Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.078
Filter
1.
BMC Microbiol ; 24(1): 256, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987681

ABSTRACT

BACKGROUND: The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS: In the current study, one hundred extended spectrum ß-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS: The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several ß-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS: This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Klebsiella Infections , Klebsiella pneumoniae , Microbial Sensitivity Tests , Virulence Factors , Whole Genome Sequencing , Klebsiella pneumoniae/genetics , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Klebsiella pneumoniae/classification , Humans , Egypt , Drug Resistance, Multiple, Bacterial/genetics , Klebsiella Infections/microbiology , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Virulence Factors/genetics , Genome, Bacterial/genetics , beta-Lactamases/genetics , Bacterial Proteins/genetics , Plasmids/genetics
2.
Nat Commun ; 15(1): 5699, 2024 07 07.
Article in English | MEDLINE | ID: mdl-38972886

ABSTRACT

Melioidosis is an often-fatal neglected tropical disease caused by an environmental bacterium Burkholderia pseudomallei. However, our understanding of the disease-causing bacterial lineages, their dissemination, and adaptive mechanisms remains limited. To address this, we conduct a comprehensive genomic analysis of 1,391 B. pseudomallei isolates collected from nine hospitals in northeast Thailand between 2015 and 2018, and contemporaneous isolates from neighbouring countries, representing the most densely sampled collection to date. Our study identifies three dominant lineages, each with unique gene sets potentially enhancing bacterial fitness in the environment. We find that recombination drives lineage-specific gene flow. Transcriptome analyses of representative clinical isolates from each dominant lineage reveal increased expression of lineage-specific genes under environmental conditions in two out of three lineages. This underscores the potential importance of environmental persistence for these dominant lineages. The study also highlights the influence of environmental factors such as terrain slope, altitude, and river direction on the geographical dispersal of B. pseudomallei. Collectively, our findings suggest that environmental persistence may play a role in facilitating the spread of B. pseudomallei, and as a prerequisite for exposure and infection, thereby providing useful insights for informing melioidosis prevention and control strategies.


Subject(s)
Burkholderia pseudomallei , Genetic Variation , Melioidosis , Burkholderia pseudomallei/genetics , Burkholderia pseudomallei/isolation & purification , Burkholderia pseudomallei/classification , Melioidosis/microbiology , Melioidosis/epidemiology , Thailand/epidemiology , Humans , Phylogeny , Gene Flow , Genome, Bacterial/genetics
3.
Nat Commun ; 15(1): 6123, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033143

ABSTRACT

Salmonella enterica serovar Typhimurium (S. Typhimurium) is a major cause of salmonellosis, and the emergence of multidrug-resistant pathovariants has become a growing concern. Here, we investigate a distinct rough colony variant exhibiting a strong biofilm-forming ability isolated in China. Whole-genome sequencing on 2,212 Chinese isolates and 1,739 publicly available genomes reveals the population structure and evolutionary history of the rough colony variants. Characterized by macro, red, dry, and rough (mrdar) colonies, these variants demonstrate enhanced biofilm formation at 28 °C and 37 °C compared to typical rdar colonies. The mrdar variants exhibit extensive multidrug resistance, with significantly higher resistance to at least five classes of antimicrobial agents compared to non-mrdar variants. This resistance is primarily conferred by an IncHI2 plasmid harboring 19 antimicrobial resistance genes. Phylogenomic analysis divides the global collections into six lineages. The majority of mrdar variants belong to sublineage L6.5, which originated from Chinese smooth colony strains and possibly emerged circa 1977. Among the mrdar variants, upregulation of the csgDEFG operons is observed, probably due to a distinct point mutation (-44G > T) in the csgD gene promoter. Pangenome and genome-wide association analyses identify 87 specific accessory genes and 72 distinct single nucleotide polymorphisms associated with the mrdar morphotype.


Subject(s)
Anti-Bacterial Agents , Biofilms , Drug Resistance, Multiple, Bacterial , Genome, Bacterial , Phylogeny , Salmonella typhimurium , Whole Genome Sequencing , Salmonella typhimurium/genetics , Salmonella typhimurium/drug effects , Salmonella typhimurium/isolation & purification , Drug Resistance, Multiple, Bacterial/genetics , Anti-Bacterial Agents/pharmacology , Biofilms/growth & development , Biofilms/drug effects , China , Genome, Bacterial/genetics , Plasmids/genetics , Microbial Sensitivity Tests , Humans , Salmonella Infections/microbiology
4.
Nat Commun ; 15(1): 6132, 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39033187

