Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.376
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 416, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38995331

ABSTRACT

A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Mutation , Plasmids , Polyploidy , Plasmids/genetics , Gene Editing/methods , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces/genetics , Saccharomyces cerevisiae/genetics , 3-Isopropylmalate Dehydrogenase/genetics , 3-Isopropylmalate Dehydrogenase/metabolism , Genome, Fungal/genetics
2.
Nat Commun ; 15(1): 5728, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977688

ABSTRACT

Copy number variation (CNV) can drive rapid evolution in changing environments. In microbial pathogens, such adaptation is a key factor underpinning epidemics and colonization of new niches. However, the genomic determinants of such adaptation remain poorly understood. Here, we systematically investigate CNVs in a large genome sequencing dataset spanning a worldwide collection of 1104 genomes from the major wheat pathogen Zymoseptoria tritici. We found overall strong purifying selection acting on most CNVs. Genomic defense mechanisms likely accelerated gene loss over episodes of continental colonization. Local adaptation along climatic gradients was likely facilitated by CNVs affecting secondary metabolite production and gene loss in general. One of the strongest loci for climatic adaptation is a highly conserved gene of the NAD-dependent Sirtuin family. The Sirtuin CNV locus localizes to an ~68-kb Starship mobile element unique to the species carrying genes highly expressed during plant infection. The element has likely lost the ability to transpose, demonstrating how the ongoing domestication of cargo-carrying selfish elements can contribute to selectable variation within populations. Our work highlights how standing variation in gene copy numbers at the global scale can be a major factor driving climatic and metabolic adaptation in microbial species.


Subject(s)
Ascomycota , DNA Copy Number Variations , Genome, Fungal , Triticum , Triticum/genetics , Triticum/microbiology , DNA Copy Number Variations/genetics , Ascomycota/genetics , Genome, Fungal/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Adaptation, Physiological/genetics , Interspersed Repetitive Sequences/genetics , DNA Transposable Elements/genetics
3.
Cell Genom ; 4(7): 100586, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38942024

ABSTRACT

Mycena s.s. is a ubiquitous mushroom genus whose members degrade multiple dead plant substrates and opportunistically invade living plant roots. Having sequenced the nuclear genomes of 24 Mycena species, we find them to defy the expected patterns for fungi based on both their traditionally perceived saprotrophic ecology and substrate specializations. Mycena displayed massive genome expansions overall affecting all gene families, driven by novel gene family emergence, gene duplications, enlarged secretomes encoding polysaccharide degradation enzymes, transposable element (TE) proliferation, and horizontal gene transfers. Mainly due to TE proliferation, Arctic Mycena species display genomes of up to 502 Mbp (2-8× the temperate Mycena), the largest among mushroom-forming Agaricomycetes, indicating a possible evolutionary convergence to genomic expansions sometimes seen in Arctic plants. Overall, Mycena show highly unusual, varied mosaic-like genomic structures adaptable to multiple lifestyles, providing genomic illustration for the growing realization that fungal niche adaptations can be far more fluid than traditionally believed.


Subject(s)
Agaricales , Genome, Fungal , Genome, Fungal/genetics , Agaricales/genetics , Phylogeny , DNA Transposable Elements/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Plants/microbiology , Plants/genetics
4.
Physiol Plant ; 176(3): e14363, 2024.
Article in English | MEDLINE | ID: mdl-38837786

