Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.100
Filter
1.
BMC Genomics ; 25(1): 695, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39009980

ABSTRACT

BACKGROUND: Effective population size (Ne) is a pivotal parameter in population genetics as it can provide information on the rate of inbreeding and the contemporary status of genetic diversity in breeding populations. The population with smaller Ne can lead to faster inbreeding, with little potential for genetic gain making selections ineffective. The importance of Ne has become increasingly recognized in plant breeding, which can help breeders monitor and enhance the genetic variability or redesign their selection protocols. Here, we present the first Ne estimates based on linkage disequilibrium (LD) in the pea genome. RESULTS: We calculated and compared Ne using SNP markers from North Dakota State University (NDSU) modern breeding lines and United States Department of Agriculture (USDA) diversity panel. The extent of LD was highly variable not only between populations but also among different regions and chromosomes of the genome. Overall, NDSU had a higher and longer-range LD than the USDA that could extend up to 500 Kb, with a genome-wide average r2 of 0.57 (vs 0.34), likely due to its lower recombination rates and the selection background. The estimated Ne for the USDA was nearly three-fold higher (Ne = 174) than NDSU (Ne = 64), which can be confounded by a high degree of population structure due to the selfing nature of pea. CONCLUSIONS: Our results provided insights into the genetic diversity of the germplasm studied, which can guide plant breeders to actively monitor Ne in successive cycles of breeding to sustain viability of the breeding efforts in the long term.


Subject(s)
Linkage Disequilibrium , Pisum sativum , Polymorphism, Single Nucleotide , Population Density , Pisum sativum/genetics , Genome, Plant , Plant Breeding/methods , Genetics, Population , Genetic Variation
2.
Plant Signal Behav ; 19(1): 2379128, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-39003725

ABSTRACT

Rapeseed (Brassica napus L.) is an important oilseed crop widely cultivated worldwide, and drought is the main environmental factor limiting its yield enhancement and the expansion of planted areas. SIMILAR TO RCD ONE (SRO) is a plant-specific small gene family that plays a crucial role in plant growth, development, and responses to abiotic stresses such as drought. However, the functional role of SROs in rapeseed remains poorly understood. In this study, 19 BnaSROs were identified from the rapeseed genome, with 9, 10, 10, 18, and 20 members identified from the genomes of Brassica rapa, Brassica nigra, Brassica oleracea, Brassica juncea, and Brassica carinata, respectively. We then analyzed their sequence characteristics, phylogenetic relationships, gene structures, and conserved domains, and explored the collinearity relationships of the SRO members in Brassica napus and Brassica juncea. Next, we focused on the analysis of tissue expression and stress-responsive expression patterns of rapeseed SRO members and examined their expression profiles under ABA, MeJA and water-deficit drought treatments using qPCR. Transcriptome data analysis and qPCR detection indicated that BnaSROs exhibit multiple stress-responsive expression patterns. BnaSRO1 and BnaSRO11, which are likely to function through interactions with NAC transcription factors, were screened as major drought-regulated members. Our results provide a solid foundation for functional analysis of the role of the SRO gene family in abiotic stress responses, especially drought stress responses, in rapeseed.


Subject(s)
Brassica napus , Droughts , Gene Expression Regulation, Plant , Phylogeny , Plant Proteins , Stress, Physiological , Brassica napus/genetics , Brassica napus/physiology , Gene Expression Regulation, Plant/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant/genetics , Multigene Family , Genes, Plant
3.
Proc Natl Acad Sci U S A ; 121(30): e2403505121, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39012830

ABSTRACT

American chestnut (Castanea dentata) is a deciduous tree species of eastern North America that was decimated by the introduction of the chestnut blight fungus (Cryphonectria parasitica) in the early 20th century. Although millions of American chestnuts survive as root collar sprouts, these trees rarely reproduce. Thus, the species is considered functionally extinct. American chestnuts with improved blight resistance have been developed through interspecific hybridization followed by conspecific backcrossing, and by genetic engineering. Incorporating adaptive genomic diversity into these backcross families and transgenic lines is important for restoring the species across broad climatic gradients. To develop sampling recommendations for ex situ conservation of wild adaptive genetic variation, we coupled whole-genome resequencing of 384 stump sprouts with genotype-environment association analyses and found that the species range can be subdivided into three seed zones characterized by relatively homogeneous adaptive allele frequencies. We estimated that 21 to 29 trees per seed zone will need to be conserved to capture most extant adaptive diversity. We also resequenced the genomes of 269 backcross trees to understand the extent to which the breeding program has already captured wild adaptive diversity, and to estimate optimal reintroduction sites for specific families on the basis of their adaptive portfolio and future climate projections. Taken together, these results inform the development of an ex situ germplasm conservation and breeding plan to target blight-resistant breeding populations to specific environments and provides a blueprint for developing restoration plans for other imperiled tree species.


