Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.282
1.
BMC Genom Data ; 25(1): 53, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844844

OBJECTIVES: The new data provide an important genomic resource for the Critically Endangered Cuban crocodile (Crocodylus rhombifer). Cuban crocodiles are restricted to the Zapata Swamp in southern Matanzas Province, Cuba, and readily hybridize with the widespread American crocodile (Crocodylus acutus) in areas of sympatry. The reported de novo assembly will contribute to studies of crocodylian evolutionary history and provide a resource for informing Cuban crocodile conservation. DATA DESCRIPTION: The final 2.2 Gb draft genome for C. rhombifer consists of 41,387 scaffolds (contigs: N50 = 104.67 Kb; scaffold: N50-518.55 Kb). Benchmarking Universal Single-Copy Orthologs (BUSCO) identified 92.3% of the 3,354 genes in the vertebrata_odb10 database. Approximately 42% of the genome (960Mbp) comprises repeat elements. We predicted 30,138 unique protein-coding sequences (17,737 unique genes) in the genome assembly. Functional annotation found the top Gene Ontology annotations for Biological Processes, Molecular Function, and Cellular Component were regulation, protein, and intracellular, respectively. This assembly will support future macroevolutionary, conservation, and molecular studies of the Cuban crocodile.


Alligators and Crocodiles , Genome , Molecular Sequence Annotation , Alligators and Crocodiles/genetics , Animals , Genome/genetics , Cuba , Genomics/methods
2.
BMC Genom Data ; 25(1): 52, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38844863

OBJECTIVES: The Bengal tiger Panthera tigris tigris, is an emblematic animal for Bangladesh. Despite being the apex predator in the wild, their number is decreasing due to anthropogenic activities such as hunting, urbanization, expansion of agriculture and deforestation. By contrast, captive tigers are flourishing due to practical conservation efforts. Breeding within the small captive population can produce inbreeding depression and genetic bottlenecks, which may limit the success of conservation efforts. Despite past decades of research, a comprehensive database on genetic variation in the captive and wild Bengal tigers in Bangladesh still needs to be included. Therefore, this research aimed to investigate the White Bengal tiger genome to create a resource for future studies to understand variation underlying important functional traits. DATA DESCRIPTION: Blood samples from Chattogram Zoo were collected for three white Bengal tigers. Genomic DNA for all collected samples were extracted using a commercial DNA extraction kit. Whole genome sequencing was performed using a DNBseq platform. We generated 77 Gb of whole-genome sequencing (WGS) data for three white Bengal tigers (Average 11X coverage/sample). The data we generated will establish a paradigm for tiger research in Bangladesh by providing a genomic resource for future functional studies on the Bengal white tiger.


Tigers , Whole Genome Sequencing , Tigers/genetics , Animals , Bangladesh , Genome/genetics , Genetic Variation/genetics
3.
PeerJ ; 12: e17482, 2024.
Article En | MEDLINE | ID: mdl-38832043

Background: Previous work found that numerous genes positively selected within the hoary bat (Lasiurus cinereus) lineage are physically clustered in regions of conserved synteny. Here I further validate and expand on those finding utilizing an updated L. cinereus genome assembly and additional bat species as well as other tetrapod outgroups. Methods: A chromosome-level assembly was generated by chromatin-contact mapping and made available by DNAZoo (www.dnazoo.org). The genomic organization of orthologous genes was extracted from annotation data for multiple additional bat species as well as other tetrapod clades for which chromosome-level assemblies were available from the National Center for Biotechnology Information (NCBI). Tests of branch-specific positive selection were performed for L. cinereus using PAML as well as with the HyPhy package for comparison. Results: Twelve genes exhibiting significant diversifying selection in the L. cinereus lineage were clustered within a 12-Mb genomic window; one of these (Trpc4) also exhibited diversifying selection in bats generally. Ten of the 12 genes are landmarks of two distinct blocks of ancient synteny that are not linked in other tetrapod clades. Bats are further distinguished by frequent structural rearrangements within these synteny blocks, which are rarely observed in other Tetrapoda. Patterns of gene order and orientation among bat taxa are incompatible with phylogeny as presently understood, implying parallel evolution or subsequent reversals. Inferences of positive selection were found to be robust to alternative phylogenetic topologies as well as a strong shift in background nucleotide composition in some taxa. Discussion: This study confirms and further localizes a genomic hotspot of protein-coding divergence in the hoary bat, one that also exhibits an increased tempo of structural change in bats compared with other mammals. Most genes in the two synteny blocks have elevated expression in brain tissue in humans and model organisms, and genetic studies implicate the selected genes in cranial and neurological development, among other functions.


