Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.268
Filter
1.
Int J Mol Sci ; 25(14)2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39063054

ABSTRACT

The research is aimed to elucidate the role of plant hormones in regulating the development of hybrid embryos in Hydrangea macrophylla. Fruits from the intraspecific cross of H. macrophylla 'Otaksa' × 'Coerulea' were selected at the globular, heart, and torpedo stages of embryo development. Transcriptome sequencing and differential gene expression analysis were conducted. The results showed that fruit growth followed a single "S-shaped growth curve, with globular, heart, and torpedo embryos appearing at 30, 40, and 50 d post-pollination, respectively, and the embryo maintaining the torpedo shape from 60 to 90 d. A total of 12,933 genes was quantified across the three developmental stages, with 3359, 3803, and 3106 DEGs in the S1_vs_S2, S1_vs_S3, and S2_vs_S3 comparisons, respectively. Among these, 133 genes related to plant hormone biosynthesis and metabolism were differentially expressed, regulating the synthesis and metabolism of eight types of plant hormones, including cytokinin, auxin, gibberellin, abscisic acid, and jasmonic acid. The pathways with the most differentially expressed genes were cytokinin, auxin, and gibberellin, suggesting these hormones may play crucial roles in embryo development. In the cytokinin pathway, CKX (Hma1.2p1_0579F.1_g182670.gene, Hma1.2p1_1194F.1_g265700.gene, and NewGene_12164) genes were highly expressed during the globular embryo stage, promoting rapid cell division in the embryo. In the auxin pathway, YUC (Hma1.2p1_0271F.1_g109005.gene and Hma1.2p1_0271F.1_g109020.gene) genes were progressively up-regulated during embryo growth; the early response factor AUX/IAA (Hma1.2p1_0760F.1_g214260.gene) was down-regulated, while the later transcriptional activator ARF (NewGene_21460, NewGene_21461, and Hma1.2p1_0209F.1_g089090.gene) was up-regulated, sustaining auxin synthesis and possibly preventing the embryo from transitioning to maturity. In the gibberellin pathway, GA3ox (Hma1.2p1_0129F.1_g060100.gene) expression peaked during the heart embryo stage and then declined, while the negative regulator GA2ox (Hma1.2p1_0020F.1_g013915.gene) showed the opposite trend; and the gibberellin signaling repressor DELLA (Hma1.2p1_1054F.1_g252590.gene) increased over time, potentially inhibiting embryo development and maintaining the torpedo shape until fruit maturity. These findings preliminarily uncover the factors affecting the development of hybrid H. macrophylla embryos, laying a foundation for further research into the regulatory mechanisms of H. macrophylla hybrid embryo development.


Subject(s)
Gene Expression Regulation, Plant , Plant Growth Regulators , Plant Growth Regulators/metabolism , Seeds/genetics , Seeds/metabolism , Seeds/growth & development , Gene Expression Profiling , Transcriptome , Gene Expression Regulation, Developmental , Signal Transduction , Fruit/genetics , Fruit/metabolism , Fruit/growth & development , Plant Proteins/genetics , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Gibberellins/metabolism
2.
Int J Mol Sci ; 25(14)2024 Jul 11.
Article in English | MEDLINE | ID: mdl-39062872