ABSTRACT

Edible mushrooms are an important food source with high nutritional and medicinal value. They are a useful source for studying phylogenetic evolution and species divergence. The exploration of the evolutionary relationships among these species conventionally involves analyzing sequence variations within their complete mitochondrial genomes, which range from 31,854 bp (Cordyceps militaris) to 197,486 bp (Grifolia frondosa). The study of the complete mitochondrial genomes of edible mushrooms has emerged as a critical field of research, providing important insights into fungal genetic makeup, evolution, and phylogenetic relationships. This review explores the mitochondrial genome structures of various edible mushroom species, highlighting their unique features and evolutionary adaptations. By analyzing these genomes, robust phylogenetic frameworks are constructed to elucidate mushrooms lineage relationships. Furthermore, the exploration of different variations of mitochondrial DNA presents novel opportunities for enhancing mushroom cultivation biotechnology and medicinal applications. The mitochondrial genomic features are essential for improving agricultural practices and ensuring food security through improved crop productivity, disease resistance, and nutritional qualities. The current knowledge about the mitochondrial genomes of edible mushrooms is summarized in this review, emphasising their significance in both scientific research and practical applications in bioinformatics and medicine.


Subject(s)
Agaricales , Genome, Mitochondrial , Phylogeny , Genome, Mitochondrial/genetics , Agaricales/genetics , Agaricales/classification , Evolution, Molecular , Genome, Fungal/genetics
5.
BMC Genom Data ; 25(1): 59, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38877406

ABSTRACT

OBJECTIVES: Knoxia roxburghii is a member of the madder (Rubiaceae) family. This plant is cultivated in different areas of China and recognized for its medicinal properties, which leads to its use in traditional Chinese medicine. The incidence of root rot was 10-15%. In June 2023, the causal agent of root rot on K. roxburghii was identified as Fusarium oxysporum. To the best of our knowledge, this is the first report of the complete genome of F. oxysporum strain ByF01 that is the causal agent of root rot of K. roxburghii in China. The results will provide effective resources for pathogenesis on K. roxburghii and the prevention and control of root rot on this host in the future. DATA DESCRIPTION: To understand the molecular mechanisms used by F. oxysporum to cause root rot on K. roxburghii, strain ByF01 was isolated from diseased roots and identified by morphological and molecular methods. The complete genome of strain ByF01 was then sequenced using a combination of the PacBio Sequel IIe and Illumina sequencing platforms. We obtained 54,431,725 bp of nucleotides, 47.46% GC content, and 16,705 coding sequences.


Subject(s)
Fusarium , Genome, Fungal , Plant Diseases , Plant Roots , Fusarium/genetics , Fusarium/isolation & purification , Fusarium/pathogenicity , Plant Diseases/microbiology , Plant Roots/microbiology , China , Genome, Fungal/genetics , Rubiaceae/microbiology , Whole Genome Sequencing , Phylogeny
6.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38776919

ABSTRACT

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Subject(s)
Fungi , Gastrointestinal Microbiome , Mycobiome , Animals , Humans , Male , Mice , Feces/microbiology , Fungi/genetics , Fungi/classification , Fungi/isolation & purification , Genome, Fungal/genetics , Genomics , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/genetics , Metagenome , Phylogeny , Female , Adult , Middle Aged
7.
Fungal Genet Biol ; 172: 103897, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38750926

ABSTRACT

Long Terminal Repeat (LTR) retrotransposons are a class of repetitive elements that are widespread in the genomes of plants and many fungi. LTR retrotransposons have been associated with rapidly evolving gene clusters in plants and virulence factor transfer in fungal-plant parasite-host interactions. We report here the abundance and transcriptional activity of LTR retrotransposons across several species of the early-branching Neocallimastigomycota, otherwise known as the anaerobic gut fungi (AGF). The ubiquity of LTR retrotransposons in these genomes suggests key evolutionary roles in these rumen-dwelling biomass degraders, whose genomes also contain many enzymes that are horizontally transferred from other rumen-dwelling prokaryotes. Up to 10% of anaerobic fungal genomes consist of LTR retrotransposons, and the mapping of sequences from LTR retrotransposons to transcriptomes shows that the majority of clusters are transcribed, with some exhibiting expression greater than 104 reads per kilobase million mapped reads (rpkm). Many LTR retrotransposons are strongly differentially expressed upon heat stress during fungal cultivation, with several exhibiting a nearly three-log10 fold increase in expression, whereas growth substrate variation modulated transcription to a lesser extent. We show that some LTR retrotransposons contain carbohydrate-active enzymes (CAZymes), and the expansion of CAZymes within genomes and among anaerobic fungal species may be linked to retrotransposon activity. We further discuss how these widespread sequences may be a source of promoters and other parts towards the bioengineering of anaerobic fungi.