ABSTRACT

Brucella melitensis is a major livestock bacterial pathogen and zoonosis, causing disease and infection-related abortions in small ruminants and humans. A considerable burden to animal-based economies today, the presence of Brucella in Neolithic pastoral communities has been hypothesised but we lack direct genomic evidence thus far. We report a 3.45X B. melitensis genome preserved in an ~8000 year old sheep specimen from Mentese Höyük, Northwest Türkiye, demonstrating that the pathogen had evolved and was circulating in Neolithic livestock. The genome is basal with respect to all known B. melitensis and allows the calibration of the B. melitensis speciation time from the primarily cattle-infecting B. abortus to approximately 9800 years Before Present (BP), coinciding with a period of consolidation and dispersal of livestock economies. We use the basal genome to timestamp evolutionary events in B. melitensis, including pseudogenization events linked to erythritol response, the supposed determinant of the pathogen's placental tropism in goats and sheep. Our data suggest that the development of herd management and multi-species livestock economies in the 11th-9th millennium BP drove speciation and host adaptation of this zoonotic pathogen.


Subject(s)
Brucella melitensis , Brucellosis , Genome, Bacterial , Zoonoses , Brucella melitensis/genetics , Brucella melitensis/isolation & purification , Animals , Sheep/microbiology , Genome, Bacterial/genetics , Brucellosis/microbiology , Brucellosis/veterinary , Brucellosis/history , Humans , Zoonoses/microbiology , Phylogeny , Cattle , Bacterial Zoonoses/microbiology , Goats/microbiology , Evolution, Molecular , Livestock/microbiology , History, Ancient , Sheep Diseases/microbiology , Female
5.
Nat Commun ; 15(1): 5734, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38977664

ABSTRACT

Metagenomic sequencing has provided great advantages in the characterisation of microbiomes, but currently available analysis tools lack the ability to combine subspecies-level taxonomic resolution and accurate abundance estimation with functional profiling of assembled genomes. To define the microbiome and its associations with human health, improved tools are needed to enable comprehensive understanding of the microbial composition and elucidation of the phylogenetic and functional relationships between the microbes. Here, we present MAGinator, a freely available tool, tailored for profiling of shotgun metagenomics datasets. MAGinator provides de novo identification of subspecies-level microbes and accurate abundance estimates of metagenome-assembled genomes (MAGs). MAGinator utilises the information from both gene- and contig-based methods yielding insight into both taxonomic profiles and the origin of genes and genetic content, used for inference of functional content of each sample by host organism. Additionally, MAGinator facilitates the reconstruction of phylogenetic relationships between the MAGs, providing a framework to identify clade-level differences.


Subject(s)
Metagenome , Metagenomics , Microbiota , Phylogeny , Metagenomics/methods , Metagenome/genetics , Humans , Microbiota/genetics , Software , Bacteria/genetics , Bacteria/classification , Genome, Bacterial/genetics
6.
Nat Commun ; 15(1): 5811, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987310

ABSTRACT

Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.


Subject(s)
Anti-Bacterial Agents , Escherichia coli Infections , Escherichia coli Proteins , Extraintestinal Pathogenic Escherichia coli , Phylogeny , Swine Diseases , Animals , Swine , China/epidemiology , Extraintestinal Pathogenic Escherichia coli/genetics , Extraintestinal Pathogenic Escherichia coli/drug effects , Extraintestinal Pathogenic Escherichia coli/isolation & purification , Extraintestinal Pathogenic Escherichia coli/pathogenicity , Escherichia coli Infections/microbiology , Escherichia coli Infections/veterinary , Swine Diseases/microbiology , Escherichia coli Proteins/genetics , Anti-Bacterial Agents/pharmacology , Humans , Drug Resistance, Multiple, Bacterial/genetics , Plasmids/genetics , Genome, Bacterial/genetics , Whole Genome Sequencing , Microbial Sensitivity Tests , Drug Resistance, Bacterial/genetics , beta-Lactamases/genetics
7.
BMC Microbiol ; 24(1): 231, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951812

