Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 16.459
Filter
1.
J Environ Sci (China) ; 147: 189-199, 2025 Jan.
Article in English | MEDLINE | ID: mdl-39003039

ABSTRACT

China's lowland rural rivers are facing severe eutrophication problems due to excessive phosphorus (P) from anthropogenic activities. However, quantifying P dynamics in a lowland rural river is challenging due to its complex interaction with surrounding areas. A P dynamic model (River-P) was specifically designed for lowland rural rivers to address this challenge. This model was coupled with the Environmental Fluid Dynamics Code (EFDC) and the Phosphorus Dynamic Model for lowland Polder systems (PDP) to characterize P dynamics under the impact of dredging in a lowland rural river. Based on a two-year (2020-2021) dataset from a representative lowland rural river in the Lake Taihu Basin, China, the coupled model was calibrated and achieved a model performance (R2>0.59, RMSE<0.04 mg/L) for total P (TP) concentrations. Our research in the study river revealed that (1) the time scale for the effectiveness of sediment dredging for P control was ∼300 days, with an increase in P retention capacity by 74.8 kg/year and a decrease in TP concentrations of 23% after dredging. (2) Dredging significantly reduced P release from sediment by 98%, while increased P resuspension and settling capacities by 16% and 46%, respectively. (3) The sediment-water interface (SWI) plays a critical role in P transfer within the river, as resuspension accounts for 16% of TP imports, and settling accounts for 47% of TP exports. Given the large P retention capacity of lowland rural rivers, drainage ditches and ponds with macrophytes are promising approaches to enhance P retention capacity. Our study provides valuable insights for local environmental departments, allowing a comprehensive understanding of P dynamics in lowland rural rivers. This enable the evaluation of the efficacy of sediment dredging in P control and the implementation of corresponding P control measures.


Subject(s)
Environmental Monitoring , Geologic Sediments , Phosphorus , Rivers , Water Pollutants, Chemical , Phosphorus/analysis , Rivers/chemistry , Geologic Sediments/chemistry , China , Water Pollutants, Chemical/analysis , Eutrophication
2.
Environ Monit Assess ; 196(9): 775, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39093340

ABSTRACT

Microplastics are fast-emerging as another potential threat to already globally declining seagrass ecosystems, but there is a paucity of in situ surveys showing their accumulations. Here, we surveyed multiple Zostera marina L. meadows in 2020 and 2021 across Massachusetts, USA, for microplastic contamination, as well as identified factors related to patterns of accumulation. We found that microplastics were ubiquitous throughout all sites regardless of proximity to human development, with fibers being the most common microplastic type. In addition, we showed that accumulation of microplastics within seagrass meadows was related to epiphytic cover on leaves, plant morphology, and bulk-density in sediments. The results of this study provide the first in situ baseline microplastic concentrations on Z. marina plants and sediments for the temperate western North Atlantic. Additionally, we identify specific biotic and abiotic factors related to patterns of microplastic accumulation in these ecosystems.


Subject(s)
Environmental Monitoring , Microplastics , Water Pollutants, Chemical , Zosteraceae , Zosteraceae/metabolism , Massachusetts , Water Pollutants, Chemical/analysis , Microplastics/analysis , Geologic Sediments/chemistry , Ecosystem
3.
Water Environ Res ; 96(8): e11088, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091045