Chiroptera , Genome , Selection, Genetic , Chiroptera/genetics , Animals , Genome/genetics , Synteny/genetics , Evolution, Molecular , Phylogeny , Genomics
4.
PLoS One ; 19(5): e0303257, 2024.
Article En | MEDLINE | ID: mdl-38753830

Patterns of single nucleotide polymorphisms (SNPs) in eukaryotic DNA are traditionally attributed to selective pressure, drift, identity descent, or related factors-without accounting for ways in which bias during de novo SNP formation, itself, might contribute. A functional and phenotypic analysis based on evolutionary resilience of DNA points to decreased numbers of non-synonymous SNPs in human and other genomes, with a predominant component of SNP depletion in the human gene pool caused by robust preferences during de novo SNP formation (rather than selective constraint). Ramifications of these findings are broad, belie a number of concepts regarding human evolution, and point to a novel interpretation of evolving DNA across diverse species.


Evolution, Molecular , Polymorphism, Single Nucleotide , Humans , Genome, Human , Animals , Genome/genetics , Genomics/methods
5.
PLoS Biol ; 22(5): e3002632, 2024 May.
Article En | MEDLINE | ID: mdl-38768403

Reconstructing the tree of life remains a central goal in biology. Early methods, which relied on small numbers of morphological or genetic characters, often yielded conflicting evolutionary histories, undermining confidence in the results. Investigations based on phylogenomics, which use hundreds to thousands of loci for phylogenetic inquiry, have provided a clearer picture of life's history, but certain branches remain problematic. To resolve difficult nodes on the tree of life, 2 recent studies tested the utility of synteny, the conserved collinearity of orthologous genetic loci in 2 or more organisms, for phylogenetics. Synteny exhibits compelling phylogenomic potential while also raising new challenges. This Essay identifies and discusses specific opportunities and challenges that bear on the value of synteny data and other rare genomic changes for phylogenomic studies. Synteny-based analyses of highly contiguous genome assemblies mark a new chapter in the phylogenomic era and the quest to reconstruct the tree of life.


Genomics , Phylogeny , Synteny , Genomics/methods , Animals , Genome/genetics , Evolution, Molecular
6.
PLoS Biol ; 22(5): e3002405, 2024 May.
Article En | MEDLINE | ID: mdl-38713717

We report a new visualization tool for analysis of whole-genome assembly-assembly alignments, the Comparative Genome Viewer (CGV) (https://ncbi.nlm.nih.gov/genome/cgv/). CGV visualizes pairwise same-species and cross-species alignments provided by National Center for Biotechnology Information (NCBI) using assembly alignment algorithms developed by us and others. Researchers can examine large structural differences spanning chromosomes, such as inversions or translocations. Users can also navigate to regions of interest, where they can detect and analyze smaller-scale deletions and rearrangements within specific chromosome or gene regions. RefSeq or user-provided gene annotation is displayed where available. CGV currently provides approximately 800 alignments from over 350 animal, plant, and fungal species. CGV and related NCBI viewers are undergoing active development to further meet needs of the research community in comparative genome visualization.