ABSTRACT

BACKGROUND: Natural products are important sources for the discovery of new biopesticides to control the worldwide destructive pests Acyrthosiphon pisum Harris. Here, insecticidal substances were discovered and characterized from the secondary metabolites of the bio-control microorganism Bacillus velezensis strain ZLP-101, as informed by whole-genome sequencing and analysis. RESULTS: The genome was annotated, revealing the presence of four potentially novel gene clusters and eight known secondary metabolite synthetic gene clusters. Crude extracts, prepared through ammonium sulfate precipitation, were used to evaluate the effects of strain ZLP-101 on Acyrthosiphon pisum Harris aphid pests via exposure experiments. The half lethal concentration (LC50) of the crude extract from strain ZLP-101 against aphids was 411.535 mg/L. Preliminary exploration of the insecticidal mechanism revealed that the crude extract affected aphids to a greater extent through gastric poisoning than through contact. Further, the extracts affected enzymatic activities, causing holes to form in internal organs along with deformation, such that normal physiological activities could not be maintained, eventually leading to death. Isolation and purification of extracellular secondary metabolites were conducted in combination with mass spectrometry analysis to further identify the insecticidal components of the crude extracts. A total of 15 insecticidal active compounds were identified including iturins, fengycins, surfactins, and spergualins. Further insecticidal experimentation revealed that surfactin, iturin, and fengycin all exhibited certain aphidicidal activities, and the three exerted synergistic lethal effects. CONCLUSIONS: This study improved the available genomic resources for B. velezensis and serves as a foundation for comprehensive studies of the insecticidal mechanism by Bacillus velezensis ZLP-101 in addition to the active components within biological control strains.


Subject(s)
Aphids , Bacillus , Insecticides , Lipopeptides , Animals , Aphids/drug effects , Bacillus/genetics , Bacillus/metabolism , Lipopeptides/pharmacology , Lipopeptides/chemistry , Lipopeptides/metabolism , Lipopeptides/isolation & purification , Insecticides/pharmacology , Insecticides/metabolism , Insecticides/chemistry , Multigene Family , Secondary Metabolism , Pest Control, Biological , Whole Genome Sequencing , Genome, Bacterial/genetics
8.
BMC Microbiol ; 24(1): 240, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961341

ABSTRACT

OBJECTIVE: We explored whether the Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification (R-M) systems are compatible and act together to resist plasmid attacks. METHODS: 932 global whole-genome sequences from GenBank, and 459 K. pneumoniae isolates from six provinces of China, were collected to investigate the co-distribution of CRISPR-Cas, R-M systems, and blaKPC plasmid. Conjugation and transformation assays were applied to explore the anti-plasmid function of CRISPR and R-M systems. RESULTS: We found a significant inverse correlation between the presence of CRISPR and R-M systems and blaKPC plasmids in K. pneumoniae, especially when both systems cohabited in one host. The multiple matched recognition sequences of both systems in blaKPC-IncF plasmids (97%) revealed that they were good targets for both systems. Furthermore, the results of conjugation assay demonstrated that CRISPR-Cas and R-M systems in K. pneumoniae could effectively hinder blaKPC plasmid invasion. Notably, CRISPR-Cas and R-M worked together to confer a 4-log reduction in the acquisition of blaKPC plasmid in conjugative events, exhibiting robust synergistic anti-plasmid immunity. CONCLUSIONS: Our results indicate the synergistic role of CRISPR and R-M in regulating horizontal gene transfer in K. pneumoniae and rationalize the development of antimicrobial strategies that capitalize on the immunocompromised status of KPC-KP.


Subject(s)
CRISPR-Cas Systems , Conjugation, Genetic , Klebsiella pneumoniae , Plasmids , Klebsiella pneumoniae/genetics , Plasmids/genetics , beta-Lactamases/genetics , DNA Restriction-Modification Enzymes/genetics , China , Klebsiella Infections/microbiology , Gene Transfer, Horizontal , Humans , Genome, Bacterial/genetics
9.
ACS Synth Biol ; 13(7): 2060-2072, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38968167

ABSTRACT

Genomic integration is commonly used to engineer stable production hosts. However, so far, for many microbial workhorses, only a few integration sites have been characterized, thereby restraining advanced strain engineering that requires multiple insertions. Here, we report on the identification of novel genomic integration sites, so-called landing pads, for Pseudomonas putida KT2440. We identified genomic regions with constant expression patterns under diverse experimental conditions by using RNA-Seq data. Homologous recombination constructs were designed to insert heterologous genes into intergenic sites in these regions, allowing condition-independent gene expression. Ten potential landing pads were characterized using four different msfGFP expression cassettes. An insulated probe sensor was used to study locus-dependent effects on recombinant gene expression, excluding genomic read-through of flanking promoters under changing cultivation conditions. While the reproducibility of expression in the landing pads was very high, the msfGFP signals varied strongly between the different landing pads, confirming a strong influence of the genomic context. To showcase that the identified landing pads are also suitable candidates for heterologous gene expression in other Pseudomonads, four equivalent landing pads were identified and characterized in Pseudomonas taiwanensis VLB120. This study shows that genomic "hot" and "cold" spots exist, causing strong promoter-independent variations in gene expression. This highlights that the genomic context is an additional parameter to consider when designing integrable genomic cassettes for tailored heterologous expression. The set of characterized genomic landing pads presented here further increases the genetic toolbox for deep metabolic engineering in Pseudomonads.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Gene Expression Profiling/methods , Promoter Regions, Genetic/genetics , Genome, Bacterial/genetics , Homologous Recombination , Transcriptome/genetics
10.
ACS Synth Biol ; 13(7): 2199-2214, 2024 Jul 19.
Article in English | MEDLINE | ID: mdl-38981062