ABSTRACT

The confined groundwater of arid sedimentary plains has been disturbed by long-term anthropogenic extraction, and its hydrochemical quality is required for sustainable development. The present research investigates the hydrochemical characteristics, formation, potential health threats, and quality suitability of the confined groundwater in the central North China Plain. Results show that the confined groundwater has a slightly alkaline nature in the study area, predominantly dominated by fresh-soft Cl-Na and HCO3-Na types. Water chemistry is governed by water-rock interactions, including dissolution of evaporites and cation exchange. Approximately 97% of the sampled confined groundwaters exceed the prescribed standard for F-. It is mainly due to geological factors such as mineral dissolution, cation exchange, and competitive adsorption of HCO3 - and may also be released from compacted soils because of groundwater extraction. Enriched F- in the confined groundwater can pose an intermediate and higher non-carcinogenic risk to more than 90% of the population. It poses the greatest health threat to the population in the north-eastern part of the study area, especially to infants and children. For sustainable development, the long-term use of confined groundwater for irrigation in the area should be avoided, and attention should also be paid to the potential soil salinization and infiltration risks. In the study area, 97% of the confined groundwaters are found to be excellent or good quality for domestic purposes based on Entropy-weighted Water Quality Index. However, the non-carcinogenic health risk caused by high contents of F- cannot be ignored. Therefore, it is recommended that differential water supplies should be implemented according to the spatial heterogeneity of confined groundwater quality to ensure the scientific and rational use of groundwater resources. PRACTITIONER POINTS: The hydrochemistry quality of confined groundwater in an arid sedimentary plain disturbed by long-term anthropogenic extraction was investigated. The suitability of confined groundwater for multiple purposes such as irrigation and drinking were evaluated. The hydrochemical characteristics and formation mechanism of confined groundwater under the influence of multiple factors were revealed.


Subject(s)
Groundwater , Groundwater/chemistry , China , Environmental Monitoring , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Quality , Geologic Sediments/chemistry
4.
Sci Rep ; 14(1): 17963, 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39095589

ABSTRACT

While extensive research has explored the effects of plastic pollution, ecosystem responses remain poorly quantified, especially in field experiments. In this study, we investigated the impact of polyester pollution, a prevalent plastic type, on coastal sediment ecosystem function. Strips of polyester netting were buried into intertidal sediments, and effects on sediment oxygen consumption and polyester additive concentrations were monitored over 72-days. Our results revealed a rapid reduction in the magnitude and variability of sediment oxygen consumption, a crucial ecosystem process, potentially attributed to the loss of the additive di(2-ethylhexyl) phthalate (DEHP) from the polyester material. DEHP concentrations declined by 89% within the first seven days of deployment. However, effects on SOC dissipated after 22 days, indicating a short-term impact and a quick recovery by the ecosystem. Our study provides critical insights into the immediate consequences of plastic pollution on ecosystem metabolism in coastal sediments, contributing to a nuanced understanding of the temporal variation of plastic pollution's multifaceted impacts. Additionally, our research sheds light on the urgent need for comprehensive mitigation strategies to preserve marine ecosystem functionality from plastic pollution impacts.


Subject(s)
Ecosystem , Geologic Sediments , Plastics , Water Pollutants, Chemical , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Polyesters/metabolism , Environmental Pollution/adverse effects , Environmental Pollution/analysis
5.
Bull Environ Contam Toxicol ; 113(1): 12, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009950

ABSTRACT

The study investigates heavy metal (HM) contamination in coastal sediments of Jeddah along Red Sea coast, analyzing spatial distribution and sources. 24 samples underwent (ICP-AES) for Fe, Al, Mn, Ni, Pb, Zn, Cu, Cr, Co, Sr, V, and As. HM averages followed Fe ˃ Al ˃ Sr ˃ Mn ˃ Zn ˃ V ˃ Cu ˃ Ni ˃ Cr ˃ As ˃ Co ˃ Pb. Contamination indices revealed severe Sr enrichment, minor As and Co enrichment, and no enrichment for other HMs. Sediment quality guidelines suggest Ni, Cu, Zn, and As risks to benthic communities at some sites, while Cr and Pb pose minimal risk. Multivariate analysis indicates natural sources for Fe, Al, Mn, Ni, Zn, Cu, Cr, Co, and V, and anthropogenic sources for Sr, As, and Pb, linked to agriculture, industry, and urbanization. Increased Sr values may stem from seawater acidification impacting calcitic corals and molluscs.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Metals, Heavy/analysis , Geologic Sediments/chemistry , Saudi Arabia , Water Pollutants, Chemical/analysis , Indian Ocean , Seawater/chemistry
6.
Sci Rep ; 14(1): 16938, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043749