Subject(s)
Fagaceae , Genome, Plant , Plant Diseases , Fagaceae/genetics , Fagaceae/microbiology , Plant Diseases/microbiology , Plant Diseases/genetics , Ascomycota/genetics , Genetic Variation , Disease Resistance/genetics , Climate
4.
BMC Plant Biol ; 24(1): 663, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992596

ABSTRACT

BACKGROUND: The Bric-a-Brac/Tramtrack/Broad Complex (BTB) gene family plays essential roles in various biological processes in plants. These genes encode proteins that contain a conserved BTB domain, which is involved in protein-protein interactions and regulation of gene expression. However, there is no systematic reports on the BTB gene family in G.max. RESULTS: In total, 122 soybean BTB genes were identified, which were classified into four groups based on the phylogenetic analysis. Gene structures analysis indicated that the number of exon-intron in GmBTBs ranges from 0 to18. Cis-element analysis revealed that most GmBTB genes contained cis-elements related to an abiotic stress response. In addition, qRT-PCR analyses indicated that most GmBTBs are significantly up-regulated under salinity, drought, and nitrate stresses. They suggested their potential for targeted improvement of soybean response to multiple abiotic stresses and nitrate availability. CONCLUSION: These results provide valuable information for identifying the members of the GmBTB gene family in soybean and could provide a functional characterization of GmBTB genes in further research.


Subject(s)
Glycine max , Multigene Family , Phylogeny , Plant Proteins , Glycine max/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological/genetics , Genes, Plant , Genome, Plant , Gene Expression Profiling
5.
Theor Appl Genet ; 137(8): 180, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980417

ABSTRACT

KEY MESSAGE: De novo genotyping in potato using methylation-sensitive GBS discovers SNPs largely confined to genic or gene-associated regions and displays enhanced effectiveness in estimating LD decay rates, population structure and detecting GWAS associations over 'fixed' SNP genotyping platform. Study also reports the genetic architectures including robust sequence-tagged marker-trait associations for sixteen important potato traits potentially carrying higher transferability across a wider range of germplasm. This study deploys recent advancements in polyploid analytical approaches to perform complex trait analyses in cultivated tetraploid potato. The study employs a 'fixed' SNP Infinium array platform and a 'flexible and open' genome complexity reduction-based sequencing method (GBS, genotyping-by-sequencing) to perform genome-wide association studies (GWAS) for several key potato traits including the assessment of population structure and linkage disequilibrium (LD) in the studied population. GBS SNPs discovered here were largely confined (~ 90%) to genic or gene-associated regions of the genome demonstrating the utility of using a methylation-sensitive restriction enzyme (PstI) for library construction. As compared to Infinium array SNPs, GBS SNPs displayed enhanced effectiveness in estimating LD decay rates and discriminating population subgroups. GWAS using a combined set of 30,363 SNPs identified 189 unique QTL marker-trait associations (QTL-MTAs) covering all studied traits. The majority of the QTL-MTAs were from GBS SNPs potentially illustrating the effectiveness of marker-dense de novo genotyping platforms in overcoming ascertainment bias and providing a more accurate correction for different levels of relatedness in GWAS models. GWAS also detected QTL 'hotspots' for several traits at previously known as well as newly identified genomic locations. Due to the current study exploiting genome-wide genotyping and de novo SNP discovery simultaneously on a large tetraploid panel representing a greater diversity of the cultivated potato gene pool, the reported sequence-tagged MTAs are likely to have higher transferability across a wider range of potato germplasm and increased utility for expediting genomics-assisted breeding for the several complex traits studied.