ABSTRACT

Rice (Oryza sativa L.), a fundamental global staple, nourishes over half of the world's population. The identification of the ddt1 mutant in rice through EMS mutagenesis of the indica cultivar Shuhui527 revealed a dwarf phenotype, characterized by reduced plant height, smaller grain size, and decreased grain weight. Detailed phenotypic analysis and map-based cloning pinpointed the mutation to a single-base transversion in the LOC_Os03g04680 gene, encoding a cytochrome P450 enzyme, which results in a premature termination of the protein. Functional complementation tests confirmed LOC_Os03g04680 as the DDT1 gene responsible for the observed phenotype. We further demonstrated that the ddt1 mutation leads to significant alterations in gibberellic acid (GA) metabolism and signal transduction, evidenced by the differential expression of key GA-related genes such as OsGA20OX2, OsGA20OX3, and SLR1. The mutant also displayed enhanced drought tolerance, as indicated by higher survival rates, reduced water loss, and rapid stomatal closure under drought conditions. This increased drought resistance was linked to the mutant's improved antioxidant capacity, with elevated activities of antioxidant enzymes and higher expression levels of related genes. Our findings suggest that DDT1 plays a crucial role in regulating both plant height and drought stress responses. The potential for using gene editing of DDT1 to mitigate the dwarf phenotype while retaining improved drought resistance offers promising avenues for rice improvement.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Mutation , Oryza , Plant Proteins , Oryza/genetics , Oryza/growth & development , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Water/metabolism , Phenotype , Droughts , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
3.
Int J Mol Sci ; 25(14)2024 Jul 21.
Article in English | MEDLINE | ID: mdl-39063209

ABSTRACT

'Duli' (Pyrus betulifolia Bunge) is one of the main rootstocks of pear trees in China. Gibberellin (GA) is a key plant hormone and the roles of GA in nitrate (NO3-) uptake and metabolism in plants remain unclear. In this study, we investigated the effects of exogenous GA3 on the N metabolism of 'Duli' seedlings under NO3- deficiency. The results showed that exogenous GA3 significantly improves 'Duli' growth under NO3- deficiency. On the one hand, GA3 altered the root architecture, increased the content of endogenous hormones (GA3, IAA, and ZR), and enhanced photosynthesis; on the other hand, it enhanced the activities of N-metabolizing enzymes and the accumulation of N, and increased the expression levels of N absorption (PbNRT2) and the metabolism genes (PbNR, PbGILE, PbGS, and PbGOGAT). However, GA3 did not delay the degradation of chlorophyll. Paclobutrazol had the opposite effect on growth. Overall, GA3 can increase NO3- uptake and metabolism and relieve the growth inhibition of 'Duli' seedlings under NO3- deficiency.


Subject(s)
Gibberellins , Nitrates , Nitrogen , Pyrus , Seedlings , Seedlings/metabolism , Seedlings/growth & development , Seedlings/drug effects , Nitrates/metabolism , Gibberellins/metabolism , Nitrogen/metabolism , Pyrus/metabolism , Pyrus/genetics , Pyrus/growth & development , Pyrus/drug effects , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Plant Roots/metabolism , Plant Roots/growth & development , Plant Roots/drug effects , Plant Growth Regulators/metabolism , Chlorophyll/metabolism
4.
BMC Plant Biol ; 24(1): 643, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38973005

ABSTRACT

BACKGROUND: Flower load in peach is an important determinant of final fruit quality and is subjected to cost-effective agronomical practices, such as the thinning, to finely balance the sink-source relationships within the tree and drive the optimal amount of assimilates to the fruits. Floral transition in peach buds occurs as a result of the integration of specific environmental signals, such as light and temperature, into the endogenous pathways that induce the meristem to pass from vegetative to reproductive growth. The cross talk and integration of the different players, such as the genes and the hormones, are still partially unknown. In the present research, transcriptomics and hormone profiling were applied on bud samples at different developmental stages. A gibberellin treatment was used as a tool to identify the different phases of floral transition and characterize the bud sensitivity to gibberellins in terms of inhibition of floral transition. RESULTS: Treatments with gibberellins showed different efficacies and pointed out a timeframe of maximum inhibition of floral transition in peach buds. Contextually, APETALA1 gene expression was shown to be a reliable marker of gibberellin efficacy in controlling this process. RNA-Seq transcriptomic analyses allowed to identify specific genes dealing with ROS, cell cycle, T6P, floral induction control and other processes, which are correlated with the bud sensitivity to gibberellins and possibly involved in bud development during its transition to the reproductive stage. Transcriptomic data integrated with the quantification of the main bioactive hormones in the bud allowed to identify the main hormonal regulators of floral transition in peach, with a pivotal role played by endogenous gibberellins and cytokinins. CONCLUSIONS: The peach bud undergoes different levels of receptivity to gibberellin inhibition. The stage with maximum responsiveness corresponded to a transcriptional and hormonal crossroad, involving both flowering inhibitors and inductors. Endogenous gibberellin levels increased only at the latest developmental stage, when floral transition was already partially achieved, and the bud was less sensitive to exogenous treatments. A physiological model summarizes the main findings and suggests new research ideas to improve our knowledge about floral transition in peach.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Gibberellins , Plant Growth Regulators , Prunus persica , Gibberellins/metabolism , Flowers/growth & development , Flowers/genetics , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Plant Growth Regulators/metabolism , Gene Expression Profiling , Transcriptome , Plant Proteins/genetics , Plant Proteins/metabolism
5.
Int J Mol Sci ; 25(13)2024 Jul 05.
Article in English | MEDLINE | ID: mdl-39000509

