUND: Drug development for atrial fibrillation (AF) has failed to yield new approved compounds. We sought to identify and prioritise potential druggable targets with support from human genetics, by integrating the available evidence with bioinformatics sources relevant for AF drug development. METHODS: Genetic hits for AF and related traits were identified through structured search of MEDLINE. Genes derived from each paper were cross-referenced with the OpenTargets platform for drug interactions. Confirmation/validation was demonstrated through structured searches and review of evidence on MEDLINE and ClinialTrials.gov for each drug and its association with AF. FINDINGS: 613 unique drugs were identified, with 21 already included in AF Guidelines. Cardiovascular drugs from classes not currently used for AF (e.g. ranolazine and carperitide) and anti-inflammatory drugs (e.g. dexamethasone and mehylprednisolone) had evidence of potential benefit. Further targets were considered druggable but remain open for drug development. INTERPRETATION: Our systematic approach, combining evidence from different bioinformatics platforms, identified drug repurposing opportunities and druggable targets for AF. FUNDING: KK is supported by Barts Charity grant G-002089 and is mentored on the AFGen 2023-24 Fellowship funded by the AFGen NIH/NHLBI grant R01HL092577. RP is supported by the UCL BHF Research Accelerator AA/18/6/34223 and NIHR grant NIHR129463. AFS is supported by the BHF grants PG/18/5033837, PG/22/10989 and UCL BHF Accelerator AA/18/6/34223 as well as the UK Research and Innovation (UKRI) under the UK government's Horizon Europe funding guarantee EP/Z000211/1 and by the UKRI-NIHR grant MR/V033867/1 for the Multimorbidity Mechanism and Therapeutics Research Collaboration. AF is supported by UCL BHF Accelerator AA/18/6/34223. CF is supported by UCL BHF Accelerator AA/18/6/34223.


Subject(s)
Atrial Fibrillation , Drug Development , Atrial Fibrillation/genetics , Atrial Fibrillation/drug therapy , Humans , Computational Biology/methods , Genetic Association Studies/methods , Genetic Predisposition to Disease , Drug Repositioning/methods , Drug Discovery , Anti-Arrhythmia Agents/therapeutic use , Anti-Arrhythmia Agents/pharmacology
6.
Neurogenetics ; 25(3): 201-213, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38850354

ABSTRACT

Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are X-linked recessive allelic muscle diseases caused by dystrophin gene mutations. Eight hundred thirty-seven patients admitted between 1997 and 2022 were included in the study. Two hundred twenty patients were analyzed by multiplex PCR (mPCR) alone. Five hundred ninety-five patients were investigated by multiplex ligation-dependent probe amplification (MLPA), and 54 patients were examined by sequencing. Deletion was detected in 60% (132/220) of the cases in the mPCR group only and in 58.3% (347/595) of the cases with MLPA analysis. The rates of deletion and duplication were 87.7% and 12.3%, respectively, in the MLPA analysis. Single exon deletions were the most common mutation type. The introns 43-55 (81.8%) and exons 2-21 (13.1%) regions were detected as hot spots in deletions. It was determined that 89% of the mutations were suitable for exon skipping therapy. The reading frame rule did not hold in 7.6% of D/BMD cases (17/224). We detected twenty-five pathogenic/likely pathogenic variants in sequencing, five of which were novel variants. Nonsense mutation was the most common small mutation (44%). 21% of DMD patients were familial. We detected germline mosaicism in four families (4.3%) in the large rearrangement group and one gonosomal mosaicism in a family with a nonsense mutation. This is the largest study examining genotype and phenotype data in Turkish D/BMD families investigated by MLPA analysis. The reading frame hypothesis is not valid in all cases. Sharing the genotype and phenotype characteristics of these cases in the literature will shed light on the molecular structure of DMD and guide gene therapy research. In genetic counseling, carrier screening in the family and possible gonadal mosaicism should be emphasized.