Subject(s)
Genotype , Linkage Disequilibrium , Polymorphism, Single Nucleotide , Solanum tuberosum , Tetraploidy , Solanum tuberosum/genetics , Solanum tuberosum/growth & development , Genotyping Techniques/methods , Genome-Wide Association Study , Quantitative Trait Loci , Phenotype , Genome, Plant , Genetic Association Studies
6.
Theor Appl Genet ; 137(8): 179, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38980436

ABSTRACT

Rust diseases, including leaf rust, stripe/yellow rust, and stem rust, significantly impact wheat (Triticum aestivum L.) yields, causing substantial economic losses every year. Breeding and deployment of cultivars with genetic resistance is the most effective and sustainable approach to control these diseases. The genetic toolkit for wheat breeders to select for rust resistance has rapidly expanded with a multitude of genetic loci identified using the latest advances in genomics, mapping and cloning strategies. The goal of this review was to establish a wheat genome atlas that provides a comprehensive summary of reported loci associated with rust resistance. Our atlas provides a summary of mapped quantitative trait loci (QTL) and characterised genes for the three rusts from 170 publications over the past two decades. A total of 920 QTL or resistance genes were positioned across the 21 chromosomes of wheat based on the latest wheat reference genome (IWGSC RefSeq v2.1). Interestingly, 26 genomic regions contained multiple rust loci suggesting they could have pleiotropic effects on two or more rust diseases. We discuss a range of strategies to exploit this wealth of genetic information to efficiently utilise sources of resistance, including genomic information to stack desirable and multiple QTL to develop wheat cultivars with enhanced resistance to rust disease.


Subject(s)
Basidiomycota , Chromosome Mapping , Disease Resistance , Plant Diseases , Quantitative Trait Loci , Triticum , Triticum/genetics , Triticum/microbiology , Plant Diseases/genetics , Plant Diseases/microbiology , Disease Resistance/genetics , Basidiomycota/pathogenicity , Plant Breeding , Genome, Plant , Genes, Plant , Chromosomes, Plant/genetics
7.
BMC Plant Biol ; 24(1): 645, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972991

ABSTRACT

Melia azedarach is a species of enormous value of pharmaceutical industries. Although the chloroplast genome of M. azedarach has been explored, the information of mitochondrial genome (Mt genome) remains surprisingly limited. In this study, we used a hybrid assembly strategy of BGI short-reads and Nanopore long-reads to assemble the Mt genome of M. azedarach. The Mt genome of M. azedarach is characterized by two circular chromosomes with 350,142 bp and 290,387 bp in length, respectively, which encodes 35 protein-coding genes (PCGs), 23 tRNA genes, and 3 rRNA genes. A pair of direct repeats (R1 and R2) were associated with genome recombination, resulting in two conformations based on the Sanger sequencing and Oxford Nanopore sequencing. Comparative analysis identified 19 homologous fragments between Mt and chloroplast genome, with the longest fragment of 12,142 bp. The phylogenetic analysis based on PCGs were consist with the latest classification of the Angiosperm Phylogeny Group. Notably, a total of 356 potential RNA editing sites were predicted based on 35 PCGs, and the editing events lead to the formation of the stop codon in the rps10 gene and the start codons in the nad4L and atp9 genes, which were verified by PCR amplification and Sanger sequencing. Taken together, the exploration of M. azedarach gap-free Mt genome provides a new insight into the evolution research and complex mitogenome architecture.


Subject(s)
Genome, Mitochondrial , Phylogeny , Recombination, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Genome, Chloroplast , Genome, Plant , RNA Editing
8.
BMC Plant Biol ; 24(1): 644, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973002