Genome , Software , Animals , Genome/genetics , Sequence Alignment/methods , Genomics/methods , Algorithms , United States , Humans , Eukaryota/genetics , Databases, Genetic , National Library of Medicine (U.S.) , Molecular Sequence Annotation/methods
7.
Nature ; 629(8014): 1165-1173, 2024 May.
Article En | MEDLINE | ID: mdl-38720076

The nucleus is highly organized, such that factors involved in the transcription and processing of distinct classes of RNA are confined within specific nuclear bodies1,2. One example is the nuclear speckle, which is defined by high concentrations of protein and noncoding RNA regulators of pre-mRNA splicing3. What functional role, if any, speckles might play in the process of mRNA splicing is unclear4,5. Here we show that genes localized near nuclear speckles display higher spliceosome concentrations, increased spliceosome binding to their pre-mRNAs and higher co-transcriptional splicing levels than genes that are located farther from nuclear speckles. Gene organization around nuclear speckles is dynamic between cell types, and changes in speckle proximity lead to differences in splicing efficiency. Finally, directed recruitment of a pre-mRNA to nuclear speckles is sufficient to increase mRNA splicing levels. Together, our results integrate the long-standing observations of nuclear speckles with the biochemistry of mRNA splicing and demonstrate a crucial role for dynamic three-dimensional spatial organization of genomic DNA in driving spliceosome concentrations and controlling the efficiency of mRNA splicing.


Genome , Nuclear Speckles , RNA Precursors , RNA Splicing , RNA, Messenger , Spliceosomes , Animals , Humans , Male , Mice , Genes , Genome/genetics , Human Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Nuclear Speckles/genetics , Nuclear Speckles/metabolism , RNA Precursors/metabolism , RNA Precursors/genetics , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Spliceosomes/metabolism , Transcription, Genetic
8.
Genes (Basel) ; 15(5)2024 Apr 26.
Article En | MEDLINE | ID: mdl-38790179

A genomic study was conducted to uncover the selection signatures in sheep that show extremely significant differences in growth traits under the same breed, age in months, nutrition level, and management practices. Hu sheep from Gansu Province and Gangba sheep from the Tibet Autonomous Region in China were selected. We collected whole-genome data from 40 sheep individuals (24 Hu sheep and 16 Gangba sheep), through whole-genome sequencing. Selection signals were analyzed using parameters such as FST, π ratio, and Tajima's D. We have identified several candidate genes that have undergone strong selection, particularly those associated with growth traits. Specifically, five growth-related genes were identified in both the Hu sheep group (HDAC1, MYH7B, LCK, ACVR1, GNAI2) and the Gangba sheep group (RBBP8, ACSL3, FBXW11, PLAT, CRB1). Additionally, in a genomic region strongly selected in both the Hu and Gangba sheep groups (Chr 22: 51,425,001-51,500,000), the growth-associated gene CYP2E1 was identified, further highlighting the genetic factors influencing growth characteristics in these breeds. This study analyzes the genetic basis for significant differences in sheep phenotypes, identifies candidate genes related to sheep growth traits, lays the foundation for molecular genetic breeding in sheep, and accelerates the genetic improvement in livestock.


Whole Genome Sequencing , Animals , Sheep/genetics , Sheep/growth & development , Whole Genome Sequencing/methods , Breeding , Selection, Genetic , Phenotype , Polymorphism, Single Nucleotide , Genome/genetics
9.
Genes (Basel) ; 15(5)2024 Apr 28.
Article En | MEDLINE | ID: mdl-38790199

The Hetian Qing donkey is an excellent local donkey breed in Xinjiang. It is of great significance to accelerate breeding and the speed of breeding and rejuvenation, as well as to understand the genetic basis of the strategies and population. This study collected a total of 4 male donkeys and 28 female donkeys. It then obtained genotype data through Simplified Genomic Sequencing (GBS) technology for data analysis. The results detected a total of 55,399 SNP loci, and the genotype detection rate of individuals was ≥90%. A total of 45,557 SNP loci were identified through quality control, of which 95.5% were polymorphic. The average minimum allele frequency was 0.250. The average observed heterozygosity was 0.347. The average expected heterozygosity was 0.340. The average IBS (state homologous) genetic distance was 0.268. ROH: 49 (homozygous fragments), with 73.47% of the length between 1 and 5 Mb. The average per-strip ROH length was 1.75 Mb. The mean inbreeding coefficient was 0.003. The 32 Hetian green donkeys could be divided into six families. The number of individuals in each family is significant. To sum up, the Hetian Qing donkey population has low heterozygosity, few families, and large differences in the number of individuals in each family, which can easily cause a loss of genetic diversity. In the subsequent process of seed protection, seed selection should be conducted according to the divided pedigree to ensure the long-term protection of the genetic resources of Hetian green donkeys.