ABSTRACT

Dwarfing rootstocks enhance planting density, lower tree height, and reduce both labor in peach production. Cerasus humilis is distinguished by its dwarf stature, rapid growth, and robust fruiting capabilities, presenting substantial potential for further development. In this study, Ruipan 4 was used as the scion and grafted onto Amygdalus persica and Cerasus humilis, respectively. The results indicate that compared to grafting combination R/M (Ruipan 4/Amygdalus persica), grafting combination R/O (Ruipan 4/Cerasus humilis) plants show a significant reduction in height and a significant increase in flower buds. RNA-seq indicates that genes related to gibberellin (GA) and auxin metabolism are involved in the dwarfing process of scions mediated by C. humilis. The expression levels of the GA metabolism-related gene PpGA2ox7 significantly increased in R/O and are strongly correlated with plant height, branch length, and internode length. Furthermore, GA levels were significantly reduced in R/O. The transcription factor PpGATA21 was identified through yeast one-hybrid screening of the PpGA2ox7 promoter. Yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) demonstrate that PpGATA21 can bind to the promoter of PpGA2ox7 and activate its expression. Overall, PpGATA21 activates the expression of the GA-related gene PpGA2ox7, resulting in reduced GA levels and consequent dwarfing of plants mediated by C. humilis. This study provides new insights into the mechanisms of C. humilis and offers a scientific foundation for the dwarfing and high-density cultivation of peach trees.


Subject(s)
Gene Expression Regulation, Plant , Gibberellins , Plant Proteins , Prunus persica , Prunus persica/genetics , Prunus persica/growth & development , Prunus persica/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic , Trees/genetics , Trees/growth & development , Indoleacetic Acids/metabolism
6.
Sensors (Basel) ; 24(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-39001005

ABSTRACT

Salinity stress is a common challenge in plant growth, impacting seed quality, germination, and general plant health. Sodium chloride (NaCl) ions disrupt membranes, causing ion leakage and reducing seed viability. Gibberellic acid (GA3) treatments have been found to promote germination and mitigate salinity stress on germination and plant growth. 'Bauer' and 'Muir' lettuce (Lactuca sativa) seeds were soaked in distilled water (control), 100 mM NaCl, 100 mM NaCl + 50 mg/L GA3, and 100 mM NaCl + 150 mg/L GA3 in Petri dishes and kept in a dark growth chamber at 25 °C for 24 h. After germination, seedlings were monitored using embedded cameras, capturing red, green, and blue (RGB) images from seeding to final harvest. Despite consistent germination rates, 'Bauer' seeds treated with NaCl showed reduced germination. Surprisingly, the 'Muir' cultivar's final dry weight differed across treatments, with the NaCl and high GA3 concentration combination yielding the poorest results (p < 0.05). This study highlights the efficacy of GA3 applications in improving germination rates. However, at elevated concentrations, it induced excessive hypocotyl elongation and pale seedlings, posing challenges for two-dimensional imaging. Nonetheless, a sigmoidal regression model using projected canopy size accurately predicted dry weight across growth stages and cultivars, emphasizing its reliability despite treatment variations (R2 = 0.96, RMSE = 0.11, p < 0.001).