Subject(s)
Genome, Fungal , Retroelements , Terminal Repeat Sequences , Retroelements/genetics , Terminal Repeat Sequences/genetics , Genome, Fungal/genetics , Anaerobiosis/genetics , Neocallimastigomycota/genetics , Gene Expression Regulation, Fungal/genetics , Phylogeny , Transcription, Genetic , Transcriptome/genetics
8.
mSystems ; 9(6): e0042924, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38819150

ABSTRACT

In silico tools such as genome-scale metabolic models have shown to be powerful for metabolic engineering of microorganisms. Saccharomyces pastorianus is a complex aneuploid hybrid between the mesophilic Saccharomyces cerevisiae and the cold-tolerant Saccharomyces eubayanus. This species is of biotechnological importance because it is the primary yeast used in lager beer fermentation and is also a key model for studying the evolution of hybrid genomes, including expression pattern of ortholog genes, composition of protein complexes, and phenotypic plasticity. Here, we created the iSP_1513 GSMM for S. pastorianus CBS1513 to allow top-down computational approaches to predict the evolution of metabolic pathways and to aid strain optimization in production processes. The iSP_1513 comprises 4,062 reactions, 1,808 alleles, and 2,747 metabolites, and takes into account the functional redundancy in the gene-protein-reaction rule caused by the presence of orthologous genes. Moreover, a universal algorithm to constrain GSMM reactions using transcriptome data was developed as a python library and enabled the integration of temperature as parameter. Essentiality data sets, growth data on various carbohydrates and volatile metabolites secretion were used to validate the model and showed the potential of media engineering to improve specific flavor compounds. The iSP_1513 also highlighted the different contributions of the parental sub-genomes to the oxidative and non-oxidative parts of the pentose phosphate pathway. Overall, the iSP_1513 GSMM represent an important step toward understanding the metabolic capabilities, evolutionary trajectories, and adaptation potential of S. pastorianus in different industrial settings. IMPORTANCE: Genome-scale metabolic models (GSMM) have been successfully applied to predict cellular behavior and design cell factories in several model organisms, but no models to date are currently available for hybrid species due to their more complex genetics and general lack of molecular data. In this study, we generated a bespoke GSMM, iSP_1513, for this industrial aneuploid hybrid Saccharomyces pastorianus, which takes into account the aneuploidy and functional redundancy from orthologous parental alleles. This model will (i) help understand the metabolic capabilities and adaptive potential of S. pastorianus (domestication processes), (ii) aid top-down predictions for strain development (industrial biotechnology), and (iii) allow predictions of evolutionary trajectories of metabolic pathways in aneuploid hybrids (evolutionary genetics).


Subject(s)
Genome, Fungal , Metabolic Networks and Pathways , Saccharomyces , Saccharomyces/genetics , Saccharomyces/metabolism , Metabolic Networks and Pathways/genetics , Genome, Fungal/genetics , Models, Biological , Metabolic Engineering/methods , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Evolution, Molecular , Industrial Microbiology/methods
9.
Sci Rep ; 14(1): 12249, 2024 05 28.
Article in English | MEDLINE | ID: mdl-38806503