Subject(s)
Dystrophin , Exons , Muscular Dystrophy, Duchenne , Phenotype , Humans , Muscular Dystrophy, Duchenne/genetics , Turkey , Male , Dystrophin/genetics , Child , Female , Adolescent , Child, Preschool , Exons/genetics , Genetic Association Studies/methods , Mutation , Adult , Genotype , Young Adult , Multiplex Polymerase Chain Reaction
7.
BMC Bioinformatics ; 25(1): 214, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877401

ABSTRACT

BACKGROUND: The exploration of gene-disease associations is crucial for understanding the mechanisms underlying disease onset and progression, with significant implications for prevention and treatment strategies. Advances in high-throughput biotechnology have generated a wealth of data linking diseases to specific genes. While graph representation learning has recently introduced groundbreaking approaches for predicting novel associations, existing studies always overlooked the cumulative impact of functional modules such as protein complexes and the incompletion of some important data such as protein interactions, which limits the detection performance. RESULTS: Addressing these limitations, here we introduce a deep learning framework called ModulePred for predicting disease-gene associations. ModulePred performs graph augmentation on the protein interaction network using L3 link prediction algorithms. It builds a heterogeneous module network by integrating disease-gene associations, protein complexes and augmented protein interactions, and develops a novel graph embedding for the heterogeneous module network. Subsequently, a graph neural network is constructed to learn node representations by collectively aggregating information from topological structure, and gene prioritization is carried out by the disease and gene embeddings obtained from the graph neural network. Experimental results underscore the superiority of ModulePred, showcasing the effectiveness of incorporating functional modules and graph augmentation in predicting disease-gene associations. This research introduces innovative ideas and directions, enhancing the understanding and prediction of gene-disease relationships.


Subject(s)
Algorithms , Deep Learning , Humans , Computational Biology/methods , Protein Interaction Maps/genetics , Genetic Predisposition to Disease/genetics , Neural Networks, Computer , Genetic Association Studies/methods
8.
Mol Genet Genomics ; 299(1): 64, 2024 Jun 23.
Article in English | MEDLINE | ID: mdl-38909345

ABSTRACT

Familial Hypophosphatasia presents a complex diagnostic challenge due to its wide-ranging clinical manifestations and genetic heterogeneity. This study aims to elucidate the molecular underpinnings of familial Hypophosphatasia within a Tunisian family harboring a rare c.896 T > C mutation in the ALPL gene, offering insights into genotype-phenotype correlations and potential therapeutic avenues. The study employs a comprehensive approach, integrating biochemical examination, genetic analysis, structural modeling, and functional insights to unravel the impact of this rare mutation. Genetic investigation revealed the presence of the p.Leu299Pro mutation within the ALPL gene in affected family members. This mutation is strategically positioned in proximity to both the catalytic site and the metal-binding domain, suggesting potential functional consequences. Homology modeling techniques were employed to predict the 3D structure of TNSALP, providing insights into the structural context of the mutation. Our findings suggest that the mutation may induce conformational changes in the vicinity of the catalytic site and metal-binding domain, potentially affecting substrate recognition and catalytic efficiency. Molecular dynamics simulations were instrumental in elucidating the dynamic behavior of the tissue-nonspecific alkaline phosphatase isozyme (TNSALP) in the presence of the p.Leu299Pro mutation. The simulations indicated alterations in structural flexibility near the mutation site, with potential ramifications for the enzyme's overall stability and function. These dynamic changes may influence the catalytic efficiency of TNSALP, shedding light on the molecular underpinnings of the observed clinical manifestations within the Tunisian family. The clinical presentation of affected individuals highlighted significant phenotypic heterogeneity, underscoring the complex genotype-phenotype correlations in familial Hypophosphatasia. Variability in age of onset, severity of symptoms, and radiographic features was observed, emphasizing the need for a nuanced understanding of the clinical spectrum associated with the p.Leu299Pro mutation. This study advances our understanding of familial Hypophosphatasia by delineating the molecular consequences of the p.Leu299Pro mutation in the ALPL gene. By integrating genetic, structural, and clinical analyses, we provide insights into disease pathogenesis and lay the groundwork for personalized therapeutic strategies tailored to specific genetic profiles. Our findings underscore the importance of comprehensive genetic and clinical evaluation in guiding precision medicine approaches for familial Hypophosphatasia.