ABSTRACT

BACKGROUND: Floating bamboo (Hygroryza aristata) is an endangered species with a narrow native distribution and is renowned for its unique aesthetic qualities, which holds significant ecological and ornamental value. However, the lack of genetic information research, with only one complete plastome available, significantly hampers conservation efforts and further research for this species. RESULTS: In this research, we sequenced and assembled the organelle genomes of floating bamboo, including the mitogenome (587,847 bp) and plastome (135,675 bp). The mitogenome can recombine into various configurations, which are mediated by 25 repeat pairs (13 SRs, 6 MRs, 1 LR, and 5 CRs). LR1 and SR5 are particularly notable as they have the ability to combine with other contigs, forming complex repeat units that facilitate further homologous recombination. The rate of homologous recombination varies significantly among species, yet there is still a pronounced positive correlation observed between the length of these repeat pairs and the rate of recombination they mediate. The mitogenome integrates seven intact protein-coding genes from the chloroplast. The codon usage patterns in both organelles are similar, with a noticeable bias towards C and T on the third codon. The gene map of Poales shows the entire loss of rpl6, succinate dehydrogenase subunits (sdh3 and sdh4). Additionally, the BOP clade retained more variable genes compared to the PACMAD clade. CONCLUSIONS: We provided a high-quality and well-annotated mitogenome for floating bamboo and demonstrated the presence of diverse configurations. Our study has revealed the correlation between repeat length and their corresponding recombination rate despite variations among species. Although the mitogenome can potentially exist in the form of a unicircular in vivo, this occurrence is rare and may not be stable.


Subject(s)
Genome, Mitochondrial , Poaceae , Poaceae/genetics , Recombination, Genetic , Repetitive Sequences, Nucleic Acid/genetics , Genome, Plant
9.
Int J Mol Sci ; 25(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39000298

ABSTRACT

Moso bamboo (Phyllostachys edulis), renowned for its rapid growth, is attributed to the dynamic changes in its apical meristem. The CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) family genes are known to play crucial roles in regulating meristem and organ formation in model plants, but their functions in Moso bamboo remain unclear. Here, we conducted a genome-wide identification of the CLE gene family of Moso bamboo and investigated their gene structure, chromosomal localization, evolutionary relationships, and expression patterns. A total of 11 PheCLE genes were identified, all of which contained a conserved CLE peptide core functional motif (Motif 1) at their C-termini. Based on Arabidopsis classification criteria, these genes were predominantly distributed in Groups A-C. Collinearity analysis unveiled significant synteny among CLE genes in Moso bamboo, rice, and maize, implying potential functional conservation during monocot evolution. Transcriptomic analysis showed significant expression of these genes in the apical tissues of Moso bamboo, including root tips, shoot tips, rhizome buds, and flower buds. Particularly, single-cell transcriptomic data and in situ hybridization further corroborated the heightened expression of PheCLE1 and PheCLE10 in the apical tissue of basal roots. Additionally, the overexpression of PheCLE1 and PheCLE10 in rice markedly promoted root growth. PheCLE1 and PheCLE10 were both located on the cell membrane. Furthermore, the upstream transcription factors NAC9 and NAC6 exhibited binding affinity toward the promoters of PheCLE1 and PheCLE10, thereby facilitating their transcriptional activation. In summary, this study not only systematically identified the CLE gene family in Moso bamboo for the first time but also emphasized their central roles in apical tissue development. This provides a valuable theoretical foundation for the further exploration of functional peptides and their signaling regulatory networks in bamboo species.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Roots , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Phylogeny , Genome-Wide Association Study , Poaceae/genetics , Poaceae/growth & development , Poaceae/metabolism , Genome, Plant , Meristem/genetics , Meristem/growth & development , Meristem/metabolism , Gene Expression Profiling , Multigene Family
10.
Int J Mol Sci ; 25(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-39000365

ABSTRACT

Sorghum (Sorghum bicolor), the fifth most important cereal crop globally, serves as a staple food, animal feed, and a bioenergy source. Paclobutrazol-Resistance (PRE) genes play a pivotal role in the response to environmental stress, yet the understanding of their involvement in pest resistance remains limited. In the present study, a total of seven SbPRE genes were found within the sorghum BTx623 genome. Subsequently, their genomic location was studied, and they were distributed on four chromosomes. An analysis of cis-acting elements in SbPRE promoters revealed that various elements were associated with hormones and stress responses. Expression pattern analysis showed differentially tissue-specific expression profiles among SbPRE genes. The expression of some SbPRE genes can be induced by abiotic stress and aphid treatments. Furthermore, through phytohormones and transgenic analyses, we demonstrated that SbPRE4 improves sorghum resistance to aphids by accumulating jasmonic acids (JAs) in transgenic Arabidopsis, giving insights into the molecular and biological function of atypical basic helix-loop-helix (bHLH) transcription factors in sorghum pest resistance.