ABSTRACT

Phytoremediation is a basic eco-friendly technique that uses to treat contaminated water and soil. The plants that remediate the water and soil by their absorption process and improve the water and sediment fertility or decrease the contamination. Form this experiment our finding suggest that the contamination decrease in majority from starting point to end point, it means plants plays the most important role in clean-up the environment and its cost-efficient method to improve the quality of water and soil. This study was carried out on Uben River which is around 50kms long and we covered around 41.88kms of area which divided into six locations. in soil minerals (Ca2+, Mg2+, Na+ and K+) from Up-stream to Down-stream the concentration of minerals is in decreasing order but in heavy metals (Cu2+, Zn2+, Fe2+ and Mn2+) the concentration data is varying. We selected plants that grow around riverbanks belongs to family Cyperaceae, Poaceae, Typhaceae. Most of the plants accumulate high Fe2+ concentrations in their root while in the shoots have low concentration observed from our data. For the statistical validation of data, we perform Grouped Component Analysis (GCA) and Radial Cluster Hierarchy (RCH) analysis. Further we included pollution indices: Contamination factor (CF), Degree of contamination (Cd), Geo accumulation index (Igeo).


Subject(s)
Biodegradation, Environmental , Geologic Sediments , Rivers , India , Geologic Sediments/analysis , Geologic Sediments/chemistry , Metals, Heavy/analysis , Metals, Heavy/metabolism , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/metabolism , Soil Pollutants/metabolism , Soil Pollutants/analysis , Soil/chemistry
7.
Proc Biol Sci ; 291(2026): 20232915, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38981519

ABSTRACT

Archaeological studies of pre-historic Arctic cultures are often limited to artefacts and architecture; such records may be incomplete and often do not provide a continuous record of past occupation. Here, we used lake sediment archives to supplement archaeological evidence to explore the history of Thule and Dorset populations on Somerset Island, Nunavut (Canada). We examined biomarkers in dated sediment cores from two ponds adjacent to abandoned Thule settlements (PaJs-3 and PaJs-13) and compared these to sediment cores from two ponds without past human occupation. Coprostanol and epicoprostanol, δ15N measurements, sedimentary chlorophyll a and the ratio of diatom valves to chrysophyte cysts were elevated in the dated sediment profiles at both sites during Thule and Dorset occupations. Periods of pronounced human impact during the Thule occupation of the site were corroborated by 14C-dated caribou bones found at both sites that identified intense caribou hunting between ca 1185 and 1510 CE. Notably, these sediment core data show evidence of the Dorset occupation from ca 200 to 500 CE at sites where archaeological evidence was heretofore lacking. We highlight the utility of lake sediments in assisting archaeological studies to better establish the timings, peak occupations and even lifestyle practices of the Dorset and Thule Arctic peoples.


Subject(s)
Archaeology , Biomarkers , Bone and Bones , Geologic Sediments , Geologic Sediments/chemistry , Geologic Sediments/analysis , Arctic Regions , Bone and Bones/chemistry , Animals , Humans , Biomarkers/analysis , Nunavut , Reindeer , Lakes/chemistry
8.
Environ Geochem Health ; 46(8): 301, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38990438

ABSTRACT

The attendant effects of urbanization on the environment and human health are evaluable by measuring the potentially harmful element (PHE) concentrations in environmental media such as stream sediments. To evaluate the effect of urbanization in Osogbo Metropolis, the quality of stream sediments from a densely-populated area with commercial/industrial activities was contrasted with sediments from a sparsely-populated area with minimal anthropogenic input.Forty samples were obtained: 29 from Okoko stream draining a Residential/Commercial Area (RCA, n = 14) and an Industrial Area (IA, n = 15), and 11 from Omu stream draining a sparsely-populated area (SPA). The samples were air-dried, sieved to < 75 micron fraction, and analysed for PHEs using inductively-coupled plasma atomic emission spectrometry (ICP-AES). Index of geoaccumulation (Igeo), pollution index (PI), ecological risk factor (Er) and index (ERI) were used for assessment. Inter-elemental relationships and source identification were done using Pearson's correlation matrix and principal component analysis (PCA).PHE concentrations in the stream sediments were RCA: Zn > Pb > Cu > Cr > Sr > Ni > Co, IA: Zn > Cr > Ni > Co > Pb > Cu > Sr and SPA: Zn > Co > Cr > Cu > Sr > Ni > Pb. Igeo calculations revealed moderate-heavy contamination of Cu, Pb and Zn in parts of RCA, moderate-heavy contamination of Zn in IA while SPA had moderate contamination of Co and Zn. PI values revealed that stream sediments of RCA are extremely polluted, while those of IA and SPA are moderately and slightly polluted, respectively.The pollution of the stream sediments in RCA and IA is adduced to anthropogenic activities like vehicular traffic, automobile repairs/painting, blacksmithing/welding and metal scraping. In SPA however, the contamination resulted from the application of herbicides/fertilizers for agricultural purposes.