Subject(s)
Alkaline Phosphatase , Hypophosphatasia , Pedigree , Humans , Hypophosphatasia/genetics , Hypophosphatasia/diagnosis , Male , Female , Alkaline Phosphatase/genetics , Alkaline Phosphatase/chemistry , Tunisia , Adult , Molecular Dynamics Simulation , Catalytic Domain/genetics , Mutation , Genetic Association Studies/methods , Middle Aged
9.
Gene ; 926: 148647, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38848879

ABSTRACT

PURPOSE: Microphthalmia is a severe congenital ocular disease featured by abnormal ocular development. The aim of this study was to detail the genetic and clinical characteristics of a large cohort of Chinese patients with microphthalmia related to MFRP variants, focusing on uncovering genotype-phenotype correlations. METHODS: Fifty microphthalmia patients from 44 unrelated Chinese families were recruited. Whole-exome sequencing (WES) was conducted to analyze the coding regions and adjacent intronic regions of MFRP. Axial lengths (AL) were measured for all probands and available family members. Protein structures of mutations with high frequency in our cohort were predicted. The genotype-phenotype correlations were explored by statistical analysis. RESULTS: Sixteen MFRP variants were detected in 17 families, accounting for 38.64 % of all microphthalmia families. There were 9 novel mutations (c.427+1G>C, c.428-2A>C, c.561_575del:p.A188_E192del, c.836G>A:p.C279Y, c.1010_1021del:p.H337_E340del:p.Y479*, c.1516_1517del:p.S506Pfs*66, c.1561T>G:p.C521G, c.1616G>A:p.R539H, and c.1735C>T:p.P579S) and six previously reported variants in MFRP, with p.E496K and p.H337_E340del being highly frequent, found in eight (47.06 %) and two families (11.76 %), respectively. Seven variants (43.75 %) were located in the C-terminal cysteine-rich frizzled-related domain (CRD) (7/16, 43.75 %). Protein prediction implicated p.E496K and p.H337_E340del mutations might lead to a destabilization of the MFRP protein. The average AL of all 42 eyes was 16.02 ± 1.05 mm, and 78.36 % of eyes with AL < 16 mm harbored p.E496K variant. Twenty-six eyes with variant variant had shorter AL than that of the other 16 eyes without this variant (p = 0.006), highlighting a novel genotype-phenotype correlation. CONCLUSIONS: In this largest cohort of Chinese patients with microphthalmia, the 9 novel variants, high frequency of p.E496W, and mutation hotspots in CRD reveals unique insights into the MFRP mutation spectrum among Chinese patients, indicating ethnic variability. A new genotype-phenotype correlation that p.E496K variant associated with a shorter AL is unveiled. Our findings enhance the current knowledge of MFRP-associated microphthalmia and provide valuable information for prenatal diagnosis as well as future therapy.


Subject(s)
Asian People , Exome Sequencing , Genetic Association Studies , Membrane Proteins , Microphthalmos , Mutation , Humans , Microphthalmos/genetics , Microphthalmos/pathology , Male , Female , Genetic Association Studies/methods , Membrane Proteins/genetics , Asian People/genetics , Child , Exome Sequencing/methods , Child, Preschool , Pedigree , Cohort Studies , China , Infant , Eye Proteins/genetics , Phenotype , Adolescent , East Asian People
10.
Birth Defects Res ; 116(5): e2333, 2024 May.
Article in English | MEDLINE | ID: mdl-38716581