Subject(s)
Aphids , Gene Expression Regulation, Plant , Plant Proteins , Sorghum , Stress, Physiological , Triazoles , Sorghum/genetics , Sorghum/metabolism , Aphids/genetics , Aphids/physiology , Animals , Triazoles/pharmacology , Stress, Physiological/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Oxylipins/metabolism , Oxylipins/pharmacology , Cyclopentanes/metabolism , Cyclopentanes/pharmacology , Arabidopsis/genetics , Promoter Regions, Genetic , Multigene Family , Plant Growth Regulators/metabolism , Plant Growth Regulators/pharmacology , Phylogeny , Plant Diseases/parasitology , Plant Diseases/genetics , Genome, Plant
11.
Int J Mol Sci ; 25(13)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39000388

ABSTRACT

Biological invasions have been identified as the fifth cause of biodiversity loss, and their subsequent dispersal represents a major ecological challenge. The aquatic invasive species Ludwigia grandiflora subsp. hexapetala (Lgh) and Ludwigia peploides subsp. montevidensis (Lpm) are largely distributed in aquatic environments in North America and in Europe. However, they also present worrying terrestrial forms that are able to colonize wet meadows. To comprehend the mechanisms of the terrestrial adaptation of Lgh and Lpm, it is necessary to develop their genomic resources, which are currently poorly documented. We performed de novo assembly of the mitogenomes of Lgh and Lpm through hybrid assemblies, combining short reads (SR) and/or long reads (LR) before annotating both mitogenomes. We successfully assembled the mitogenomes of Lgh and Lpm into two circular molecules each, resulting in a combined total length of 711,578 bp and 722,518 bp, respectively. Notably, both the Lgh and Lpm molecules contained plastome-origin sequences, comprising 7.8% of the mitochondrial genome length. Additionally, we identified recombinations that were mediated by large repeats, suggesting the presence of multiple alternative conformations. In conclusion, our study presents the first high-quality mitogenomes of Lpm and Lgh, which are the only ones in the Myrtales order found as two circular molecules.


Subject(s)
Genome, Mitochondrial , RNA Editing , Recombination, Genetic , Phylogeny , Genomics/methods , Genome, Plant , Chromosomes, Plant/genetics
12.
Int J Mol Sci ; 25(13)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39000574

ABSTRACT

Schima superba, commonly known as the Chinese guger tree, is highly adaptable and tolerant of poor soil conditions. It is one of the primary species forming the evergreen broad-leaved forests in southern China. Dirigent proteins (DIRs) play crucial roles in the synthesis of plant lignin and lignans, secondary metabolism, and response to adversity stress. However, research on the DIR gene family in S. superba is currently limited. This study identified 24 SsDIR genes, categorizing them into three subfamilies. These genes are unevenly distributed across 13 chromosomes, with 83% being intronless. Collinearity analysis indicated that tandem duplication played a more significant role in the expansion of the gene family compared to segmental duplication. Additionally, we analyzed the expression patterns of SsDIRs in different tissues of S. superba. The SsDIR genes exhibited distinct expression patterns across various tissues, with most being specifically expressed in the roots. Further screening identified SsDIR genes that may regulate drought stress, with many showing differential expression under drought stress conditions. In the promoter regions of SsDIRs, various cis-regulatory elements involved in developmental regulation, hormone response, and stress response were identified, which may be closely related to their diverse regulatory functions. This study will contribute to the further functional identification of SsDIR genes, providing insights into the biosynthetic pathways of lignin and lignans and the mechanisms of plant stress resistance.


Subject(s)
Evolution, Molecular , Gene Expression Regulation, Plant , Multigene Family , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Phylogeny , Genome, Plant , Lignin/biosynthesis , Lignin/genetics , Lignin/metabolism , Gene Expression Profiling , Chromosomes, Plant/genetics , Droughts , Gene Duplication , Promoter Regions, Genetic
13.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000581

