Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.938
1.
Tunis Med ; 102(5): 256-265, 2024 May 05.
Article Fr | MEDLINE | ID: mdl-38801282

The genetic disease spectrum in Tunisia arises from the founder effect, genetic drift, selection, and consanguinity. The latter represents a deviation from panmixia, characterized by a non-random matrimonial choice that may be subject to several rules, such as socio-cultural, economic, or other factors. This shifts the genetic structure away from the Hardy-Weinberg equilibrium, increasing homozygous genotypes and decreasing heterozygotes, thus raising the frequency of autosomal recessive diseases. Similar to other Arab populations, Tunisia displays high consanguinity rates that vary geographically. Approximately 60% of reported diseases in Tunisia are autosomal recessive, with consanguinity possibly occurring in 80% of families for a specific disease. In inbred populations, consanguinity amplifies autosomal recessive disease risk, yet it does not influence autosomal dominant disease likelihood but rather impacts its phenotype. Consanguinity is also suggested to be a major factor in the homozygosity of deleterious variants leading to comorbid expression. At the genome level, inbred individuals inherit homozygous mutations and adjacent genomic regions known as runs of homozygosity (ROHs). Short ROHs indicate distant inbreeding, while long ROHs refer to recent inbreeding. ROHs are distributed rather irregularly across the genome, with certain short regions featuring an excess of ROH, known as ROH islands. In this review, we discuss consanguinity's impact on population health and genome dynamics, using Tunisia as a model.


Consanguinity , Tunisia/epidemiology , Humans , Genome, Human , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Homozygote , Founder Effect
2.
BMC Pediatr ; 24(1): 351, 2024 May 22.
Article En | MEDLINE | ID: mdl-38778310

BACKGROUND: Genetic disorders significantly affect patients in neonatal intensive care units, where establishing a diagnosis can be challenging through routine tests and supplementary examinations. Whole-exome sequencing offers a molecular-based approach for diagnosing genetic disorders. This study aimed to assess the importance of whole-exome sequencing for neonates in intensive care through a retrospective observational study within a Chinese cohort. METHODS: We gathered data from neonatal patients at Tianjin Children's Hospital between January 2018 and April 2021. These patients presented with acute illnesses and were suspected of having genetic disorders, which were investigated using whole-exome sequencing. Our retrospective analysis covered clinical data, genetic findings, and the correlation between phenotypes and genetic variations. RESULTS: The study included 121 neonates. Disorders affected multiple organs or systems, predominantly the metabolic, neurological, and endocrine systems. The detection rate for whole-exome sequencing was 52.9% (64 out of 121 patients), identifying 84 pathogenic or likely pathogenic genetic variants in 64 neonates. These included 13 copy number variations and 71 single-nucleotide variants. The most frequent inheritance pattern was autosomal recessive (57.8%, 37 out of 64), followed by autosomal dominant (29.7%, 19 out of 64). In total, 40 diseases were identified through whole-exome sequencing. CONCLUSION: This study underscores the value and clinical utility of whole-exome sequencing as a primary diagnostic tool for neonates in intensive care units with suspected genetic disorders. Whole-exome sequencing not only aids in diagnosis but also offers significant benefits to patients and their families by providing clarity in uncertain diagnostic situations.


Exome Sequencing , Intensive Care Units, Neonatal , Humans , Exome Sequencing/methods , Infant, Newborn , Retrospective Studies , Male , Female , China , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , DNA Copy Number Variations , Genetic Testing/methods , East Asian People
3.
Life Sci ; 348: 122685, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38710276