ABSTRACT

OBJECTIVE: This study aims to determine if 5,10-methylenetetrahydrofolate reductase (MTHFR C677T and A1298C) and methionine synthase reductase (MTRR A66G) gene polymorphisms were associated with fatty acid (FA) levels in mothers of fetuses with neural tube defects (NTDs) and whether these associations were modified by environmental factors. METHODS: Plasma FA composition was assessed using capillary gas chromatography. Concentrations of studied FA were compared between 42 mothers of NTDs fetuses and 30 controls as a function of each polymorphism by the Kruskal-Wallis nonparametric test. RESULTS: In MTHFR gene C677T polymorphism, cases with (CT + TT) genotype had lower monounsaturated FAs (MUFA) and omega-3 polyunsaturated FA (n-3 PUFA) levels, but higher omega-6 polyunsaturated FAs (n-6 PUFA) and omega-6 polyunsaturated FAs: omega-3 polyunsaturated FAs (n-6:n-3) ratio levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype had lower MUFA levels, but higher PUFA and n-6 PUFA levels. Controls with (AG + GG) genotype had lower n-6 PUFA levels. In MTHFR gene C677T polymorphism, cases with smoking spouses and (CT + TT) genotype had lower MUFA and n-3 PUFA levels, but higher PUFA, n-6 PUFA, and n-6:n-3 ratio levels. Cases with (CT + TT) genotype and who used sauna during pregnancy had lower n-3 PUFA levels. In MTRR gene A66G polymorphism, cases with (AG + GG) genotype and who used sauna during pregnancy had higher PUFA and n-6 PUFA levels. CONCLUSIONS: Further research is required to clarify the association of FA metabolism and (MTHFR, MTRR) polymorphisms with NTDs.


Subject(s)
Fatty Acids , Ferredoxin-NADP Reductase , Genetic Predisposition to Disease , Methylenetetrahydrofolate Reductase (NADPH2) , Neural Tube Defects , Polymorphism, Single Nucleotide , Humans , Methylenetetrahydrofolate Reductase (NADPH2)/genetics , Methylenetetrahydrofolate Reductase (NADPH2)/metabolism , Female , Neural Tube Defects/genetics , Ferredoxin-NADP Reductase/genetics , Ferredoxin-NADP Reductase/metabolism , Adult , Fatty Acids/metabolism , Polymorphism, Single Nucleotide/genetics , Pregnancy , Genotype , Case-Control Studies , Risk Factors , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/genetics , Fatty Acids, Omega-6/metabolism , Fatty Acids, Omega-6/blood , Genetic Association Studies/methods
11.
Mol Biol Rep ; 51(1): 614, 2024 May 05.
Article in English | MEDLINE | ID: mdl-38704785

ABSTRACT

BACKGROUND: Ankylosing spondylitis (AS) is often regarded as the prototypical manifestation of spondylo-arthropathies that prevalently involves the axial skeleton with the potential attribution of ERAP2 polymorphisms to AS predisposition. The purpose of this study was to determine the genetic association between ERAP2 gene rs2910686, and rs2248374 single nucleotide polymorphisms (SNPs) and the risk of ankylosing spondylitis in the Egyptian population. METHODS AND RESULTS: A cross-sectional work involved 200 individuals: 100 AS individuals diagnosed based on modified New York criteria in 1984 with 100 healthy controls matched in age and gender. The study included a comprehensive evaluation of historical data, clinical examinations, and evaluation of the activity of the disease using the Bath Ankylosing Spondylitis Disease Activity Index (BASDAI). A comprehensive laboratory and radiological evaluation were conducted, accompanied by an assessment and genotyping of the ERAP2 gene variants rs2248374 and rs2910686. This genotyping was performed utilizing a real-time allelic discrimination methodology.Highly statistically substantial variations existed among the AS patients and the healthy control group regarding rs2910686 and rs2248374 alleles. There was a statistically significant difference between rs2910686 and rs2248374 regarding BASDAI, BASFI, mSASSS, ASQoL, V.A.S, E.S.R, and BASMI in the active AS group. CONCLUSIONS: ERAP2 gene SNPs have been identified as valuable diagnostic biomarkers for AS patients in the Egyptian population being a sensitive and non-invasive approach for AS diagnosis especially rs2910686. Highly statistically significant variations existed among the AS patients and the healthy control group regarding rs2910686 alleles and genotypes.Further research is recommended to explore the potential therapeutic implications of these SNPs.