ABSTRACT

Members of the family Trichomeriaceae, belonging to the Chaetothyriales order and the Ascomycota phylum, are known for their capability to inhabit hostile environments characterized by extreme temperatures, oligotrophic conditions, drought, or presence of toxic compounds. The genus Knufia encompasses many polyextremophilic species. In this report, the genomic and morphological features of the strain FJI-L2-BK-P2 presented, which was isolated from the Mars 2020 mission spacecraft assembly facility located at the Jet Propulsion Laboratory in Pasadena, California. The identification is based on sequence alignment for marker genes, multi-locus sequence analysis, and whole genome sequence phylogeny. The morphological features were studied using a diverse range of microscopic techniques (bright field, phase contrast, differential interference contrast and scanning electron microscopy). The phylogenetic marker genes of the strain FJI-L2-BK-P2 exhibited highest similarities with type strain of Knufia obscura (CBS 148926T) that was isolated from the gas tank of a car in Italy. To validate the species identity, whole genomes of both strains (FJI-L2-BK-P2 and CBS 148926T) were sequenced, annotated, and strain FJI-L2-BK-P2 was confirmed as K. obscura. The morphological analysis and description of the genomic characteristics of K. obscura FJI-L2-BK-P2 may contribute to refining the taxonomy of Knufia species. Key morphological features are reported in this K. obscura strain, resembling microsclerotia and chlamydospore-like propagules. These features known to be characteristic features in black fungi which could potentially facilitate their adaptation to harsh environments.


Subject(s)
Ascomycota , Mars , Phylogeny , Spacecraft , Ascomycota/genetics , Ascomycota/classification , Ascomycota/isolation & purification , Genome, Fungal/genetics , Genomics/methods
10.
Microbiol Mol Biol Rev ; 88(2): e0020222, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38587383

ABSTRACT

SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.


Subject(s)
Phylogeny , Pneumocystis carinii , Humans , Animals , Pneumocystis carinii/genetics , Pneumocystis carinii/classification , Pneumocystis carinii/pathogenicity , Pneumocystis Infections/microbiology , Pneumocystis/genetics , Pneumocystis/classification , Evolution, Molecular , Host Specificity , Pneumonia, Pneumocystis/microbiology , Genome, Fungal/genetics , Mammals/microbiology , Biological Evolution
11.
ACS Synth Biol ; 13(4): 1116-1127, 2024 04 19.
Article in English | MEDLINE | ID: mdl-38597458

ABSTRACT

Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.


Subject(s)
Chromosomes , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Genotype , Workflow , Gene Rearrangement , Genome, Fungal/genetics
12.
Cell Rep Methods ; 4(4): 100761, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38653205

ABSTRACT

The international Synthetic Yeast Project (Sc2.0) aims to construct the first synthetic designer eukaryote genome. Over the past few years, the Sc2.0 consortium has achieved several significant milestones by synthesizing and characterizing all 16 nuclear chromosomes of the yeast Saccharomyces cerevisiae, as well as a 17thde novo neochromosome containing all nuclear tRNA genes. In this commentary, we discuss the recent technological advances achieved in this project and provide a perspective on how they will impact the emerging field of synthetic genomics in the future.


Subject(s)
Genome, Fungal , Saccharomyces cerevisiae , Genetic Engineering/methods , Genome, Fungal/genetics , Genomics/methods , Saccharomyces cerevisiae/genetics , Synthetic Biology/methods
13.
J Genet Genomics ; 51(7): 723-734, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38490361

ABSTRACT

The fungal disease caused by Magnaporthe oryzae is one of the most devastating diseases that endanger many crops worldwide. Evidence shows that sexual reproduction can be advantageous for fungal diseases as hybridization facilitates host-jumping. However, the pervasive clonal lineages of M. oryzae observed in natural fields contradict this expectation. A better understanding of the roles of recombination and the fungi-specific repeat-induced point mutation (RIP) in shaping its evolutionary trajectory is essential to bridge this knowledge gap. Here we systematically investigate the RIP and recombination landscapes in M. oryzae using a whole genome sequencing data from 252 population samples and 92 cross progenies. Our data reveal that the RIP can robustly capture the population history of M. oryzae, and we provide accurate estimations of the recombination and RIP rates across different M. oryzae clades. Significantly, our results highlight a parent-of-origin bias in both recombination and RIP rates, tightly associating with their sexual potential and variations of effector proteins. This bias suggests a critical trade-off between generating novel allelic combinations in the sexual cycle to facilitate host-jumping and stimulating transposon-associated diversification of effectors in the asexual cycle to facilitate host coevolution. These findings provide unique insights into understanding the evolution of blast fungus.