Gene therapy in pediatrics represents a cutting-edge therapeutic strategy for treating a range of genetic disorders that manifest in childhood. Gene therapy involves the modification or correction of a mutated gene or the introduction of a functional gene into a patient's cells. In general, it is implemented through two main modalities namely ex vivo gene therapy and in vivo gene therapy. Currently, a noteworthy array of gene therapy products has received valid market authorization, with several others in various stages of the approval process. Additionally, a multitude of clinical trials are actively underway, underscoring the dynamic progress within this field. Pediatric genetic disorders in the fields of hematology, oncology, vision and hearing loss, immunodeficiencies, neurological, and metabolic disorders are areas for gene therapy interventions. This review provides a comprehensive overview of the evolution and current progress of gene therapy-based treatments in the clinic for pediatric patients. It navigates the historical milestones of gene therapies, currently approved gene therapy products by the U.S. Food and Drug Administration (FDA) and/or European Medicines Agency (EMA) for children, and the promising future for genetic disorders. By providing a thorough compilation of approved gene therapy drugs and published results of completed or ongoing clinical trials, this review serves as a guide for pediatric clinicians to get a quick overview of the situation of clinical studies and approved gene therapy products as of 2023.


Drug Approval , Genetic Therapy , Pediatrics , Humans , Genetic Therapy/methods , Child , Pediatrics/methods , Genetic Diseases, Inborn/therapy , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/drug therapy , Clinical Trials as Topic
4.
Orphanet J Rare Dis ; 19(1): 183, 2024 May 02.
Article En | MEDLINE | ID: mdl-38698482

BACKGROUND: With over 7000 Mendelian disorders, identifying children with a specific rare genetic disorder diagnosis through structured electronic medical record data is challenging given incompleteness of records, inaccurate medical diagnosis coding, as well as heterogeneity in clinical symptoms and procedures for specific disorders. We sought to develop a digital phenotyping algorithm (PheIndex) using electronic medical records to identify children aged 0-3 diagnosed with genetic disorders or who present with illness with an increased risk for genetic disorders. RESULTS: Through expert opinion, we established 13 criteria for the algorithm and derived a score and a classification. The performance of each criterion and the classification were validated by chart review. PheIndex identified 1,088 children out of 93,154 live births who may be at an increased risk for genetic disorders. Chart review demonstrated that the algorithm achieved 90% sensitivity, 97% specificity, and 94% accuracy. CONCLUSIONS: The PheIndex algorithm can help identify when a rare genetic disorder may be present, alerting providers to consider ordering a diagnostic genetic test and/or referring a patient to a medical geneticist.


Algorithms , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Infant , Infant, Newborn , Child, Preschool , Female , Male , Electronic Health Records , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Phenotype
5.
J Control Release ; 369: 696-721, 2024 May.
Article En | MEDLINE | ID: mdl-38580137

Rare genetic diseases, often referred to as orphan diseases due to their low prevalence and limited treatment options, have long posed significant challenges to our medical system. In recent years, Messenger RNA (mRNA) therapy has emerged as a highly promising treatment approach for various diseases caused by genetic mutations. Chemically modified mRNA is introduced into cells using carriers like lipid-based nanoparticles (LNPs), producing functional proteins that compensate for genetic deficiencies. Given the advantages of precise dosing, biocompatibility, transient expression, and minimal risk of genomic integration, mRNA therapies can safely and effectively correct genetic defects in rare diseases and improve symptoms. Currently, dozens of mRNA drugs targeting rare diseases are undergoing clinical trials. This comprehensive review summarizes the progress of mRNA therapy in treating rare genetic diseases. It introduces the development, molecular design, and delivery systems of mRNA therapy, highlighting their research progress in rare genetic diseases based on protein replacement and gene editing. The review also summarizes research progress in various rare disease models and clinical trials. Additionally, it discusses the challenges and future prospects of mRNA therapy. Researchers are encouraged to join this field and collaborate to advance the clinical translation of mRNA therapy, bringing hope to patients with rare genetic diseases.