Subject(s)
Aminopeptidases , Genetic Predisposition to Disease , North African People , Spondylitis, Ankylosing , Adult , Female , Humans , Male , Middle Aged , Alleles , Aminopeptidases/genetics , Case-Control Studies , Cross-Sectional Studies , Egypt/epidemiology , Gene Frequency/genetics , Genetic Association Studies/methods , Genotype , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/genetics
12.
Birth Defects Res ; 116(5): e2351, 2024 May.
Article in English | MEDLINE | ID: mdl-38766695

ABSTRACT

BACKGROUND: Pathogenic copy number variants (pCNVs) are associated with fetal ultrasound anomalies, which can be efficiently identified through chromosomal microarray analysis (CMA). The primary objective of the present study was to enhance understanding of the genotype-phenotype correlation in fetuses exhibiting absent or hypoplastic nasal bones using CMA. METHODS: Enrolled in the present study were 94 cases of fetuses with absent/hypoplastic nasal bone, which were divided into an isolated absent/hypoplastic nasal bone group (n = 49) and a non-isolated group (n = 45). All pregnant women enrolled in the study underwent karyotype analysis and CMA to assess chromosomal abnormalities in the fetuses. RESULTS: Karyotype analysis and CMA detection were successfully performed in all cases. The results of karyotype and CMA indicate the presence of 11 cases of chromosome aneuploidy, with trisomy 21 being the most prevalent among them. A small supernumerary marker chromosome (sSMC) detected by karyotype analysis was further interpreted as a pCNV by CMA. Additionally, CMA detection elicited three cases of pCNVs, despite normal findings in their karyotype analysis results. Among them, one case of Roche translocation was identified to be a UPD in chromosome 15 with a low proportion of trisomy 15. Further, a significant difference in the detection rate of pCNVs was observed between non-isolated and isolated absent/hypoplastic nasal bone (24.44% vs. 8.16%, p < .05). CONCLUSION: The present study enhances the utility of CMA in diagnosing the etiology of absent or hypoplastic nasal bone in fetuses. Further, isolated cases of absent or hypoplastic nasal bone strongly suggest the presence of chromosomal abnormalities, necessitating genetic evaluation through CMA.


Subject(s)
DNA Copy Number Variations , Karyotyping , Microarray Analysis , Nasal Bone , Pregnancy Trimester, Second , Prenatal Diagnosis , Humans , Female , Nasal Bone/diagnostic imaging , Nasal Bone/abnormalities , Pregnancy , Microarray Analysis/methods , Adult , Prenatal Diagnosis/methods , DNA Copy Number Variations/genetics , Karyotyping/methods , Fetus , Chromosome Aberrations/embryology , Ultrasonography, Prenatal/methods , Genetic Association Studies/methods
13.
Article in English | MEDLINE | ID: mdl-38717009

ABSTRACT

BACKGROUND: Pathogenic variants in hnRNPA1 have been reported in amyotrophic lateral sclerosis (ALS) patients. However, studies on hnRNPA1 mutant spectrum and pathogenicity of variants were rare. METHODS: We performed whole exome sequencing of ALS-associated genes and subsequent verification of rare variants in hnRNPA1 in our ALS patients. The hnRNPA1 mutations reported in literature were reviewed and combined with our results to determine the genotype-phenotype relationship. Functional analysis of the novel variant p.G195A was performed in vitro by transfection of mutant hnRNPA1 into 293T cell. RESULTS: Among 207 ALS patients recruited, 3 rare hnRNPA1 variants were identified (mutant frequency 1.45%), including two recurrent mutations (p.P340S and p.G283R), and a novel rare variant p.G195A. In combination with previous reports, there are 27 ALS patients with 15 hnRNPA1 mutations identified. Disease onset age was 47.90 ± 1.52 years with predominant limb onset. The p.P340S mutation caused flail arm syndrome (FAS) in two independent families with extended life expectancy. The newly identified p.G195A mutation, lying at the start of the PrLD ("prion-like" domain)/LCD (low-complexity domain), causes local structural changes in 3D protein prediction. Upon sodium arsenite exposure, mutant hnRNPA1 retained in the nucleus but deficit of cytoplasmic G3BP1-positive stress granule clearance was observed. This is different from the p.P340S mutation which caused both cytoplasmic translocation and stress granule formation. No cytoplasmic TDP-43 translocation was observed. CONCLUSION: Mutations in hnRNPA1 are overall minor in ALS patients. The p.P340S mutation is associated with manifestation of FAS. Mutations in LCD of hnRNPA1 cause stress granule misprocessing.