Subject(s)
Geologic Sediments , Rivers , Geologic Sediments/chemistry , Geologic Sediments/analysis , Nigeria , Rivers/chemistry , Environmental Monitoring/methods , Metals, Heavy/analysis , Water Pollutants, Chemical/analysis , Urbanization , Principal Component Analysis , Cities , Spectrophotometry, Atomic
9.
Huan Jing Ke Xue ; 45(7): 4006-4013, 2024 Jul 08.
Article in Chinese | MEDLINE | ID: mdl-39022948

ABSTRACT

This study aimed to explore the effects of different disturbances on the fungal communities in the sediments of the Jialing River in order to provide scientific basis for the protection of the river ecosystem. The fungal community in the sediments of the main stream of the Jialing River was taken as the research object, and high-throughput sequencing and bioinformatics techniques were used to analyze the differences in the composition and function of fungal communities in river sediment of different types of disturbance (project disturbance, tributary disturbance, sand mining disturbance, and reclamation disturbance) and non-disturbance sections. The results showed that: ① The reclamation and project disturbances significantly inhibited the diversity and richness of fungal communities (P<0.05). The tributary disturbance increased the richness of fungal communities, whereas the impact of sand mining disturbance on sediment fungal communities was not significant. ② The diversity and composition of fungal communities tended to be similar at the different sampling sites in the section with low input of exogenous substances (non-disturbance and sand mining disturbance), whereas there were obvious differences in the diversity of fungal communities at the different sampling sites of high input of external substances (tributary disturbance, project disturbance, and reclamation disturbance) sections. ③ Ascomycota, Rozellomycota, and Basidiomycota were the main dominant fungal phyla in the sediments of the Jialing River. The relative abundance of Rozellomycota was the highest in the sand mining interference section, and the relative abundance of Basidiomycota was the highest in the tributary interference section. Project disturbance significantly increased the relative abundance of saprotrophs, animal pathogens, plant pathogens, and dung saprotrophs, whereas other disturbances inhibited the relative abundance of fungal parasitic fungi, plant pathogens, and plant saprophytes. In conclusion, human disturbance has caused changes in fungal diversity, community structure, and function in the sediment of the Jialing River, and xenobiotic input was a key factor contributing to this phenomenon. The results can provide a reference for predicting and evaluating the ecological quality of river sediments.


Subject(s)
Fungi , Geologic Sediments , Rivers , Rivers/microbiology , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Fungi/classification , China , Ecosystem , Biodiversity , Environmental Monitoring
10.
Environ Sci Pollut Res Int ; 31(32): 45425-45440, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38965109

ABSTRACT

Ivermectin (IVM) is a widely used antiparasitic. Concerns have been raised about its environmental effects in the wetlands of Río de la Plata basin where cattle have been treated with IVM for years. This study investigated the sublethal effects of environmentally relevant IVM concentrations in sediments on the Neotropical fish Prochilodus lineatus. Juvenile P. lineatus were exposed to IVM-spiked sediments (2 and 20 µg/Kg) for 14 days, alongside a control sediment treatment without IVM. Biochemical and oxidative stress responses were assessed in brain, gills, and liver tissues, including lipid damage, glutathione levels, enzyme activities, and antioxidant competence. Muscle and brain acetylcholinesterase activity (AChE) and stable isotopes of 13C and 15N in muscle were also measured. The lowest IVM treatment resulted in an increase in brain lipid peroxidation, as measured by thiobarbituric acid reactive substances (TBARs), decreased levels of reduced glutathione (GSH) in gills and liver, increased catalase activity (CAT) in the liver, and decreased antioxidant capacity against peroxyl radicals (ACAP) in gills and liver. The highest IVM treatment significantly reduced GSH in the liver. Muscle (AChE) was decreased in both treatments. Multivariate analysis showed significant overall effects in the liver tissue, followed by gills and brain. These findings demonstrate the sublethal effects of IVM in P. lineatus, emphasizing the importance of considering sediment contamination and trophic habits in realistic exposure scenarios.