ABSTRACT

The Gram-positive bacterium Bacillus subtilis is extensively used in the industry for the secretory production of proteins with commercial value. To further improve its performance, this microbe has been the subject of extensive genome engineering efforts, especially the removal of large genomic regions that are dispensable or even counterproductive. Here, we present the genome-reduced B. subtilis strain IIG-Bs-27-39, which was obtained through systematic deletion of mobile genetic elements, as well as genes for extracellular proteases, sporulation, flagella formation, and antibiotic production. Different from previously characterized genome-reduced B. subtilis strains, the IIG-Bs-27-39 strain was still able to grow on minimal media. We used this feature to benchmark strain IIG-Bs-27-39 against its parental strain 168 with respect to heterologous protein production and metabolic parameters during bioreactor cultivation. The IIG-Bs-27-39 strain presented superior secretion of difficult-to-produce staphylococcal antigens, as well as higher specific growth rates and biomass yields. At the metabolic level, changes in byproduct formation and internal amino acid pools were observed, whereas energetic parameters such as the ATP yield, ATP/ADP levels, and adenylate energy charge were comparable between the two strains. Intriguingly, we observed a significant increase in the total cellular NADPH level during all tested conditions and increases in the NAD+ and NADP(H) pools during protein production. This indicates that the IIG-Bs-27-39 strain has more energy available for anabolic processes and protein production, thereby providing a link between strain physiology and production performance. On this basis, we conclude that the genome-reduced strain IIG-Bs-27-39 represents an attractive chassis for future biotechnological applications.


Subject(s)
Bacillus subtilis , Genome, Bacterial , Recombinant Proteins , Bacillus subtilis/genetics , Bacillus subtilis/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/biosynthesis , Genome, Bacterial/genetics , Metabolic Engineering/methods , Bioreactors , Metabolome , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
11.
BMC Microbiol ; 24(1): 248, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971718

ABSTRACT

BACKGROUND: The usage of fluoroquinolones in Norwegian livestock production is very low, including in broiler production. Historically, quinolone-resistant Escherichia coli (QREC) isolated from Norwegian production animals rarely occur. However, with the introduction of a selective screening method for QREC in the Norwegian monitoring programme for antimicrobial resistance in the veterinary sector in 2014; 89.5% of broiler caecal samples and 70.7% of broiler meat samples were positive. This triggered the concern if there could be possible links between broiler and human reservoirs of QREC. We are addressing this by characterizing genomes of QREC from humans (healthy carriers and patients) and broiler isolates (meat and caecum). RESULTS: The most frequent mechanism for quinolone resistance in both broiler and human E. coli isolates were mutations in the chromosomally located gyrA and parC genes, although plasmid mediated quinolone resistance (PMQR) was also identified. There was some relatedness of the isolates within human and broiler groups, but little between these two groups. Further, some overlap was seen for isolates with the same sequence type isolated from broiler and humans, but overall, the SNP distance was high. CONCLUSION: Based on data from this study, QREC from broiler makes a limited contribution to the incidence of QREC in humans in Norway.