Subject(s)
Amyotrophic Lateral Sclerosis , Genetic Association Studies , Heterogeneous Nuclear Ribonucleoprotein A1 , Mutation , Humans , Amyotrophic Lateral Sclerosis/genetics , Heterogeneous Nuclear Ribonucleoprotein A1/genetics , Male , Middle Aged , Female , Mutation/genetics , Genetic Association Studies/methods , Adult , Exome Sequencing , Aged
14.
Mol Genet Genomics ; 299(1): 52, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38744777

ABSTRACT

BACKGROUND: Cystic fibrosis (CF) is a rare multi-systemic recessive disorder. The spectrum and the frequencies of CFTR mutations causing CF vary amongst different populations in Europe and the Middle East. In this study, we characterised the distribution of CF-causing mutations (i.e. pathogenic variants in the  CFTR gene) in a representative CF cohort from the Kingdom of Bahrain based on a three-decade-long analysis at a single tertiary centre. We aim to improve CF genetic diagnostics, introduce of CF neonatal screening and provide CFTR modulator therapy (CFTRm). METHODS: CFTR genotyping  and associated clinical information were drawn from a longitudinal cohort. We sequenced 56 people with CF (pwCF) that had one or both CFTR mutations unidentified and carried out comprehensive bioinformatic- and family-based segregation analyses of detected variants, including genotype-phenotype correlations and disease incidence estimates. The study methodology could serve as a basis for other non-European CF populations with a high degree of consanguinity. RESULTS: Altogether 18 CF-causing mutations  were identified, 15 of which were not previously detected in Bahrain, accounting for close to 100% of all population-specific alleles. The most common alleles comprise c.1911delG [2043delG; 22.8%], c.2988+1G > A [3120+1G>A; 16.3%], c.2989-1G>A [3121-1G>A; 14.1%], c.3909C>G [N1303K; 13.0%], and c.1521_1523delCTT [p.PheF508del; 7.6%]. Although the proportion of 1st cousin marriages has decreased to 50%, the frequency of homozygosity in our pwCF is 67.4%, thereby indicating that CF still occurs in large, often related, families. pwCF in Bahrain present with faltering growth, pancreatic insufficiency and classical sino-pulmonary manifestations. Interestingly, two pwCF also suffer from sickle cell disease. The estimated incidence of CF in Bahrain based on data from the last three decades is 1 in 9,880 live births. CONCLUSION: The most commonCF-causing  mutations in Bahraini pwCF were identified, enabling more precise diagnosis, introduction of two-tier neonatal screening and fostering administration of CFTRm.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Mutation , Humans , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/genetics , Bahrain , Male , Female , Infant, Newborn , Child , Neonatal Screening , Child, Preschool , Infant , Genotype , Genetic Association Studies/methods , Adolescent , Alleles , Cohort Studies , Adult
15.
Mol Genet Genomics ; 299(1): 55, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771357

ABSTRACT

Neurodevelopmental disorders (NDDs) are a clinically and genetically heterogeneous group of early-onset pediatric disorders that affect the structure and/or function of the central or peripheral nervous system. Achieving a precise molecular diagnosis for NDDs may be challenging due to the diverse genetic underpinnings and clinical variability. In the current study, we investigated the underlying genetic cause(s) of NDDs in four unrelated Pakistani families. Using exome sequencing (ES) as a diagnostic approach, we identified disease-causing variants in established NDD-associated genes in all families, including one hitherto unreported variant in RELN and three recurrent variants in VPS13B, DEGS1, and SPG11. Overall, our study highlights the potential of ES as a tool for clinical diagnosis.