Subject(s)
Antiparasitic Agents , Ivermectin , Water Pollutants, Chemical , Animals , Ivermectin/toxicity , Antiparasitic Agents/toxicity , Water Pollutants, Chemical/toxicity , Livestock , South America , Oxidative Stress/drug effects , Geologic Sediments/chemistry , Gills/drug effects , Gills/metabolism
11.
PeerJ ; 12: e17738, 2024.
Article in English | MEDLINE | ID: mdl-39011379

ABSTRACT

Background: Microplastics (MPs) are pervasive pollutants in the marine environment, exhibiting persistence in coastal sediment over extended periods. However, the mechanism of their uptake by marine organisms and distribution in habitat is less understood. The objective of the present study was to investigate the presence of MP contamination in burrow sediment, feeding pellets, and tissue of Dotilla blanfordi in the Gulf of Kachchh, Gujarat State. Methods: A total of 500 g of burrow sediment, 100 g of feeding pellets, and body tissue of 10 resident D. blanfordi were pooled as one replica. Such seven replicas from each site were analyzed for MP extraction from three sites, including Asharmata, Mandvi, and Serena, located in the Gulf of Kachchh. The standard protocol was used during the analysis of the collected samples in order to isolate MPs. Results: The abundance of MP was found higher in burrow sediment, feeding pellets and tissue of D. blanfordi at study site Mandvi, followed by Serena and Asharmata. The abundance of MP was found higher in D. blanfordi tissue, followed by burrow sediment and feeding pellet. A significant variation was observed in MP abundance among burrow sediment, feeding pellets, and tissue. MPs with various shapes (fiber, film, and fragment), sizes (1-2, 2-3, 3-4, and 4-5 mm), and colors (blue, green, black, pink, purple, red transparent) were recorded from all the study sites. Polyurethane and polyvinyl chloride were recognized as the chemical profile of the extracted MPs. The current investigation revealed greater accumulation of MPs in D. blanfordi's tissues compared to sediment and pellets, suggesting a risk of MP contamination in marine benthic fauna with a greater rate of bioaccumulation. D. blanfordi plays a significant role as a structuring agent for MP distribution in the intertidal flat through burrowing activity.


Subject(s)
Brachyura , Geologic Sediments , Microplastics , Water Pollutants, Chemical , Animals , Geologic Sediments/chemistry , Microplastics/analysis , Brachyura/chemistry , Water Pollutants, Chemical/analysis , Environmental Monitoring/methods , Bathing Beaches , India
12.
PeerJ ; 12: e17727, 2024.
Article in English | MEDLINE | ID: mdl-39011380

ABSTRACT

Background: Sandy beaches are dynamic environments housing a large diversity of organisms and providing important environmental services. Meiofaunal metazoan are small organisms that play a key role in the sediment. Their diversity, distribution and composition are driven by sedimentary and oceanographic parameters. Understanding the diversity patterns of marine meiofauna is critical in a changing world. Methods: In this study, we investigate if there is seasonal difference in meiofaunal assemblage composition and diversity along 1 year and if the marine seascapes dynamics (water masses with particular biogeochemical features, characterized by temperature, salinity, absolute dynamic topography, chromophoric dissolved organic material, chlorophyll-a, and normalized fluorescent line height), rainfall, and sediment parameters (total organic matter, carbonate, carbohydrate, protein, lipids, protein-to-carbohydrate, carbohydrate-to-lipids, and biopolymeric carbon) affect significatively meiofaunal diversity at a tropical sandy beach. We tested two hypotheses here: (i) meiofaunal diversity is higher during warmer months and its composition changes significatively among seasons along a year at a tropical sandy beach, and (ii) meiofaunal diversity metrics are significantly explained by marine seascapes characteristics and sediment parameters. We used metabarcoding (V9 hypervariable region from 18S gene) from sediment samples to assess the meiofaunal assemblage composition and diversity (phylogenetic diversity and Shannon's diversity) over a period of 1 year. Results: Meiofauna was dominated by Crustacea (46% of sequence reads), Annelida (28% of sequence reads) and Nematoda (12% of sequence reads) in periods of the year with high temperatures (>25 °C), high salinity (>31.5 ppt), and calm waters. Our data support our initial hypotheses revealing a higher meiofaunal diversity (phylogenetic and Shannon's Diversity) and different composition during warmer periods of the year. Meiofaunal diversity was driven by a set of multiple variables, including biological variables (biopolymeric carbon) and organic matter quality (protein content, lipid content, and carbohydrate-to-lipid ratio).