Subject(s)
Anti-Bacterial Agents , Chickens , Drug Resistance, Bacterial , Escherichia coli Infections , Escherichia coli , Quinolones , Animals , Chickens/microbiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Humans , Norway , Escherichia coli Infections/veterinary , Escherichia coli Infections/microbiology , Drug Resistance, Bacterial/genetics , Quinolones/pharmacology , Anti-Bacterial Agents/pharmacology , Genomics , Plasmids/genetics , Poultry Diseases/microbiology , Microbial Sensitivity Tests , Genome, Bacterial/genetics , DNA Gyrase/genetics , DNA Topoisomerase IV/genetics , Meat/microbiology , Mutation , Escherichia coli Proteins/genetics , Cecum/microbiology
12.
Mol Genet Genomics ; 299(1): 72, 2024 Jul 27.
Article in English | MEDLINE | ID: mdl-39060647

ABSTRACT

Codon usage bias (CUB), the uneven usage of synonymous codons encoding the same amino acid, differs among genes within and across bacteria genomes. CUB is known to be influenced by gene expression and accordingly, CUB differs between the high-expression and low-expression genes in several bacteria. In this article, we have extended codon usage study considering gene essentiality as a feature. Using machine learning (ML) based approaches, we have analysed Relative Synonymous Codon Usage (RSCU) values between essential and non-essential genes in Escherichia coli and thirty-four other bacterial genomes whose gene essentiality features were available in public databases. We observed significant differences in codon usage patterns between essential and non-essential genes for majority of the bacterial genomes and accordingly, ML based classifiers achieved high area under curve (AUC) scores, with a minimum score of 70.0 across twenty-eight organisms. Further, importance of the codons towards classifying genes found to differ among the codons in each genome. Arg codon CGT and Gly codon GGT were observed to be the most preferred codons among essential genes in Escherichia coli. Interestingly, some of the codons like CGT, ATA, GGT and GGG observed to be contributing consistently towards classifying essential genes across thirty-five bacteria genomes studied. In other hand, codons TGY and CAY encoding amino acids Cys and His respectively were among the least contributing codons towards classification among all these bacteria. This study demonstrates the gene essentiality based differences in synonymous codon usage in bacteria genomes and presents a common codon usage pattern across bacteria.


Subject(s)
Codon Usage , Escherichia coli , Genes, Essential , Machine Learning , Genes, Essential/genetics , Escherichia coli/genetics , Genome, Bacterial/genetics , Genes, Bacterial , Codon/genetics , Bacteria/genetics , Bacteria/classification
13.
Diagn Microbiol Infect Dis ; 110(1): 116358, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002448

ABSTRACT

The VITEK®2 AES ß-lactam phenotypes of 488 Enterobacterales from North and Latin America generated by the VITEK®2 were compared to the resistance genotypes provided by whole genome sequencing (WGS). The AES provided phenotypic reports for 447 (91.6 %) isolates, including isolates harbouring carbapenemases (195; 43.6 %), ESBLs (103; 23.0 %) and transferable AmpCs (tAmpC; 28; 6.3 %) genes, as well as wildtype isolates (WT; 121; 27.1 %). Overall, the AES report was accurate for 433/447 (96.9 %) isolates. The AES accurately reported carbapenemase, ESBL, and tAmpC phenotypes for 93.7 %, 93.7 %, and 98.4 % of isolates, respectively, and sensitivity/specificity rates were 96.4 %/91.7 %, 98.1 %/92.4 %, 82.1 %/99.5 %, and 100 %/98.8 %. 14 isolates carrying carbapenemase (7 total; 3 KPC, 2 MBL, 2 OXA-48-like), ESBL (2), and tAmpC-encoding genes (5) were not correctly identified by AES. The AES phenotypic report detected resistance mechanisms among Enterobacterales rapidly and could significantly aid future antimicrobial stewardship initiatives and patient care.


Subject(s)
Bacterial Proteins , Enterobacteriaceae Infections , Enterobacteriaceae , Microbial Sensitivity Tests , Phenotype , Whole Genome Sequencing , beta-Lactamases , Latin America , Humans , Enterobacteriaceae/genetics , Enterobacteriaceae/drug effects , beta-Lactamases/genetics , Enterobacteriaceae Infections/microbiology , Bacterial Proteins/genetics , beta-Lactam Resistance/genetics , Anti-Bacterial Agents/pharmacology , North America , beta-Lactams/pharmacology , Genotype , Genome, Bacterial/genetics
14.
Front Cell Infect Microbiol ; 14: 1335096, 2024.
Article in English | MEDLINE | ID: mdl-38975326