Equidae , Inbreeding , Polymorphism, Single Nucleotide , Animals , Equidae/genetics , Male , Female , Gene Frequency , Genome/genetics , Whole Genome Sequencing/methods , Breeding , Heterozygote , Genotype
10.
Genes (Basel) ; 15(5)2024 May 14.
Article En | MEDLINE | ID: mdl-38790252

Genetic variation facilitates the evolution, environmental adaptability, and biodiversity of organisms. Danish Large White (LW) pigs have more desirable phenotypes compared with local Chinese pigs, which have difficulty adapting to the modern swine industry. However, the genome-wide mutational differences between these pig breeds are yet to be evaluated. Therefore, this study aimed to evaluate genomic variation and identify breed-specific SNPs in Danish LW pigs. Here, 43 LW, 15 Diqing Tibetan (DQZ), and 15 Diannan small-ear (DN) pigs whose genomes were re-sequenced with 5× depth were selected. This was followed by a conjoined analysis of our previous resequencing data of 24 Anqing six-end white (AQ) and six Asian wild (SS) pigs. In total, 39,158,378 SNPs and 13,143,989 insertion-deletions were obtained in all breeds. The variation number of LW pigs was the lowest, with 287,194 breed-specific and 1289 non-synonymous SNPs compared with Chinese breeds. Functional analysis of the breed-specific non-synonymous SNPs indicated that these mutations were mainly associated with the reproductive performance, feed intake, and feed conversion ratio of LW pigs. These findings provide a theoretical basis for genetic improvements in the Chinese swine industry.


Genome , Polymorphism, Single Nucleotide , Animals , Swine/genetics , Genome/genetics , Breeding , China , Sus scrofa/genetics , Phenotype
11.
Nat Genet ; 56(5): 1018-1031, 2024 May.
Article En | MEDLINE | ID: mdl-38693345

Zygnematophyceae are the algal sisters of land plants. Here we sequenced four genomes of filamentous Zygnematophyceae, including chromosome-scale assemblies for three strains of Zygnema circumcarinatum. We inferred traits in the ancestor of Zygnematophyceae and land plants that might have ushered in the conquest of land by plants: expanded genes for signaling cascades, environmental response, and multicellular growth. Zygnematophyceae and land plants share all the major enzymes for cell wall synthesis and remodifications, and gene gains shaped this toolkit. Co-expression network analyses uncover gene cohorts that unite environmental signaling with multicellular developmental programs. Our data shed light on a molecular chassis that balances environmental response and growth modulation across more than 600 million years of streptophyte evolution.


Embryophyta , Evolution, Molecular , Phylogeny , Signal Transduction , Signal Transduction/genetics , Embryophyta/genetics , Gene Regulatory Networks , Genome/genetics , Genome, Plant
12.
Mol Genet Genomics ; 299(1): 58, 2024 May 25.
Article En | MEDLINE | ID: mdl-38789628