ABSTRACT

The auxin/indoleacetic acid (Aux/IAA) family plays a central role in regulating gene expression during auxin signal transduction. Nonetheless, there is limited knowledge regarding this gene family in sugarcane. In this study, 92 members of the IAA family were identified in Saccharum spontaneum, distributed on 32 chromosomes, and classified into three clusters based on phylogeny and motif compositions. Segmental duplication and recombination events contributed largely to the expansion of this superfamily. Additionally, cis-acting elements in the promoters of SsIAAs involved in plant hormone regulation and stress responsiveness were predicted. Transcriptomics data revealed that most SsIAA expressions were significantly higher in stems and basal parts of leaves, and at nighttime, suggesting that these genes might be involved in sugar transport. QRT-PCR assays confirmed that cold and salt stress significantly induced four and five SsIAAs, respectively. GFP-subcellular localization showed that SsIAA23 and SsIAA12a were localized in the nucleus, consistent with the results of bioinformatics analysis. In conclusion, to a certain extent, the functional redundancy of family members caused by the expansion of the sugarcane IAA gene family is related to stress resistance and regeneration of sugarcane as a perennial crop. This study reveals the gene evolution and function of the SsIAA gene family in sugarcane, laying the foundation for further research on its mode of action.


Subject(s)
Gene Expression Regulation, Plant , Indoleacetic Acids , Multigene Family , Phylogeny , Plant Proteins , Saccharum , Saccharum/genetics , Indoleacetic Acids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Genome, Plant , Promoter Regions, Genetic , Chromosomes, Plant/genetics , Gene Expression Profiling , Plant Growth Regulators/metabolism
14.
PLoS Genet ; 20(7): e1011336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950081

ABSTRACT

Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.


Subject(s)
Genome, Plant , Recombination, Genetic , Solanum lycopersicum , Solanum lycopersicum/genetics , Hybridization, Genetic , Genetic Linkage , Plant Breeding , Retroelements/genetics , Crossing Over, Genetic , Meiosis/genetics , Chromosome Mapping , Chromosomes, Plant/genetics , Alleles
15.
Theor Appl Genet ; 137(7): 176, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969812

ABSTRACT

Circular RNAs (circRNAs), a class of non-coding RNA molecules, are recognized for their unique functions; however, their responses to herbicide stress in Brassica napus remain unclear. In this study, the role of circRNAs in response to herbicide treatment was investigated in two rapeseed cultivars: MH33, which confers non-target-site resistance (NTSR), and EM28, which exhibits target-site resistance (TSR). The genome-wide circRNA profiles of herbicide-stressed and non-stressed seedlings were analyzed. The findings indicate that NTSR seedlings exhibited a greater abundance of circRNAs, shorter lengths of circRNAs and their parent genes, and more diverse functions of parent genes compared with TSR seedlings. Compared to normal-growth plants, the herbicide-stressed group exhibited similar trends in the number of circRNAs, functions of parent genes, and differentially expressed circRNAs as observed in NTSR seedlings. In addition, a greater number of circRNAs that function as competing microRNA (miRNA) sponges were identified in the herbicide stress and NTSR groups compared to the normal-growth and TSR groups, respectively. The differentially expressed circRNAs were validated by qPCR. The differntially expressed circRNA-miRNA networks were predicted, and the mRNAs targeted by these miRNAs were annotated. Our results suggest that circRNAs play a crucial role in responding to herbicide stress, exhibiting distinct responses between NTSR and TSR in rapeseed. These findings offer valuable insights into the mechanisms underlying herbicide resistance in rapeseed.


Subject(s)
Brassica napus , Gene Expression Regulation, Plant , Herbicide Resistance , Herbicides , RNA, Circular , RNA, Plant , Brassica napus/genetics , Brassica napus/drug effects , Brassica napus/growth & development , RNA, Circular/genetics , Herbicides/pharmacology , Gene Expression Regulation, Plant/drug effects , RNA, Plant/genetics , Herbicide Resistance/genetics , Seedlings/genetics , Seedlings/drug effects , Seedlings/growth & development , Stress, Physiological/genetics , MicroRNAs/genetics , MicroRNAs/metabolism , Genome, Plant
16.
Int J Mol Sci ; 25(13)2024 Jun 22.
Article in English | MEDLINE | ID: mdl-38999970