Subject(s)
Point Mutation , Recombination, Genetic , Reproduction, Asexual , Recombination, Genetic/genetics , Point Mutation/genetics , Reproduction, Asexual/genetics , Evolution, Molecular , Plant Diseases/microbiology , Plant Diseases/genetics , Genome, Fungal/genetics , Magnaporthe/genetics , Magnaporthe/physiology , Magnaporthe/pathogenicity , Ascomycota
14.
PLoS Genet ; 20(3): e1011207, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38498573

ABSTRACT

Permanent heterozygous loci, such as sex- or mating-compatibility regions, often display suppression of recombination and signals of genomic degeneration. In Basidiomycota, two distinct loci confer mating compatibility. These loci encode homeodomain (HD) transcription factors and pheromone receptor (Pra)-ligand allele pairs. To date, an analysis of genome level mating-type (MAT) loci is lacking for obligate biotrophic basidiomycetes in the Pucciniales, an order containing serious agricultural plant pathogens. Here, we focus on four species of Puccinia that infect oat and wheat, including P. coronata f. sp. avenae, P. graminis f. sp. tritici, P. triticina and P. striiformis f. sp. tritici. MAT loci are located on two separate chromosomes supporting previous hypotheses of a tetrapolar mating compatibility system in the Pucciniales. The HD genes are multiallelic in all four species while the PR locus appears biallelic, except for P. graminis f. sp. tritici, which potentially has multiple alleles. HD loci are largely conserved in their macrosynteny, both within and between species, without strong signals of recombination suppression. Regions proximal to the PR locus, however, displayed signs of recombination suppression and genomic degeneration in the three species with a biallelic PR locus. Our observations support a link between recombination suppression, genomic degeneration, and allele diversity of MAT loci that is consistent with recent mathematical modelling and simulations. Finally, we confirm that MAT genes are expressed during the asexual infection cycle, and we propose that this may support regulating nuclear maintenance and pairing during infection and spore formation. Our study provides insights into the evolution of MAT loci of key pathogenic Puccinia species. Understanding mating compatibility can help predict possible combinations of nuclear pairs, generated by sexual reproduction or somatic recombination, and the potential evolution of new virulent isolates of these important plant pathogens.


Subject(s)
Basidiomycota , Edible Grain , Edible Grain/genetics , Basidiomycota/genetics , Genomics , Genome, Fungal/genetics , Reproduction , Plant Diseases/genetics , Plant Diseases/microbiology
15.
Fungal Genet Biol ; 172: 103889, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513939

ABSTRACT

Trichoderma is an excellent biocontrol agent, but most Trichoderma genomes remained at the scaffold level, which greatly limits the research of biocontrol mechanism. Here, we reported the chromosome-level genome of Trichoderma harzianum CGMCC20739 (Tha739), T. asperellum CGMCC11653 (Tas653) and T. atroviride CGMCC40488 (Tat488), they were assembled into 7 chromosomes, genome size were 40 Mb (10,611 genes), 37.3 Mb (10,102 genes) and 36.3 Mb (9,896 genes), respectively. The positive selected genes of three strains were associated to response to stimulus, signaling transduction, immune system and localization. Furthermore, the number of transcription factors in Tha739, Tas653 and Tat488 strains had significant difference, which may contribute to the differential biocontrol function and stress tolerance. The genes related to signal transduction and gene clusters related to antimicrobial compounds in Tha739 were more than those in Tas653 and Tat488, which showed Tha739 may keenly sense other fungi and quickly secret antimicrobial compounds to inhibit other fungi. Tha739 also contained more genes associated to detoxification, antioxidant and nutrition utilization, indicating it had higher stress-tolerance to hostile environments. And the substrate for synthesizing IAA in Tha739 was mainly 3-indole acetonitrile and indole acetaldehyde, but in Tat488, it was indole-3-acetamide, moreover, Tha739 secreted more phosphatase and phytase and was more related to soil phosphorus metabolism, Tat488 secreted more urease and was more related to soil nitrogen metabolism. These candidate genes related to biocontrol function and stress-tolerance laid foundations for construction of functional strains. All above proved the difference in biocontrol function of Tha739, Tas653 and Tat488 strains, however, the defects in individual strains could be compensated for through Trichoderma-biome during the commercial application process of biocontrol Trichoderma strains.