ABSTRACT

Objective: Pseudomonas aeruginosa, a difficult-to-manage nosocomial pathogen, poses a serious threat to clinical outcomes in intensive care (ICU) patients due to its high antimicrobial resistance (AMR). To promote effective management, it is essential to investigate the genomic and phenotypic differences in AMR expression of the isolates. Methods: A prospective observational study was conducted from July 2022 to April 2023 at Liepaja Regional Hospital in Latvia. The study included all adult patients who were admitted to the ICU and had a documented infection with P. aeruginosa, as confirmed by standard laboratory microbiological testing and short-read sequencing. Since ResFinder is the only sequencing-based database offering antibacterial susceptibility testing (AST) data for each antibiotic, we conducted a comparison of the resistance profile with the results of phenotypic testing, evaluating if ResFinder met the US Food and Drug Administration (FDA) requirements for approval as a new AMR diagnostic test. Next, to improve precision, AST data from ResFinder was compared with two other databases - AMRFinderPlus and RGI. Additionally, data was gathered from environmental samples to inform the implementation of appropriate infection control measures in real time. Results: Our cohort consisted of 33 samples from 29 ICU patients and 34 environmental samples. The presence of P. aeruginosa infection was found to be associated with unfavourable clinical outcomes. A third of the patient samples were identified as multi-drug resistant isolates. Apart from resistance against colistin, significant discrepancies were observed when phenotypic data were compared to genotypic data. For example, the aminoglycoside resistance prediction of ResFinder yielded a major errors value of 3.03% for amikacin, which was marginally above the FDA threshold. Among the three positive environmental samples, one sample exhibited multiple AMR genes similar to the patient samples in its cluster. Conclusion: Our findings underscore the importance of utilizing a combination of diagnostic methods for the identification of resistance mechanisms, clusters, and environmental reservoirs in ICUs.


Subject(s)
Anti-Bacterial Agents , Intensive Care Units , Microbial Sensitivity Tests , Phenotype , Pseudomonas Infections , Pseudomonas aeruginosa , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Humans , Pseudomonas Infections/microbiology , Anti-Bacterial Agents/pharmacology , Prospective Studies , Female , Male , Middle Aged , Cross Infection/microbiology , Aged , Drug Resistance, Bacterial/genetics , Drug Resistance, Multiple, Bacterial/genetics , Genomics/methods , Latvia , Adult , Colistin/pharmacology , Genome, Bacterial/genetics
15.
BMC Microbiol ; 24(1): 250, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978012

ABSTRACT

BACKGROUND: ESBL-producing Escherichia coli pose a growing health risk in community and healthcare settings. We investigated the resistome, virulome, mobilome, and genetic relatedness of multidrug-resistant (MDR) E. coli isolates from patients and their environment in a Ghanaian teaching hospital. MATERIALS AND METHODS: Twenty-three MDR ESBL-producing or carbapenem-resistant E. coli isolates from a collection of MDR Gram-negative bacteria (GNB) from patients and environments were selected for genomic analyses. Whole genome sequencing and bioinformatics tools were used to analyze genomic characteristics and phylogeny. RESULTS: The prevalence and incidence of rectal carriage of ESBL E. coli among patients were 13.65% and 11.32% respectively. The ß-lactamase genes, blaTEM-1B (10 isolates) and blaCTX-M-15 (12 isolates) were commonly associated with IncFIB plasmid replicons and co-occurred with aminoglycoside, macrolide, and sulfamethoxazole/trimethoprim resistance. Insertion sequences, transposons, and class I integrons were found with blaCTX-M-15. Carriage and environmental isolates carried multiple virulence genes, with terC being the most prevalent in 21 isolates. Seventeen sequence types (STs) were identified, including a novel ST (ST13846). Phylogenetic analysis grouped the isolates into four main clusters, with one outlier. High genetic relatedness was observed between two carriage isolates of ST940 and between a carriage isolate and an environmental isolate of ST648. Isolates with different STs, collected at different times and locations, also showed genetic similarities. CONCLUSION: We identified ESBL-producing E. coli with diverse genomic characteristics circulating in different hospital directorates. Clonal relatedness was observed among isolates from patients and the environment, as well as between different patients, suggesting transmission within and between sources.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Escherichia coli Infections , Escherichia coli , Hospitals, Teaching , Phylogeny , beta-Lactamases , Humans , Ghana/epidemiology , Escherichia coli/genetics , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli/classification , beta-Lactamases/genetics , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli Infections/microbiology , Escherichia coli Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Whole Genome Sequencing , Plasmids/genetics , Microbial Sensitivity Tests , Genome, Bacterial/genetics , Genomics , Virulence Factors/genetics , Male , Female , Adult
16.
Microbiologyopen ; 13(4): e1431, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39082505