ABSTRACT

Taraxacum kok-saghyz (TKS) is a model plant and a potential rubber-producing crop for the study of natural rubber (NR) biosynthesis. The precise analysis of the NR biosynthesis mechanism is an important theoretical basis for improving rubber yield. The small rubber particle protein (SRPP) and rubber elongation factor (REF) are located in the membrane of rubber particles and play crucial roles in rubber biosynthesis. However, the specific functions of the SRPP/REF gene family in the rubber biosynthesis mechanism have not been fully resolved. In this study, we performed a genome-wide identification of the 10 TkSRPP and 2 TkREF genes' family members of Russian dandelion and a comprehensive investigation on the evolution of the ethylene/methyl jasmonate-induced expression of the SRPP/REF gene family in TKS. Based on phylogenetic analysis, 12 TkSRPP/REFs proteins were divided into five subclades. Our study revealed one functional domain and 10 motifs in these proteins. The SRPP/REF protein sequences all contain typical REF structural domains and belong to the same superfamily. Members of this family are most closely related to the orthologous species T. mongolicum and share the same distribution pattern of SRPP/REF genes in T. mongolicum and L. sativa, both of which belong to the family Asteraceae. Collinearity analysis showed that segmental duplication events played a key role in the expansion of the TkSRPP/REFs gene family. The expression levels of most TkSRPP/REF members were significantly increased in different tissues of T. kok-saghyz after induction with ethylene and methyl jasmonate. These results will provide a theoretical basis for the selection of candidate genes for the molecular breeding of T. kok-saghyz and the precise resolution of the mechanism of natural rubber production.


Subject(s)
Acetates , Cyclopentanes , Ethylenes , Gene Expression Regulation, Plant , Multigene Family , Oxylipins , Phylogeny , Plant Proteins , Taraxacum , Oxylipins/pharmacology , Cyclopentanes/pharmacology , Taraxacum/genetics , Taraxacum/metabolism , Taraxacum/drug effects , Ethylenes/pharmacology , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Acetates/pharmacology , Genome, Plant , Genome-Wide Association Study
17.
Int J Mol Sci ; 25(13)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39000015

ABSTRACT

Vegetables, as indispensable non-staple foods in people's daily diet, provide a variety of essential vitamins, minerals, and other nutrients, as well as special phytochemicals, which are recognized as functional components for human nutritional balance or medicinal purposes [...].


Subject(s)
Genomics , Vegetables , Vegetables/genetics , Genomics/methods , Humans , Genome, Plant , Phytochemicals
18.
Int J Mol Sci ; 25(13)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39000087

ABSTRACT

Sulfur metabolism plays a major role in plant growth and development, environmental adaptation, and material synthesis, and the sulfate transporters are the beginning of sulfur metabolism. We identified 37 potential VcSULTR genes in the blueberry genome, encoding peptides with 534 to 766 amino acids. The genes were grouped into four subfamilies in an evolutionary analysis. The 37 putative VcSULTR proteins ranged in size from 60.03 to 83.87 kDa. These proteins were predicted to be hydrophobic and mostly localize to the plasma membrane. The VcSULTR genes were distributed on 30 chromosomes; VcSULTR3;5b and VcSULTR3;5c were the only tandemly repeated genes. The VcSULTR promoters contained cis-acting elements related to the fungal symbiosis and stress responses. The transcript levels of the VcSULTRs differed among blueberry organs and changed in response to ericoid mycorrhizal fungi and sulfate treatments. A subcellular localization analysis showed that VcSULTR2;1c localized to, and functioned in, the plasma membrane and chloroplast. The virus-induced gene knock-down of VcSULTR2;1c resulted in a significantly decreased endogenous sulfate content, and an up-regulation of genes encoding key enzymes in sulfur metabolism (VcATPS2 and VcSiR1). These findings enhance our understanding of mycorrhizal-fungi-mediated sulfate transport in blueberry, and lay the foundation for further research on blueberry-mycorrhizal symbiosis.