Genetic Therapy , RNA, Messenger , Rare Diseases , Humans , Rare Diseases/therapy , Rare Diseases/genetics , RNA, Messenger/administration & dosage , RNA, Messenger/genetics , Animals , Genetic Therapy/methods , Genetic Diseases, Inborn/therapy , Genetic Diseases, Inborn/genetics , Nanoparticles , Gene Editing/methods
6.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 41(5): 551-555, 2024 May 10.
Article Zh | MEDLINE | ID: mdl-38684299

OBJECTIVE: To analyze the types and distribution of pathogenic variants for neonatal genetic diseases in Huzhou, Zhejiang Province. METHODS: One thousand neonates (48 ~ 42 h after birth) born to Huzhou region were selected as the study subjects. Dry blood spot samples were collected from the newborns, and targeted capture high-throughput sequencing was carried out for pathogenic genes underlying 542 inherited diseases. Candidate variants were verified by Sanger sequencing. RESULTS: Among the 1 000 newborns, the male to female ratio was 1.02 : 1.00. No pathogenic variants were detected in 253 cases, whilst 747 cases were found to carry at least one pathogenic variant, which yielded a carrier rate of 74.7%. The most frequently involved pathogenic gene was FLG, followed by GJB2, UGT1A1, USH2A and DUOX2. The variants were classified as homozygous, compound heterozygous, and hemizygous variants. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), 213 neonates were verified to have carried pathogenic and/or likely pathogenic variants, with a positive rate of 21.3%. The most commonly involved genes had included UGT1A1, FLG, GJB2, MEFV and G6PD. CONCLUSION: Newborn screening based on high-throughput sequencing technology can expand the scope of screening and improve the positive predictive value. Genetic counseling based on the results can improve the patients' medical care and reduce neonatal mortality and childhood morbidity, while provide assistance to family members' health management and reproductive decisions.


Connexin 26 , Filaggrin Proteins , Genetic Testing , Humans , Infant, Newborn , Female , Male , Connexin 26/genetics , Genetic Testing/methods , China , High-Throughput Nucleotide Sequencing , Connexins/genetics , Neonatal Screening/methods , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Glucuronosyltransferase/genetics , Mutation
8.
Genome Med ; 16(1): 64, 2024 Apr 26.
Article En | MEDLINE | ID: mdl-38671509

BACKGROUND: Genetic variants that severely alter protein products (e.g. nonsense, frameshift) are often associated with disease. For some genes, these predicted loss-of-function variants (pLoFs) are observed throughout the gene, whilst in others, they occur only at specific locations. We hypothesised that, for genes linked with monogenic diseases that display incomplete penetrance, pLoF variants present in apparently unaffected individuals may be limited to regions where pLoFs are tolerated. To test this, we investigated whether pLoF location could explain instances of incomplete penetrance of variants expected to be pathogenic for Mendelian conditions. METHODS: We used exome sequence data in 454,773 individuals in the UK Biobank (UKB) to investigate the locations of pLoFs in a population cohort. We counted numbers of unique pLoF, missense, and synonymous variants in UKB in each quintile of the coding sequence (CDS) of all protein-coding genes and clustered the variants using Gaussian mixture models. We limited the analyses to genes with ≥ 5 variants of each type (16,473 genes). We compared the locations of pLoFs in UKB with all theoretically possible pLoFs in a transcript, and pathogenic pLoFs from ClinVar, and performed simulations to estimate the false-positive rate of non-uniformly distributed variants. RESULTS: For most genes, all variant classes fell into clusters representing broadly uniform variant distributions, but genes in which haploinsufficiency causes developmental disorders were less likely to have uniform pLoF distribution than other genes (P < 2.2 × 10-6). We identified a number of genes, including ARID1B and GATA6, where pLoF variants in the first quarter of the CDS were rescued by the presence of an alternative translation start site and should not be reported as pathogenic. For other genes, such as ODC1, pLoFs were located approximately uniformly across the gene, but pathogenic pLoFs were clustered only at the end, consistent with a gain-of-function disease mechanism. CONCLUSIONS: Our results suggest the potential benefits of localised constraint metrics and that the location of pLoF variants should be considered when interpreting variants.