ABSTRACT

Rickettsia, a genus of obligate intracellular bacteria, includes species that cause significant human diseases. This study challenges previous claims that the Leucine-973 residue in the RNA polymerase beta subunit is the primary determinant of rifampin resistance in Rickettsia. We investigated a previously untested Rickettsia species, R. lusitaniae, from the Transitional group and found it susceptible to rifampin, despite possessing the Leu-973 residue. Interestingly, we observed the conservation of this residue in several rifampin-susceptible species across most Rickettsia phylogenetic groups. Comparative genomics revealed potential alternative resistance mechanisms, including additional amino acid variants that could hinder rifampin binding and genes that could facilitate rifampin detoxification through efflux pumps. Importantly, the evolutionary history of Rickettsia genomes indicates that the emergence of natural rifampin resistance is phylogenetically constrained within the genus, originating from ancient genetic features shared among a unique set of closely related Rickettsia species. Phylogenetic patterns appear to be the most reliable predictors of natural rifampin resistance, which is confined to a distinct monophyletic subclade known as Massiliae. The distinctive features of the RNA polymerase beta subunit in certain untested Rickettsia species suggest that R. raoultii, R. amblyommatis, R. gravesii, and R. kotlanii may also be naturally rifampin-resistant species.


Subject(s)
DNA-Directed RNA Polymerases , Drug Resistance, Bacterial , Phylogeny , Rickettsia , Rifampin , Rifampin/pharmacology , Rickettsia/genetics , Rickettsia/drug effects , Drug Resistance, Bacterial/genetics , DNA-Directed RNA Polymerases/genetics , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Genome, Bacterial/genetics
17.
BMC Genom Data ; 25(1): 73, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-39075351

ABSTRACT

OBJECTIVES: Rice (Oryza sativa) is the most important food for more than two thirds of the world's population. Bangladesh is the third largest producer and consumer of rice globally. Recently, several symptoms of Bacterial Panicle Blight (BPB) in rice, including seedling blight, sheath rot, floret sterility, and spotted grains, have been detected in the country. In addition, the presence of the most prevalent and virulent causative agent of BPB, Burkholderia glumae, has been confirmed in rice displaying symptoms of the disease. BPB could become one of the next emerging diseases of rice in Bangladesh, and a complete genome of a B. glumae strain from the country will help clarify its origin and devise proper management systems to continue sustainable rice production. DATA DESCRIPTION: We report the first complete genome sequence of a B. glumae strain (BD_21g) isolated from symptomatic rice grains in Bangladesh (Natore District). The genome contains 2 chromosomes (1 and 2, with 3,417,499 and 3,855,283 bp, respectively) and 4 plasmids (1-4, with 123,248, 46,628, 88,744 and 53,064 bp, respectively).


Subject(s)
Burkholderia , Genome, Bacterial , Oryza , Plant Diseases , Oryza/microbiology , Burkholderia/genetics , Burkholderia/isolation & purification , Burkholderia/pathogenicity , Bangladesh , Genome, Bacterial/genetics , Plant Diseases/microbiology , Whole Genome Sequencing
18.
Nature ; 631(8020): 386-392, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38961295

ABSTRACT

Streptococcus pneumoniae is a leading cause of pneumonia and meningitis worldwide. Many different serotypes co-circulate endemically in any one location1,2. The extent and mechanisms of spread and vaccine-driven changes in fitness and antimicrobial resistance remain largely unquantified. Here using geolocated genome sequences from South Africa (n = 6,910, collected from 2000 to 2014), we developed models to reconstruct spread, pairing detailed human mobility data and genomic data. Separately, we estimated the population-level changes in fitness of strains that are included (vaccine type (VT)) and not included (non-vaccine type (NVT)) in pneumococcal conjugate vaccines, first implemented in South Africa in 2009. Differences in strain fitness between those that are and are not resistant to penicillin were also evaluated. We found that pneumococci only become homogenously mixed across South Africa after 50 years of transmission, with the slow spread driven by the focal nature of human mobility. Furthermore, in the years following vaccine implementation, the relative fitness of NVT compared with VT strains increased (relative risk of 1.68; 95% confidence interval of 1.59-1.77), with an increasing proportion of these NVT strains becoming resistant to penicillin. Our findings point to highly entrenched, slow transmission and indicate that initial vaccine-linked decreases in antimicrobial resistance may be transient.