Subject(s)
Genome, Fungal , Trichoderma , Genome, Fungal/genetics , Trichoderma/genetics , Transcription Factors/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Multigene Family/genetics , Hypocreales/genetics
16.
J Biol Chem ; 300(3): 105749, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38354778

ABSTRACT

Protein engineering and screening of processive fungal cellobiohydrolases (CBHs) remain challenging due to limited expression hosts, synergy-dependency, and recalcitrant substrates. In particular, glycoside hydrolase family 7 (GH7) CBHs are critically important for the bioeconomy and typically difficult to engineer. Here, we target the discovery of highly active natural GH7 CBHs and engineering of variants with improved activity. Using experimentally assayed activities of genome mined CBHs, we applied sequence and structural alignments to top performers to identify key point mutations linked to improved activity. From ∼1500 known GH7 sequences, an evolutionarily diverse subset of 57 GH7 CBH genes was expressed in Trichoderma reesei and screened using a multiplexed activity screening assay. Ten catalytically enhanced natural variants were identified, produced, purified, and tested for efficacy using industrially relevant conditions and substrates. Three key amino acids in CBHs with performance comparable or superior to Penicillium funiculosum Cel7A were identified and combinatorially engineered into P. funiculosum cel7a, expressed in T. reesei, and assayed on lignocellulosic biomass. The top performer generated using this combined approach of natural diversity genome mining, experimental assays, and computational modeling produced a 41% increase in conversion extent over native P. funiculosum Cel7A, a 55% increase over the current industrial standard T. reesei Cel7A, and 10% improvement over Aspergillus oryzae Cel7C, the best natural GH7 CBH previously identified in our laboratory.


Subject(s)
Cellulose 1,4-beta-Cellobiosidase , Enzyme Assays , Genome, Fungal , Mutation , Protein Engineering , Aspergillus oryzae/enzymology , Aspergillus oryzae/genetics , Cellulose 1,4-beta-Cellobiosidase/chemistry , Cellulose 1,4-beta-Cellobiosidase/classification , Cellulose 1,4-beta-Cellobiosidase/genetics , Cellulose 1,4-beta-Cellobiosidase/metabolism , Genome, Fungal/genetics , Protein Engineering/methods , Substrate Specificity , Talaromyces/enzymology , Talaromyces/genetics , Trichoderma/enzymology , Trichoderma/genetics , Trichoderma/metabolism , Biocatalysis
17.
Mol Microbiol ; 121(5): 927-939, 2024 05.
Article in English | MEDLINE | ID: mdl-38396382

ABSTRACT

Aspergillus flavus is an agriculturally significant micro-fungus having potential to contaminate food and feed crops with toxic secondary metabolites such as aflatoxin (AF) and cyclopiazonic acid (CPA). Research has shown A. flavus strains can overcome heterokaryon incompatibility and undergo meiotic recombination as teleomorphs. Although evidence of recombination in the AF gene cluster has been reported, the impacts of recombination on genotype and metabolomic phenotype in a single generation are lacking. In previous studies, we paired an aflatoxigenic MAT1-1 A. flavus strain with a non-aflatoxigenic MAT1-2 A. flavus strain that had been tagged with green fluorescent protein and then 10 F1 progenies (a mix of fluorescent and non-fluorescent) were randomly selected from single-ascospore colonies and broadly examined for evidence of recombination. In this study, we determined four of those 10 F1 progenies were recombinants because they were not vegetatively compatible with either parent or their siblings, and they exhibited other distinctive traits that could only result from meiotic recombination. The other six progenies examined shared genomic identity with the non-aflatoxigenic, fluorescent, and MAT1-2 parent, but were metabolically distinct. This study highlights phenotypic and genomic changes that may occur in a single generation from the outcrossing of sexually compatible strains of A. flavus.