Loss of Function Mutation , Penetrance , Humans , Genetic Diseases, Inborn/genetics , Genetic Predisposition to Disease , Exome , Cluster Analysis , Exome Sequencing
9.
Commun Biol ; 7(1): 489, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653753

Rare diseases (RD) affect a small number of people compared to the general population and are mostly genetic in origin. The first clinical signs often appear at birth or in childhood, and patients endure high levels of pain and progressive loss of autonomy frequently associated with short life expectancy. Until recently, the low prevalence of RD and the gatekeeping delay in their diagnosis have long hampered research. The era of nucleic acid (NA)-based therapies has revolutionized the landscape of RD treatment and new hopes arise with the perspectives of disease-modifying drugs development as some NA-based therapies are now entering the clinical stage. Herein, we review NA-based drugs that were approved and are currently under investigation for the treatment of RD. We also discuss the recent structural improvements of NA-based therapeutics and delivery system, which overcome the main limitations in their market expansion and the current approaches that are developed to address the endosomal escape issue. We finally open the discussion on the ethical and societal issues that raise this new technology in terms of regulatory approval and sustainability of production.


Genetic Diseases, Inborn , Humans , Genetic Diseases, Inborn/drug therapy , Genetic Diseases, Inborn/genetics , Nucleic Acids/therapeutic use , Rare Diseases/drug therapy , Rare Diseases/genetics , Genetic Therapy/methods
10.
Cell Rep Med ; 5(5): 101518, 2024 May 21.
Article En | MEDLINE | ID: mdl-38642551

Population-based genomic screening may help diagnose individuals with disease-risk variants. Here, we perform a genome-first evaluation for nine disorders in 29,039 participants with linked exome sequences and electronic health records (EHRs). We identify 614 individuals with 303 pathogenic/likely pathogenic or predicted loss-of-function (P/LP/LoF) variants, yielding 644 observations; 487 observations (76%) lack a corresponding clinical diagnosis in the EHR. Upon further investigation, 75 clinically undiagnosed observations (15%) have evidence of symptomatic untreated disease, including familial hypercholesterolemia (3 of 6 [50%] undiagnosed observations with disease evidence) and breast cancer (23 of 106 [22%]). These genetic findings enable targeted phenotyping that reveals new diagnoses in previously undiagnosed individuals. Disease yield is greater with variants in penetrant genes for which disease is observed in carriers in an independent cohort. The prevalence of P/LP/LoF variants exceeds that of clinical diagnoses, and some clinically undiagnosed carriers are discovered to have disease. These results highlight the potential of population-based genomic screening.


Exome Sequencing , Exome , Humans , Female , Male , Exome/genetics , Exome Sequencing/methods , Middle Aged , Adult , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/epidemiology , Genetic Predisposition to Disease , Electronic Health Records , Genetic Testing/methods , Genome, Human , Aged , Delivery of Health Care , Adolescent , Genomics/methods , Young Adult
11.
J Mol Diagn ; 26(6): 510-519, 2024 Jun.
Article En | MEDLINE | ID: mdl-38582400

The genetically isolated yet heterogeneous and highly consanguineous Indian population has shown a higher prevalence of rare genetic disorders. However, there is a significant socioeconomic burden for genetic testing to be accessible to the general population. In the current study, we analyzed next-generation sequencing data generated through focused exome sequencing from individuals with different phenotypic manifestations referred for genetic testing to achieve a molecular diagnosis. Pathogenic or likely pathogenic variants are reported in 280 of 833 cases with a diagnostic yield of 33.6%. Homozygous sequence and copy number variants were found as positive diagnostic findings in 131 cases (15.7%) because of the high consanguinity in the Indian population. No relevant findings related to reported phenotype were identified in 6.2% of the cases. Patients referred for testing due to metabolic disorder and neuromuscular disorder had higher diagnostic yields. Carrier testing of asymptomatic individuals with a family history of the disease, through focused exome sequencing, achieved positive diagnosis in 54 of 118 cases tested. Copy number variants were also found in trans with single-nucleotide variants and mitochondrial variants in a few of the cases. The diagnostic yield and the findings from this study signify that a focused exome test is a good lower-cost alternative for whole-exome and whole-genome sequencing and as a first-tier approach to genetic testing.