Cancer is a multifaceted genetic disease characterized by the acquisition of several essential hallmarks. Notably, certain cancers exhibit horizontal transmissibility, observed across mammalian species and diverse bivalves, the latter referred to as hemic neoplasia. Within this complex landscape, epigenetic mechanisms such as histone modifications and cytosine methylation emerge as fundamental contributors to the pathogenesis of these transmissible cancers. Our study delves into the epigenetic landscape of Cerastoderma edule, focusing on whole-genome methylation and hydroxymethylation profiles in heathy specimens and transmissible neoplasias by means of Nanopore long-read sequencing. Our results unveiled a global hypomethylation in the neoplastic specimens compared to their healthy counterparts, emphasizing the role of DNA methylation in these tumorigenic processes. Furthermore, we verified that intragenic CpG methylation positively correlated with gene expression, emphasizing its role in modulating transcription in healthy and neoplastic cockles, as also highlighted by some up-methylated oncogenic genes. Hydroxymethylation levels were significantly more elevated in the neoplastic samples, particularly within satellites and complex repeats, likely related to structural functions. Additionally, our analysis also revealed distinct methylation and activity patterns in retrotransposons, providing additional insights into bivalve neoplastic processes. Altogether, these findings contribute to understanding the epigenetic dynamics of bivalve neoplasias and shed light on the roles of DNA methylation and hydroxymethylation in tumorigenesis. Understanding these epigenetic alterations holds promise for advancing our broader understanding of cancer epigenetics.


Cardiidae , DNA Methylation , Epigenesis, Genetic , DNA Methylation/genetics , Animals , Cardiidae/genetics , CpG Islands/genetics , Genome/genetics , Neoplasms/genetics , Neoplasms/pathology
13.
Nat Commun ; 15(1): 4624, 2024 May 30.
Article En | MEDLINE | ID: mdl-38816389

Variations in chromosome number are occasionally observed among oomycetes, a group that includes many plant pathogens, but the emergence of such variations and their effects on genome and virulence evolution remain ambiguous. We generated complete telomere-to-telomere genome assemblies for Phytophthora sojae, Globisporangium ultimum, Pythium oligandrum, and G. spinosum. Reconstructing the karyotype of the most recent common ancestor in Peronosporales revealed that frequent chromosome fusion and fission drove changes in chromosome number. Centromeres enriched with Copia-like transposons may contribute to chromosome fusion and fission events. Chromosome fusion facilitated the emergence of pathogenicity genes and their adaptive evolution. Effectors tended to duplicate in the sub-telomere regions of fused chromosomes, which exhibited evolutionary features distinct to the non-fused chromosomes. By integrating ancestral genomic dynamics and structural predictions, we have identified secreted Ankyrin repeat-containing proteins (ANKs) as a novel class of effectors in P. sojae. Phylogenetic analysis and experiments further revealed that ANK is a specifically expanded effector family in oomycetes. These results revealed chromosome dynamics in oomycete plant pathogens, and provided novel insights into karyotype and effector evolution.


Evolution, Molecular , Oomycetes , Phylogeny , Telomere , Telomere/genetics , Oomycetes/genetics , Oomycetes/pathogenicity , Virulence/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Pythium/genetics , Pythium/pathogenicity , Phytophthora/genetics , Phytophthora/pathogenicity , Chromosomes/genetics , Plants/microbiology , Plants/genetics , Genome/genetics
14.
Proc Natl Acad Sci U S A ; 121(22): e2320040121, 2024 May 28.
Article En | MEDLINE | ID: mdl-38771882

Speciation is often driven by selective processes like those associated with viability, mate choice, or local adaptation, and "speciation genes" have been identified in many eukaryotic lineages. In contrast, neutral processes are rarely considered as the primary drivers of speciation, especially over short evolutionary timeframes. Here, we describe a rapid vertebrate speciation event driven primarily by genetic drift. The White Sands pupfish (Cyprinodon tularosa) is endemic to New Mexico's Tularosa Basin where the species is currently managed as two Evolutionarily significant units (ESUs) and is of international conservation concern (Endangered). Whole-genome resequencing data from each ESU showed remarkably high and uniform levels of differentiation across the entire genome (global FST ≈ 0.40). Despite inhabiting ecologically dissimilar springs and streams, our whole-genome analysis revealed no discrete islands of divergence indicative of strong selection, even when we focused on an array of candidate genes. Demographic modeling of the joint allele frequency spectrum indicates the two ESUs split only ~4 to 5 kya and that both ESUs have undergone major bottlenecks within the last 2.5 millennia. Our results indicate the genome-wide disparities between the two ESUs are not driven by divergent selection but by neutral drift due to small population sizes, geographic isolation, and repeated bottlenecks. While rapid speciation is often driven by natural or sexual selection, here we show that isolation and drift have led to speciation within a few thousand generations. We discuss these evolutionary insights in light of the conservation management challenges they pose.