Subject(s)
Genetic Fitness , Geographic Mapping , Streptococcus pneumoniae , Humans , Genetic Fitness/drug effects , Genetic Fitness/genetics , Genome, Bacterial/genetics , Penicillin Resistance/drug effects , Penicillin Resistance/genetics , Penicillins/pharmacology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/immunology , Pneumococcal Infections/microbiology , Pneumococcal Infections/transmission , Pneumococcal Vaccines/immunology , Serogroup , South Africa/epidemiology , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/isolation & purification , Vaccines, Conjugate/immunology , Heptavalent Pneumococcal Conjugate Vaccine/immunology , Locomotion
19.
Nat Commun ; 15(1): 6291, 2024 Jul 26.
Article in English | MEDLINE | ID: mdl-39060226

ABSTRACT

Malawi experienced its deadliest Vibrio cholerae (Vc) outbreak following devastating cyclones, with >58,000 cases and >1700 deaths reported between March 2022 and May 2023. Here, we use population genomics to investigate the attributes and origin of the Malawi 2022-2023 Vc outbreak isolates. Our results demonstrate the predominance of ST69 clone, also known as the seventh cholera pandemic El Tor (7PET) lineage, expressing O1 Ogawa (~ 80%) serotype followed by Inaba (~ 16%) and sporadic non-O1/non-7PET serogroups (~ 4%). Phylogenetic reconstruction revealed that the Malawi outbreak strains correspond to a recent importation from Asia into Africa (sublineage AFR15). These isolates harboured known antimicrobial resistance and virulence elements, notably the ICEGEN/ICEVchHai1/ICEVchind5 SXT/R391-like integrative conjugative elements and a CTXφ prophage with the ctxB7 genotype compared to historical Malawian Vc isolates. These data suggest that the devastating cyclones coupled with the recent importation of 7PET serogroup O1 strains, may explain the magnitude of the 2022-2023 cholera outbreak in Malawi.


Subject(s)
Cholera , Disease Outbreaks , Phylogeny , Vibrio cholerae , Malawi/epidemiology , Cholera/epidemiology , Cholera/microbiology , Humans , Vibrio cholerae/genetics , Vibrio cholerae/classification , Genomics , Genome, Bacterial/genetics , Prophages/genetics , Genotype , Serogroup
20.
Biomed Res Int ; 2024: 5516117, 2024.
Article in English | MEDLINE | ID: mdl-39071244

ABSTRACT

Methicillin-resistant Staphylococcus aureus (MRSA) is an important zoonotic pathogen associated with a wide range of infections in humans and animals. Thus, the emergence of MRSA clones poses an important threat to human and animal health. This study is aimed at elucidating the genomics insights of a strong biofilm-producing and multidrug-resistant (MDR) S. aureus MTR_BAU_H1 strain through whole-genome sequencing (WGS). The S. aureus MTR_BAU_H1 strain was isolated from food handlers' hand swabs in Bangladesh and phenotypically assessed for antimicrobial susceptibility and biofilm production assays. The isolate was further undergone to high throughput WGS and analysed using different bioinformatics tools to elucidate the genetic diversity, molecular epidemiology, sequence type (ST), antimicrobial resistance, and virulence gene distribution. Phenotypic analyses revealed that the S. aureus MTR_BAU_H1 strain is a strong biofilm-former and carries both antimicrobial resistance (e.g., methicillin resistance; mecA, beta-lactam resistance; blaZ and tetracycline resistance; tetC) and virulence (e.g., sea, tsst, and PVL) genes. The genome of the S. aureus MTR_BAU_H1 belonged to ST1930 that possessed three plasmid replicons (e.g., rep16, rep7c, and rep19), seven prophages, and two clustered regularly interspaced short palindromic repeat (CRISPR) arrays of varying sizes. Phylogenetic analysis showed a close evolutionary relationship between the MTR_BAU_H1 genome and other MRSA clones of diverse hosts and demographics. The MTR_BAU_H1 genome harbours 42 antimicrobial resistance genes (ARGs), 128 virulence genes, and 273 SEED subsystems coding for the metabolism of amino acids, carbohydrates, proteins, cofactors, vitamins, minerals, and lipids. This is the first-ever WGS-based study of a strong biofilm-producing and MDR S. aureus strain isolated from human hand swabs in Bangladesh that unveils new information on the resistomes (ARGs and correlated mechanisms) and virulence potentials that might be linked to staphylococcal pathogenesis in both humans and animals.


Subject(s)
Biofilms , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Biofilms/growth & development , Biofilms/drug effects , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Staphylococcal Infections/microbiology , Whole Genome Sequencing , Genomics , Genome, Bacterial/genetics , Food Handling , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests , Virulence/genetics , Virulence Factors/genetics , Phylogeny , Drug Resistance, Multiple, Bacterial/genetics
SELECTION OF CITATIONS
SEARCH DETAIL