DNA Copy Number Variations , Exome Sequencing , Genetic Testing , Humans , Exome Sequencing/methods , India/epidemiology , Male , Genetic Testing/methods , Genetic Testing/economics , Female , High-Throughput Nucleotide Sequencing/methods , Exome/genetics , Consanguinity , Child , Adult , Adolescent , Child, Preschool , Phenotype , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/epidemiology , Infant , Young Adult
12.
Mol Genet Metab ; 142(1): 108360, 2024 May.
Article En | MEDLINE | ID: mdl-38428378

The Mendelian disorders of chromatin machinery (MDCMs) represent a distinct subgroup of disorders that present with neurodevelopmental disability. The chromatin machinery regulates gene expression by a range of mechanisms, including by post-translational modification of histones, responding to histone marks, and remodelling nucleosomes. Some of the MDCMs that impact on histone modification may have potential therapeutic interventions. Two potential treatment strategies are to enhance the intracellular pool of metabolites that can act as substrates for histone modifiers and the use of medications that may inhibit or promote the modification of histone residues to influence gene expression. In this article we discuss the influence and potential treatments of histone modifications involving histone acetylation and histone methylation. Genomic technologies are facilitating earlier diagnosis of many Mendelian disorders, providing potential opportunities for early treatment from infancy. This has parallels with how inborn errors of metabolism have been afforded early treatment with newborn screening. Before this promise can be fulfilled, we require greater understanding of the biochemical fingerprint of these conditions, which may provide opportunities to supplement metabolites that can act as substrates for chromatin modifying enzymes. Importantly, understanding the metabolomic profile of affected individuals may also provide disorder-specific biomarkers that will be critical for demonstrating efficacy of treatment, as treatment response may not be able to be accurately assessed by clinical measures.


Chromatin , Metabolic Networks and Pathways , Humans , Chromatin/genetics , Chromatin/metabolism , Metabolic Networks and Pathways/genetics , Histones/metabolism , Histones/genetics , Protein Processing, Post-Translational , Acetylation , Metabolism, Inborn Errors/genetics , Metabolism, Inborn Errors/therapy , Metabolism, Inborn Errors/diagnosis , Metabolism, Inborn Errors/metabolism , Chromatin Assembly and Disassembly/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/therapy , Genetic Diseases, Inborn/metabolism , Infant, Newborn , Methylation
13.
Dis Model Mech ; 17(6)2024 Jun 01.
Article En | MEDLINE | ID: mdl-38436085

P4-ATPases flip lipids from the exoplasmic to cytoplasmic leaflet of cell membranes, a property crucial for many biological processes. Mutations in P4-ATPases are associated with severe inherited and complex human disorders. We determined the expression, localization and ATPase activity of four variants of ATP8A2, the P4-ATPase associated with the neurodevelopmental disorder known as cerebellar ataxia, impaired intellectual development and disequilibrium syndrome 4 (CAMRQ4). Two variants, G447R and A772P, harboring mutations in catalytic domains, expressed at low levels and mislocalized in cells. In contrast, the E459Q variant in a flexible loop displayed wild-type expression levels, Golgi-endosome localization and ATPase activity. The R1147W variant expressed at 50% of wild-type levels but showed normal localization and activity. These results indicate that the G447R and A772P mutations cause CAMRQ4 through protein misfolding. The E459Q mutation is unlikely to be causative, whereas the R1147W may display a milder disease phenotype. Using various programs that predict protein stability, we show that there is a good correlation between the experimental expression of the variants and in silico stability assessments, suggesting that such analysis is useful in identifying protein misfolding disease-associated variants.