Genetic Drift , Genetic Speciation , Animals , Killifishes/genetics , Killifishes/classification , New Mexico , Selection, Genetic , Gene Frequency , Genome/genetics
15.
Methods Mol Biol ; 2802: 165-187, 2024.
Article En | MEDLINE | ID: mdl-38819560

Newly sequenced genomes are being added to the tree of life at an unprecedented fast pace. A large proportion of such new genomes are phylogenetically close to previously sequenced and annotated genomes. In other cases, whole clades of closely related species or strains ought to be annotated simultaneously. Often, in subsequent studies, differences between the closely related species or strains are in the focus of research when the shared gene structures prevail. We here review methods for comparative structural genome annotation. The reviewed methods include classical approaches such as the alignment of protein sequences or protein profiles against the genome and comparative gene prediction methods that exploit a genome alignment to annotate either a single target genome or all input genomes simultaneously. We discuss how the methods depend on the phylogenetic placement of genomes, give advice on the choice of methods, and examine the consistency between gene structure annotations in an example. Furthermore, we provide practical advice on genome annotation in general.


Genomics , Molecular Sequence Annotation , Phylogeny , Molecular Sequence Annotation/methods , Genomics/methods , Computational Biology/methods , Genome/genetics , Sequence Alignment/methods , Software
16.
Methods Mol Biol ; 2802: 215-245, 2024.
Article En | MEDLINE | ID: mdl-38819562

Genome rearrangements are mutations that change the gene content of a genome or the arrangement of the genes on a genome. Several years of research on genome rearrangements have established different algorithmic approaches for solving some fundamental problems in comparative genomics based on gene order information. This review summarizes the literature on genome rearrangement analysis along two lines of research. The first line considers rearrangement models that are particularly well suited for a theoretical analysis. These models use rearrangement operations that cut chromosomes into fragments and then join the fragments into new chromosomes. The second line works with rearrangement models that reflect several biologically motivated constraints, e.g., the constraint that gene clusters have to be preserved. In this chapter, the border between algorithmically "easy" and "hard" rearrangement problems is sketched and a brief review is given on the available software tools for genome rearrangement analysis.


Algorithms , Gene Rearrangement , Genomics , Multigene Family , Software , Humans , Computational Biology/methods , Genome/genetics , Genomics/methods , Models, Genetic , Animals
17.
Mol Phylogenet Evol ; 196: 108088, 2024 Jul.
Article En | MEDLINE | ID: mdl-38697377

The nonrandom distribution of chromosomal characteristics and functional elements-genomic architecture-impacts the relative strengths and impacts of population genetic processes across the genome. Due to this relationship, genomic architecture has the potential to shape variation in population genetic structure across the genome. Population genetic structure has been shown to vary across the genome in a variety of taxa, but this body of work has largely focused on pairwise population genomic comparisons between closely related taxa. Here, we used whole genome sequencing of seven phylogeographically structured populations of a North American songbird, the Brown Creeper (Certhia americana), to determine the impacts of genomic architecture on phylogeographic structure variation across the genome. Using multiple methods to infer phylogeographic structure-ordination, clustering, and phylogenetic methods-we found that recombination rate variation explained a large proportion of phylogeographic structure variation. Genomic regions with low recombination showed phylogeographic structure consistent with the genome-wide pattern. In regions with high recombination, we found strong phylogeographic structure, but with discordant patterns relative to the genome-wide pattern. In regions with high recombination rate, we found that populations with small effective population sizes evolve relatively more rapidly than larger populations, leading to discordant signatures of phylogeographic structure. These results suggest that the interplay between recombination rate variation and effective population sizes shape the relative impacts of selection and genetic drift in different parts of the genome. Overall, the combined interactions of population genetic processes, genomic architecture, and effective population sizes shape patterns of variability in phylogeographic structure across the genome of the Brown Creeper.