Subject(s)
Biodiversity , Geologic Sediments , Seasons , Animals , Geologic Sediments/chemistry , Atlantic Ocean , Aquatic Organisms , Bathing Beaches , Tropical Climate , Salinity , Sand
13.
Environ Geochem Health ; 46(9): 323, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012394

ABSTRACT

This study was aimed to survey toxicity of waterpipe wastes leachates on Peronia peronii in aquatic and sediment environments as two exposure media. For this, leachates of four tobacco types including burnt traditional tobacco (BTT), fresh traditional tobacco (FTT), burnt fruit-flavored tobacco (BFT) and fresh fruit-flavored tobacco (FFT)) were prepared and used to assess their toxic effects on P. peronei in two aquatic and sediment media. The in-vivo toxic effects of five different concentrations of waterpipe tobacco waste leachates on P. peronii were evaluated. The LC50 values of BTTs leachates to P. peronii were 17.50, 16.05, 11.31 and 9.38 g/L at exposure times of 24, 48, 72 and 96 h, respectively in aquatic media. These values for BFTs leachates were 14.86, 12.38, 9.53 and 7.46 g/L at exposure times of 24, 48, 72 and 96 h, respectively. In the case of sediment media, the LC50 values of BTTs leachates were 15.33, 13.70, 9.09 and 6.70 g/L at exposure times of 24, 48, 72 and 96 h, respectively while these values for BFTs leachates were 12.00, 10.32, 8.20 and 5.65 g/L. Fruit-flavored tobacco leachates had significantly higher toxicity than traditional tobacco leachates for P. peronii. The findings also showed significant differences between the LC50 values of different leachates in different media of water and sediment. The results demonstrated that even small amount of tobacco waste (~ 5 to 6 g/L) can lead to P. peronii mortality and may also pose a hazard to other aquatic and benthic organisms. The results obtained from the present study can be used as a baseline data to assess local effects causing from unsafe disposal of post-consumption tobacco waste in beach areas. In addition, these findings can lead to encouraging decision-makers to focus more on the types of tobacco waste in the municipal solid waste management system and to implement a source separation process for these wastes.


Subject(s)
Geologic Sediments , Tobacco, Waterpipe , Water Pollutants, Chemical , Water Pollutants, Chemical/toxicity , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Tobacco, Waterpipe/toxicity , Animals , Lethal Dose 50 , Environmental Monitoring/methods , Alismatales/chemistry
14.
Mar Pollut Bull ; 205: 116657, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950514

ABSTRACT

Pakistan, a country with limited water resources and highly vulnerable to the adverse effects of climate change, faces numerous challenges in managing its water supply. In this sense, this study assessed potentially toxic elements (PTEs) in the surface water and sediments of Pakistan's Indus River and its tributaries. Key water quality parameters such as pH, electrical conductivity (EC), and total dissolved solids (TDS) were determined, with respective average values of 7.1, 40 µS/cm, and 208 mg L-1. The concentrations of Cd, Cr, Cu, Ni, and Zn in surface water samples averaged 26 µg L-1, 0.9 µg L-1, 1.4 µg L-1, 22 µg L-1, and 2.1 µg L-1, respectively. The general sediment PTE profile was Ni > Cd > Zn > Cu > Cr. Certain PTE levels exceeded recommended thresholds, indicating the establishment of environmental pollution. Calculated geo-accumulation index values suggested moderate to heavy pollution levels in sediment, with PERI (404) values reinforcing the ecological risk posed by elevated PTE concentrations. Furthermore, significant correlations were observed between specific PTE pairs in both water and sediment samples. This study contributes with novel insights into the distribution and ecological implications of PTE contamination in the Indus River and its tributaries, paving the way for ecological risk management efforts.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Rivers , Water Pollutants, Chemical , Pakistan , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Rivers/chemistry , Risk Assessment , Metals, Heavy/analysis
15.
Mar Pollut Bull ; 205: 116656, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38950516