Adenosine Triphosphatases , Computer Simulation , Genetic Diseases, Inborn , Mutation , Phospholipid Transfer Proteins , Humans , Adenosine Triphosphatases/metabolism , Adenosine Triphosphatases/genetics , Cerebellar Ataxia/genetics , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/enzymology , Golgi Apparatus/metabolism , HEK293 Cells , Intellectual Disability/genetics , Mutation/genetics , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/metabolism , Protein Stability , Protein Transport
15.
Hum Genet ; 143(4): 559-605, 2024 Apr.
Article En | MEDLINE | ID: mdl-38436667

Much of our current understanding of rare human diseases is driven by coding genetic variants. However, non-coding genetic variants play a pivotal role in numerous rare human diseases, resulting in diverse functional impacts ranging from altered gene regulation, splicing, and/or transcript stability. With the increasing use of genome sequencing in clinical practice, it is paramount to have a clear framework for understanding how non-coding genetic variants cause disease. To this end, we have synthesized the literature on hundreds of non-coding genetic variants that cause rare Mendelian conditions via the disruption of gene regulatory patterns and propose a functional classification system. Specifically, we have adapted the functional classification framework used for coding variants (i.e., loss-of-function, gain-of-function, and dominant-negative) to account for features unique to non-coding gene regulatory variants. We identify that non-coding gene regulatory variants can be split into three distinct categories by functional impact: (1) non-modular loss-of-expression (LOE) variants; (2) modular loss-of-expression (mLOE) variants; and (3) gain-of-ectopic-expression (GOE) variants. Whereas LOE variants have a direct corollary with coding loss-of-function variants, mLOE and GOE variants represent disease mechanisms that are largely unique to non-coding variants. These functional classifications aim to provide a unified terminology for categorizing the functional impact of non-coding variants that disrupt gene regulatory patterns in Mendelian conditions.


Genetic Variation , Humans , Gene Expression Regulation , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/classification , Genetic Predisposition to Disease
16.
Circ Genom Precis Med ; 17(2): e004416, 2024 Apr.
Article En | MEDLINE | ID: mdl-38516780

BACKGROUND: Preimplantation genetic testing (PGT) is a reproductive technology that selects embryos without (familial) genetic variants. PGT has been applied in inherited cardiac disease and is included in the latest American Heart Association/American College of Cardiology guidelines. However, guidelines selecting eligible couples who will have the strongest risk reduction most from PGT are lacking. We developed an objective decision model to select eligibility for PGT and compared its results with those from a multidisciplinary team. METHODS: All couples with an inherited cardiac disease referred to the national PGT center were included. A multidisciplinary team approved or rejected the indication based on clinical and genetic information. We developed a decision model based on published risk prediction models and literature, to evaluate the severity of the cardiac phenotype and the penetrance of the familial variant in referred patients. The outcomes of the model and the multidisciplinary team were compared in a blinded fashion. RESULTS: Eighty-three couples were referred for PGT (1997-2022), comprising 19 different genes for 8 different inherited cardiac diseases (cardiomyopathies and arrhythmias). Using our model and proposed cutoff values, a definitive decision was reached for 76 (92%) couples, aligning with 95% of the multidisciplinary team decisions. In a prospective cohort of 11 couples, we showed the clinical applicability of the model to select couples most eligible for PGT. CONCLUSIONS: The number of PGT requests for inherited cardiac diseases increases rapidly, without the availability of specific guidelines. We propose a 2-step decision model that helps select couples with the highest risk reduction for cardiac disease in their offspring after PGT.


Clinical Decision-Making , Genetic Diseases, Inborn , Genetic Testing , Heart Diseases , Preimplantation Diagnosis , Referral and Consultation , Female , Humans , Genetic Testing/methods , Heart Diseases/congenital , Heart Diseases/diagnosis , Heart Diseases/genetics , Heart Diseases/prevention & control , Preimplantation Diagnosis/methods , Male , Clinical Decision-Making/methods , Arrhythmias, Cardiac/diagnosis , Arrhythmias, Cardiac/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Risk Management , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/prevention & control , Heterozygote , Prospective Studies , Family Characteristics
17.
Anim Genet ; 55(3): 319-327, 2024 Jun.
Article En | MEDLINE | ID: mdl-38323510