Subject(s)
Aflatoxins , Aspergillus flavus , Aspergillus flavus/genetics , Aspergillus flavus/metabolism , Aflatoxins/metabolism , Aflatoxins/genetics , Genome, Fungal/genetics , Recombination, Genetic , Genomics , Metabolomics , Genotype , Phenotype , Multigene Family , Genetic Variation , Indoles/metabolism , Meiosis/genetics
18.
Nat Commun ; 15(1): 1701, 2024 Feb 24.
Article in English | MEDLINE | ID: mdl-38402218

ABSTRACT

The spatial organization of eukaryotic genomes is linked to their biological functions, although it is not clear how this impacts the overall evolution of a genome. Here, we uncover the three-dimensional (3D) genome organization of the phytopathogen Verticillium dahliae, known to possess distinct genomic regions, designated adaptive genomic regions (AGRs), enriched in transposable elements and genes that mediate host infection. Short-range DNA interactions form clear topologically associating domains (TADs) with gene-rich boundaries that show reduced levels of gene expression and reduced genomic variation. Intriguingly, TADs are less clearly insulated in AGRs than in the core genome. At a global scale, the genome contains bipartite long-range interactions, particularly enriched for AGRs and more generally containing segmental duplications. Notably, the patterns observed for V. dahliae are also present in other Verticillium species. Thus, our analysis links 3D genome organization to evolutionary features conserved throughout the Verticillium genus.


Subject(s)
Genomics , Plants , Plants/genetics , DNA Transposable Elements/genetics , Chromatin/genetics , Evolution, Molecular , Genome, Fungal/genetics
19.
Phytopathology ; 114(6): 1411-1420, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38264989

ABSTRACT

Ceratocystis fimbriata is a destructive fungal pathogen of sweetpotato (Ipomoea batatas) that leads to losses at all stages of sweetpotato production. Accurate detection of C. fimbriata would allow for more efficient deployment of management tactics in sweetpotato production. To develop a diagnostic assay, a hybrid genome assembly of C. fimbriata isolate AS236 was generated. The resulting 31.7-MB assembly was near-chromosome level, with 18 contigs, 6,481 predicted genes, and a BUSCO completion score of 98.4% when compared with the fungus-specific lineage database. Additional Illumina DNA reads from C. manginecans, C. platani, and a second C. fimbriata isolate (C1421) were then mapped to the assembled genome using BOWTIE2 and counted using HTSeq, which identified 148 genes present only within C. fimbriata as molecular diagnostic candidates; 6 single-copy and 35 highly multi-copy (>40 BLAST hits), as determined through a self-BLAST-P alignment. Primers for PCR were designed in the 200-bp flanking region of the first exon for each candidate, and the candidates were validated against a diverse DNA panel containing Ceratocystis species, sweetpotato pathogens, and plants. After validation, two diagnostic candidates amplified only C. fimbriata DNA and were considered to be highly specific to the species. These genetic markers will serve as valuable diagnostic tools with multiple applications including the detection of C. fimbriata in seed, soil, and wash water in sweetpotato production.


Subject(s)
Ascomycota , Genome, Fungal , Ipomoea batatas , Plant Diseases , Ipomoea batatas/microbiology , Plant Diseases/microbiology , Ascomycota/genetics , Ascomycota/isolation & purification , Genome, Fungal/genetics , Sequence Analysis, DNA , DNA, Fungal/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...