Subject(s)
Exome Sequencing , Genetic Association Studies , Neurodevelopmental Disorders , Pedigree , Vesicular Transport Proteins , Humans , Neurodevelopmental Disorders/genetics , Male , Female , Vesicular Transport Proteins/genetics , Genetic Association Studies/methods , Child , Child, Preschool , Exome/genetics , Pakistan , Genetic Predisposition to Disease , Mutation , Cell Adhesion Molecules, Neuronal/genetics
16.
PLoS Genet ; 20(5): e1011245, 2024 May.
Article in English | MEDLINE | ID: mdl-38728360

ABSTRACT

Joint analysis of multiple correlated phenotypes for genome-wide association studies (GWAS) can identify and interpret pleiotropic loci which are essential to understand pleiotropy in diseases and complex traits. Meanwhile, constructing a network based on associations between phenotypes and genotypes provides a new insight to analyze multiple phenotypes, which can explore whether phenotypes and genotypes might be related to each other at a higher level of cellular and organismal organization. In this paper, we first develop a bipartite signed network by linking phenotypes and genotypes into a Genotype and Phenotype Network (GPN). The GPN can be constructed by a mixture of quantitative and qualitative phenotypes and is applicable to binary phenotypes with extremely unbalanced case-control ratios in large-scale biobank datasets. We then apply a powerful community detection method to partition phenotypes into disjoint network modules based on GPN. Finally, we jointly test the association between multiple phenotypes in a network module and a single nucleotide polymorphism (SNP). Simulations and analyses of 72 complex traits in the UK Biobank show that multiple phenotype association tests based on network modules detected by GPN are much more powerful than those without considering network modules. The newly proposed GPN provides a new insight to investigate the genetic architecture among different types of phenotypes. Multiple phenotypes association studies based on GPN are improved by incorporating the genetic information into the phenotype clustering. Notably, it might broaden the understanding of genetic architecture that exists between diagnoses, genes, and pleiotropy.


Subject(s)
Genome-Wide Association Study , Genotype , Phenotype , Polymorphism, Single Nucleotide , Humans , Genome-Wide Association Study/methods , Polymorphism, Single Nucleotide/genetics , Models, Genetic , Genetic Pleiotropy , Genetic Association Studies/methods , Quantitative Trait Loci/genetics
17.
Genet Test Mol Biomarkers ; 28(4): 159-164, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38657123

ABSTRACT

Introduction: Sleep is one of the most significant parts of everyone's life. Most people sleep for about one-third of their lives. Sleep disorders negatively impact the quality of life. Obstructive sleep apnea (OSA) is a severe sleep disorder that significantly impacts the patient's life and their family members. This study aimed to investigate the relationship between rs6313 and rs6311 polymorphisms in the serotonin receptor type 2A gene and OSA in the Kurdish population. Materials and Methods: The study's population comprises 100 OSA sufferers and 100 healthy people. Polysomnography diagnostic tests were done on both the patient and control groups. The polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to investigate the relationship between OSA and LEPR gene polymorphisms. Results: Statistical analysis showed a significant relationship between genotype frequencies of patient and control groups of rs6311 with OSA in dominant [odds ratio (OR) = 5.203, p < 0.001) and codominant models (OR = 9.7, p < 0.001). Also, there was a significant relationship between genotype frequencies of patient and control groups of rs6313 with OSA in dominant (OR = 10.565, p < 0.001) and codominant models (OR = 5.938, p < 0.001). Conclusions: Findings from the study demonstrated that the two polymorphisms rs6311 and rs6313 could be effective at causing OSA; however, there was no correlation between the severity of the disease and either of the two polymorphisms.


Subject(s)
Gene Frequency , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide , Receptor, Serotonin, 5-HT2A , Sleep Apnea, Obstructive , Humans , Sleep Apnea, Obstructive/genetics , Iran , Male , Female , Adult , Middle Aged , Receptor, Serotonin, 5-HT2A/genetics , Polymorphism, Single Nucleotide/genetics , Gene Frequency/genetics , Case-Control Studies , Genotype , Polysomnography/methods , Alleles , Polymorphism, Restriction Fragment Length , Receptors, Leptin/genetics , Genetic Association Studies/methods
18.
Brief Bioinform ; 25(3)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38653490