With the advent of next-generation sequencing, an increasing number of cases of de novo variants in domestic animals have been reported in scientific literature primarily associated with clinically severe phenotypes. The emergence of new variants at each generation is a crucial aspect in understanding the pathology of early-onset diseases in animals and can provide valuable insights into similar diseases in humans. With the aim of collecting deleterious de novo variants in domestic animals, we searched the scientific literature and compiled reports on 42 de novo variants in 31 genes in domestic animals. No clear disease-associated phenotype has been established in humans for three of these genes (NUMB, ANKRD28 and KCNG1). For the remaining 28 genes, a strong similarity between animal and human phenotypes was recognized from available information in OMIM and OMIA, revealing the importance of comparative studies and supporting the use of domestic animals as natural models for human diseases, in line with the One Health approach.


Animals, Domestic , Animals , Animals, Domestic/genetics , Phenotype , Genetic Diseases, Inborn/veterinary , Genetic Diseases, Inborn/genetics , Genetic Variation
18.
Mutagenesis ; 39(3): 157-171, 2024 Apr 24.
Article En | MEDLINE | ID: mdl-38332115

The therapeutic potential of the human genome has been explored through the development of next-generation therapeutics, which have had a high impact on treating genetic disorders. Classical treatments have traditionally focused on common diseases that require repeated treatments. However, with the recent advancements in the development of nucleic acids, utilizing DNA and RNA to modify or correct gene expression in genetic disorders, there has been a paradigm shift in the treatment of rare diseases, offering more potential one-time cure options. Advanced technologies that use CRISPR-Cas 9, antisense oligonucleotides, siRNA, miRNA, and aptamers are promising tools that have achieved successful breakthroughs in the treatment of various genetic disorders. The advancement in the chemistry of these molecules has improved their efficacy, reduced toxicity, and expanded their clinical use across a wide range of tissues in various categories of human disorders. However, challenges persist regarding the safety and efficacy of these advanced technologies in translating into clinical practice. This review mainly focuses on the potential therapies for rare genetic diseases and considers how next-generation techniques enable drug development to achieve long-lasting curative effects through gene inhibition, replacement, and editing.


CRISPR-Cas Systems , Gene Editing , Genetic Diseases, Inborn , Genetic Therapy , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/therapy , Gene Editing/methods , Genetic Therapy/methods , Genetic Diseases, Inborn/therapy , Genetic Diseases, Inborn/genetics , Oligonucleotides, Antisense/therapeutic use , RNA, Small Interfering/therapeutic use , RNA, Small Interfering/genetics , MicroRNAs/genetics , Aptamers, Nucleotide/therapeutic use
19.
Nat Rev Genet ; 25(6): 401-415, 2024 Jun.
Article En | MEDLINE | ID: mdl-38238519

Genomic technologies, such as targeted, exome and short-read genome sequencing approaches, have revolutionized the care of patients with rare genetic diseases. However, more than half of patients remain without a diagnosis. Emerging approaches from research-based settings such as long-read genome sequencing and optical genome mapping hold promise for improving the identification of disease-causal genetic variants. In addition, new omic technologies that measure the transcriptome, epigenome, proteome or metabolome are showing great potential for variant interpretation. As genetic testing options rapidly expand, the clinical community needs to be mindful of their individual strengths and limitations, as well as remaining challenges, to select the appropriate diagnostic test, correctly interpret results and drive innovation to address insufficiencies. If used effectively - through truly integrative multi-omics approaches and data sharing - the resulting large quantities of data from these established and emerging technologies will greatly improve the interpretative power of genetic and genomic diagnostics for rare diseases.


Genetic Testing , Genomics , Rare Diseases , Humans , Rare Diseases/genetics , Rare Diseases/diagnosis , Genetic Testing/methods , Genomics/methods , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics
20.
Am J Med Genet A ; 194(6): e63544, 2024 Jun.
Article En | MEDLINE | ID: mdl-38258498

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Genetic Testing , Intensive Care Units, Neonatal , Whole Genome Sequencing , Humans , Brazil/epidemiology , Infant, Newborn , Male , Female , Genetic Testing/methods , Pilot Projects , Infant , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics
...