ABSTRACT

Microplastics (MPs) are the pollutants, found widely across various environmental media. However, studies on the MP pollution in urban rivers and the necessary risk assessments remain limited. In this study, the abundance and characteristics of microplastics in a typical urban river were examined to evaluate their distribution, sources, and ecological risks. It was observed that the abundance of MPs in sediments (220-2840 items·kg-1 dry weight (DW)) was much higher than that in surface water (2.9-10.3 items·L-1), indicating that the sediment is the "sink" of river MPs. Surface water and sediment were dominated by small particle size MPs (< 0.5 mm). Fiber and debris were common shapes of MPs in rivers and sediments. The microplastics in river water and sediments were primarily white and transparent, respectively. Polypropylene (PP) and polyethylene (PE) were the major polymers found.


Subject(s)
Environmental Monitoring , Microplastics , Rivers , Water Pollutants, Chemical , Microplastics/analysis , Rivers/chemistry , China , Water Pollutants, Chemical/analysis , Risk Assessment , Geologic Sediments/chemistry
16.
Mar Pollut Bull ; 205: 116654, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38959572

ABSTRACT

According to a bibliometric analysis, studies on microplastic pollution in Malaysia are still incomprehensive. This study found microplastic contamination in sediment (97 particles/kg) and water (10,963 particles/m3) samples from Malaysian mangroves. Sediment from Matang and water from Kuala Selangor recorded the highest microplastic concentrations at 140 ± 5.13 particles/kg and 13,350 ± 37.95 particles/m3, respectively. Fragmented, blue, rayon and particles of <0.1 mm microplastic were the most abundant in sediment and water. In an experiment of polypropylene microplastic uptakes, Anadara granosa was found to uptake more 0.1 mm fiber particles. The uptake is strongly correlated to the presence of microplastics in sediment and water. The estimated dietary intake (EDI) indicates that a consumer could ingest 507 microplastic particles/year by consuming contaminated A. granosa. Therefore, mitigating measures are crucial to safeguard aquatic systems and humans from microplastic pollution.


Subject(s)
Environmental Monitoring , Geologic Sediments , Microplastics , Water Pollutants, Chemical , Microplastics/analysis , Water Pollutants, Chemical/analysis , Malaysia , Geologic Sediments/chemistry , Polypropylenes , Bioaccumulation , Bibliometrics , Wetlands
17.
Mar Pollut Bull ; 205: 116621, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964187

ABSTRACT

The water and sediment samples were collected from the Yu River and Taowanbei River during periods of summer and winter. The NCPI, EWQI, Igeoand PERI were used to evaluate the pollution degree and cumulative ecological risk of HMs in the water and sediments. The PMF model was used to analyze the sources of HMs in river sediments. The pollution degree of Cd, Hg and Zn in the water reached the severe pollution level, in the rank of Hg > Zn > Cd. Cd and Zn in sediments are heavily polluted, Cu is lightly polluted, Pb and As are within the warning range, and the pollution rank is Cd > Zn > Cu > Pb > As. The cumulative ecological risk of HMs in sediments reached extremely strong level, mainly Cd and Hg. The main sources of HMs in sediments are mining sources, mixed agricultural and transport sources, and natural sources, which contributed 42.1 %, 34.1 % and 23.8 %, respectively.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Mining , Molybdenum , Rivers , Water Pollutants, Chemical , Metals, Heavy/analysis , China , Water Pollutants, Chemical/analysis , Geologic Sediments/chemistry , Rivers/chemistry , Molybdenum/analysis , Risk Assessment
18.
Mar Pollut Bull ; 205: 116667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972216