Subject(s)
Blueberry Plants , Gene Expression Regulation, Plant , Mycorrhizae , Phylogeny , Plant Proteins , Sulfate Transporters , Mycorrhizae/genetics , Blueberry Plants/genetics , Blueberry Plants/microbiology , Blueberry Plants/metabolism , Sulfate Transporters/genetics , Sulfate Transporters/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Multigene Family , Sulfates/metabolism , Symbiosis/genetics , Genome, Plant
19.
BMC Plant Biol ; 24(1): 634, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971744

ABSTRACT

BACKGROUND: Engelhardia (Juglandaceae) is a genus of significant ecological and economic importance, prevalent in the tropics and subtropics of East Asia. Although previous efforts based on multiple molecular markers providing profound insights into species delimitation and phylogeography of Engelhardia, the maternal genome evolution and phylogeny of Engelhardia in Juglandaceae still need to be comprehensively evaluated. In this study, we sequenced plastomes from 14 samples of eight Engelhardia species and the outgroup Rhoiptelea chiliantha, and incorporated published data from 36 Juglandaceae and six outgroup species to test phylogenetic resolution. Moreover, comparative analyses of the plastomes were conducted to investigate the plastomes evolution of Engelhardia and the whole Juglandaceae family. RESULTS: The 13 Engelhardia plastomes were highly similar in genome size, gene content, and order. They exhibited a typical quadripartite structure, with lengths from 161,069 bp to 162,336 bp. Three mutation hotspot regions (TrnK-rps16, ndhF-rpl32, and ycf1) could be used as effective molecular markers for further phylogenetic analyses and species identification. Insertion and deletion (InDels) may be an important driving factor for the evolution of plastomes in Juglandoideae and Engelhardioideae. A total of ten codons were identified as the optimal codons in Juglandaceae. The mutation pressure mostly contributed to shaping codon usage. Seventy-eight protein-coding genes in Juglandaceae experienced relaxed purifying selection, only rpl22 and psaI genes showed positive selection (Ka/Ks > 1). Phylogenetic results fully supported Engelhardia as a monophyletic group including two sects and the division of Juglandaceae into three subfamilies. The Engelhardia originated in the Late Cretaceous and diversified in the Late Eocene, and Juglandaceae originated in the Early Cretaceous and differentiated in Middle Cretaceous. The phylogeny and divergence times didn't support rapid radiation occurred in the evolution history of Engelhardia. CONCLUSION: Our study fully supported the taxonomic treatment of at the section for Engelhardia species and three subfamilies for Juglandaceae and confirmed the power of phylogenetic resolution using plastome sequences. Moreover, our results also laid the foundation for further studying the course, tempo and mode of plastome evolution of Engelhardia and the whole Juglandaceae family.


Subject(s)
Evolution, Molecular , Phylogeny , Genome, Plastid , Genome, Plant
20.
Plant Cell Rep ; 43(8): 191, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38977492

ABSTRACT

KEY MESSAGE: We reported the graph-based mitochondrial genomes of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) for the first time. The results revealed pan-structural variation and evolutionary processes in the mitochondrial genomes within Saccharum. Saccharum belongs to the Andropogoneae, and cultivars species in Saccharum contribute nearly 80% of sugar production in the world. To explore the genomic studies in Saccharum, we assembled 15 complete mitochondrial genomes (mitogenome) of three foundation species (Saccharum spontaneum, S. robustum and S. officinarum) using Illumina and Oxford Nanopore Technologies sequencing data. The mitogenomes of the three species were divided into a total of eight types based on contig numbers and linkages. All mitogenomes in the three species encoded 51 unique genes, including 32 protein-coding, 3 ribosomal RNA (rRNA) and 16 transfer RNA (tRNA) genes. The existence of long and short-repeat-mediated recombinations in the mitogenome of S. officinarum and S. robustum was revealed and confirmed through PCR validation. Furthermore, employing comparative genomics and phylogenetic analyses of the organelle genomes, we unveiled the evolutionary relationships and history of the major interspecific lineages in Saccharum genus. Phylogenetic analyses of homologous fragments between S. officinarum and S. robustum showed that S. officinarum and S. robustum are phylogenetically distinct and that they were likely parallel rather than domesticated. The variations between ancient (S. sinense and S. barberi) and modern cultivated species (S. hybrid) possibly resulted from hybridization involving different S. officinarum accessions. Lastly, this project reported the first graph-based mitogenomes of three Saccharum species, and a systematic comparison of the structural organization, evolutionary processes, and pan-structural variation of the Saccharum mitogenomes revealed the differential features of the Saccharum mitogenomes.


Subject(s)
Genome, Mitochondrial , Phylogeny , Saccharum , Genome, Mitochondrial/genetics , Saccharum/genetics , RNA, Transfer/genetics , Genome, Plant/genetics , RNA, Ribosomal/genetics , Evolution, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...