Phylogeography , Recombination, Genetic , Songbirds , Animals , Songbirds/genetics , Songbirds/classification , Phylogeny , Genetics, Population , Genetic Variation , North America , Genome/genetics , Whole Genome Sequencing
18.
PLoS Comput Biol ; 20(5): e1012067, 2024 May.
Article En | MEDLINE | ID: mdl-38709825

Chromosome conformation capture (3C) technologies reveal the incredible complexity of genome organization. Maps of increasing size, depth, and resolution are now used to probe genome architecture across cell states, types, and organisms. Larger datasets add challenges at each step of computational analysis, from storage and memory constraints to researchers' time; however, analysis tools that meet these increased resource demands have not kept pace. Furthermore, existing tools offer limited support for customizing analysis for specific use cases or new biology. Here we introduce cooltools (https://github.com/open2c/cooltools), a suite of computational tools that enables flexible, scalable, and reproducible analysis of high-resolution contact frequency data. Cooltools leverages the widely-adopted cooler format which handles storage and access for high-resolution datasets. Cooltools provides a paired command line interface (CLI) and Python application programming interface (API), which respectively facilitate workflows on high-performance computing clusters and in interactive analysis environments. In short, cooltools enables the effective use of the latest and largest genome folding datasets.


Computational Biology , Software , Computational Biology/methods , Programming Languages , Genomics/methods , Genome/genetics , Chromosome Mapping/methods , Humans
19.
Sci Rep ; 14(1): 8073, 2024 04 05.
Article En | MEDLINE | ID: mdl-38580653

The fishing cat, Prionailurus viverrinus, faces a population decline, increasing the importance of maintaining healthy zoo populations. Unfortunately, zoo-managed individuals currently face a high prevalence of transitional cell carcinoma (TCC), a form of bladder cancer. To investigate the genetics of inherited diseases among captive fishing cats, we present a chromosome-scale assembly, generate the pedigree of the zoo-managed population, reaffirm the close genetic relationship with the Asian leopard cat (Prionailurus bengalensis), and identify 7.4 million single nucleotide variants (SNVs) and 23,432 structural variants (SVs) from whole genome sequencing (WGS) data of healthy and TCC cats. Only BRCA2 was found to have a high recurrent number of missense mutations in fishing cats diagnosed with TCC when compared to inherited human cancer risk variants. These new fishing cat genomic resources will aid conservation efforts to improve their genetic fitness and enhance the comparative study of feline genomes.


Carcinoma, Transitional Cell , Urinary Bladder Neoplasms , Cats , Animals , Humans , Genome/genetics , Urinary Bladder Neoplasms/pathology , Carcinoma, Transitional Cell/pathology , Genomics , Germ Cells/pathology
20.
Nat Commun ; 15(1): 3095, 2024 Apr 23.
Article En | MEDLINE | ID: mdl-38653976

Vocal rhythm plays a fundamental role in sexual selection and species recognition in birds, but little is known of its genetic basis due to the confounding effect of vocal learning in model systems. Uncovering its genetic basis could facilitate identifying genes potentially important in speciation. Here we investigate the genomic underpinnings of rhythm in vocal non-learning Pogoniulus tinkerbirds using 135 individual whole genomes distributed across a southern African hybrid zone. We find rhythm speed is associated with two genes that are also known to affect human speech, Neurexin-1 and Coenzyme Q8A. Models leveraging ancestry reveal these candidate loci also impact rhythmic stability, a trait linked with motor performance which is an indicator of quality. Character displacement in rhythmic stability suggests possible reinforcement against hybridization, supported by evidence of asymmetric assortative mating in the species producing faster, more stable rhythms. Because rhythm is omnipresent in animal communication, candidate genes identified here may shape vocal rhythm across birds and other vertebrates.


Vocalization, Animal , Animals , Vocalization, Animal/physiology , Male , Genomics , Genome/genetics , Female , Songbirds/genetics , Songbirds/physiology , Birds/genetics , Birds/physiology
...