ABSTRACT

Triclosan (TCS), an antibacterial biocide, pervades water and sediment matrices globally, posing a threat to aquatic life. In densely populated cities like Mumbai, rivers and coastal bodies demand baseline TCS data for ecotoxicological assessment due to the excessive use of personal care products comprising TCS. This pioneering study compares spatiotemporal TCS variations and risks in freshwater and marine ecosystems employing multivariate analysis of physicochemical parameters. Over five months (January to May 2022), Mithi River exhibited higher TCS concentrations (water: 1.68 µg/L, sediment: 3.19 µg/kg) than Versova Creek (water: 0.49 µg/L, sediment: 0.69 µg/kg). Principal component analysis revealed positive correlations between TCS and physicochemical parameters. High-risk quotients (>1) underscore TCS threats in both water bodies. This study furnishes crucial baseline data, emphasizing the need for effective treatment plans for TCS in effluent waters released into the adjacent aquatic systems.


Subject(s)
Ecosystem , Environmental Monitoring , Estuaries , Rivers , Triclosan , Water Pollutants, Chemical , Triclosan/analysis , Water Pollutants, Chemical/analysis , Risk Assessment , Rivers/chemistry , Ecotoxicology , Geologic Sediments/chemistry
19.
Mar Pollut Bull ; 205: 116675, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38972221

ABSTRACT

The concentrations, spatial distributions, pollution level, and health risks of heavy metals in sediments of the Sharm Obhur, Northern Jeddah, Saudi Arabia were evaluated. Average concentrations were found to be: Cr > Zn > Ni > Cu > As>Pb with the highest concentrations found near the head of the sharm, and decreasing towards the mouth. Environmental indices, together with the statistical analyses, showed that the sharm experiences a low to moderate degree of pollution. Sampling sites with heavy metal contamination are concentrated near the head and the southern coast of the sharm, where intensive human activities associated with a boat dock, construction, and recreation are common. The mean carcinogenic risk (CR) values of As, Cr and Ni are at permissible level suggesting unlikely adverse impacts of heavy metals on human health. Despite acceptable CR values; however, serious non-carcinogenic and carcinogenic health threats from metals may yet be an issue particularly for sensitive populations such as children.


Subject(s)
Environmental Monitoring , Geologic Sediments , Metals, Heavy , Water Pollutants, Chemical , Saudi Arabia , Metals, Heavy/analysis , Geologic Sediments/chemistry , Water Pollutants, Chemical/analysis , Humans , Risk Assessment
20.
Mar Pollut Bull ; 205: 116674, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981191

ABSTRACT

Fluorene is a coastal sediment pollutant with high ecological risk. Perinereis aibuhitensis is an ecotoxicological model used for polycyclic aromatic hydrocarbon bioremediation; however, the effects of fluorene on the physiological metabolism of P. aibuhitensis and its corresponding responses remain unclear. This study explored the tolerance and defense responses of P. aibuhitensis in sediments with different fluorene concentrations using histology, ecological biomarkers, and metabolic responses. Metabolomics analyses revealed that P. aibuhitensis has high tolerance to fluorene in sediments. Fluorene stress disrupted the normal metabolism of the P. aibuhitensis body wall, resulting in excessive glycosphospholipid and stearamide accumulation and elevated oxygen consumption rates. To mitigate this, P. aibuhitensis has adopted tail cutting, yellowing, and modulation of metabolite contents in the body wall. This study provides novel insights into the potential ecological risk of fluorene pollution in marine sediments and proposes the use of P. aibuhitensis in the bioremediation of fluorene-contaminated sediments.


Subject(s)
Fluorenes , Geologic Sediments , Metabolomics , Water Pollutants, Chemical , Fluorenes/toxicity , Water Pollutants, Chemical/toxicity , Animals , Geologic Sediments/chemistry , Polychaeta/drug effects , Polychaeta/metabolism , Biodegradation, Environmental
SELECTION OF CITATIONS
SEARCH DETAIL