ABSTRACT

Genome-wide Association Studies (GWAS) methods have identified individual single-nucleotide polymorphisms (SNPs) significantly associated with specific phenotypes. Nonetheless, many complex diseases are polygenic and are controlled by multiple genetic variants that are usually non-linearly dependent. These genetic variants are marginally less effective and remain undetected in GWAS analysis. Kernel-based tests (KBT), which evaluate the joint effect of a group of genetic variants, are therefore critical for complex disease analysis. However, choosing different kernel functions in KBT can significantly influence the type I error control and power, and selecting the optimal kernel remains a statistically challenging task. A few existing methods suffer from inflated type 1 errors, limited scalability, inferior power or issues of ambiguous conclusions. Here, we present a new Bayesian framework, BayesKAT (https://github.com/wangjr03/BayesKAT), which overcomes these kernel specification issues by selecting the optimal composite kernel adaptively from the data while testing genetic associations simultaneously. Furthermore, BayesKAT implements a scalable computational strategy to boost its applicability, especially for high-dimensional cases where other methods become less effective. Based on a series of performance comparisons using both simulated and real large-scale genetics data, BayesKAT outperforms the available methods in detecting complex group-level associations and controlling type I errors simultaneously. Applied on a variety of groups of functionally related genetic variants based on biological pathways, co-expression gene modules and protein complexes, BayesKAT deciphers the complex genetic basis and provides mechanistic insights into human diseases.


Subject(s)
Bayes Theorem , Genome-Wide Association Study , Polymorphism, Single Nucleotide , Humans , Genome-Wide Association Study/methods , Genetic Predisposition to Disease , Algorithms , Software , Computational Biology/methods , Genetic Association Studies/methods
19.
Rev Neurol (Paris) ; 180(5): 417-428, 2024 May.
Article in English | MEDLINE | ID: mdl-38609750

ABSTRACT

The major gene underlying monogenic forms of amyotrophic lateral sclerosis (ALS) and fronto-temporal dementia (FTD) is C9ORF72. The causative mutation in C9ORF72 is an abnormal hexanucleotide (G4C2) repeat expansion (HRE) located in the first intron of the gene. The aim of this review is to propose a comprehensive update on recent developments on clinical, biological and therapeutics aspects related to C9ORF72 in order to highlight the current understanding of genotype-phenotype correlations, and also on biological machinery leading to neuronal death. We will particularly focus on the broad phenotypic presentation of C9ORF72-related diseases, that goes well beyond the classical phenotypes observed in ALS and FTD patients. Last, we will comment the possible therapeutical hopes for patients carrying a C9ORF72 HRE.


Subject(s)
Amyotrophic Lateral Sclerosis , C9orf72 Protein , DNA Repeat Expansion , Frontotemporal Dementia , Humans , C9orf72 Protein/genetics , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Phenotype , Genetic Association Studies/methods , Proteins/genetics
20.
Stat Med ; 43(13): 2560-2574, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38636557

ABSTRACT

Massive genetic compendiums such as the UK Biobank have become an invaluable resource for identifying genetic variants that are associated with complex diseases. Due to the difficulties of massive data collection, a common practice of these compendiums is to collect interval-censored data. One challenge in analyzing such data is the lack of methodology available for genetic association studies with interval-censored data. Genetic effects are difficult to detect because of their rare and weak nature, and often the time-to-event outcomes are transformed to binary phenotypes for access to more powerful signal detection approaches. However transforming the data to binary outcomes can result in loss of valuable information. To alleviate such challenges, this work develops methodology to associate genetic variant sets with multiple interval-censored outcomes. Testing sets of variants such as genes or pathways is a common approach in genetic association settings to lower the multiple testing burden, aggregate small effects, and improve interpretations of results. Instead of performing inference with only a single outcome, utilizing multiple outcomes can increase statistical power by aggregating information across multiple correlated phenotypes. Simulations show that the proposed strategy can offer significant power gains over a single outcome approach. We apply the proposed test to the investigation that motivated this study, a search for the genes that perturb risks of bone fractures and falls in the UK Biobank.


Subject(s)
Computer Simulation , Humans , Genetic Association Studies/methods , Models, Statistical , Phenotype , Genetic Variation , Fractures, Bone/genetics , Female
SELECTION OF CITATIONS
SEARCH DETAIL