Subject(s)
Germination , Gibberellins , Lactuca , Seedlings , Seeds , Gibberellins/pharmacology , Lactuca/growth & development , Lactuca/drug effects , Seedlings/drug effects , Seedlings/growth & development , Germination/drug effects , Germination/physiology , Seeds/drug effects , Seeds/growth & development , Salt Stress/drug effects , Sodium Chloride/pharmacology
7.
Molecules ; 29(13)2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38999081

ABSTRACT

Abscisic acid (ABA) is one of the many naturally occurring phytohormones widely found in plants. This study focused on refining APAn, a series of previously developed agonism/antagonism switching probes. Twelve novel APAn analogues were synthesized by introducing varied branched or oxygen-containing chains at the C-6' position, and these were screened. Through germination assays conducted on A. thaliana, colza, and rice seeds, as well as investigations into stomatal movement, several highly active ABA receptor antagonists were identified. Microscale thermophoresis (MST) assays, molecular docking, and molecular dynamics simulation showed that they had stronger receptor affinity than ABA, while PP2C phosphatase assays indicated that the C-6'-tail chain extending from the 3' channel effectively prevented the ligand-receptor binary complex from binding to PP2C phosphatase, demonstrating strong antagonistic activity. These antagonists showed effective potential in promoting seed germination and stomatal opening of plants exposed to abiotic stress, particularly cold and salt stress, offering advantages for cultivating crops under adverse conditions. Moreover, their combined application with fluridone and gibberellic acid could provide more practical agricultural solutions, presenting new insights and tools for overcoming agricultural challenges.


Subject(s)
Abscisic Acid , Germination , Molecular Docking Simulation , Abscisic Acid/chemistry , Germination/drug effects , Arabidopsis/drug effects , Arabidopsis/metabolism , Plant Growth Regulators/chemistry , Plant Growth Regulators/pharmacology , Seeds/drug effects , Seeds/chemistry , Seeds/growth & development , Oryza/drug effects , Oryza/metabolism , Oryza/growth & development , Arabidopsis Proteins/antagonists & inhibitors , Arabidopsis Proteins/metabolism , Molecular Dynamics Simulation , Agriculture/methods , Gibberellins/chemistry , Gibberellins/metabolism , Pyridones
8.
BMC Genomics ; 25(1): 682, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982341

ABSTRACT

BACKGROUND: Green foxtail [Setaria viridis (L.)] is one of the most abundant and troublesome annual grass weeds in alfalfa fields in Northeast China. Synthetic auxin herbicide is widely used in agriculture, while how auxin herbicide affects tillering on perennial grass weeds is still unclear. A greenhouse experiment was conducted to examine the effects of auxin herbicide 2,4-D on green foxtail growth, especially on tillers. RESULTS: In the study, 2,4-D isooctyl ester was used. There was an inhibition of plant height and fresh weight on green foxtail after application. The photosynthetic rate of the leaves was dramatically reduced and there was an accumulation of malondialdehyde (MDA) content. Moreover, applying 2,4-D isooctyl ester significantly reduced the tillering buds at rates between 2100 and 8400 ga. i. /ha. Transcriptome results showed that applying 2,4-D isooctyl ester on leaves affected the phytohormone signal transduction pathways in plant tillers. Among them, there were significant effects on auxin, cytokinin, abscisic acid (ABA), gibberellin (GA), and brassinosteroid signaling. Indeed, external ABA and GA on leaves also limited tillering in green foxtail. CONCLUSIONS: These data will be helpful to further understand the responses of green foxtail to 2, 4-D isooctyl ester, which may provide a unique perspective for the development and identification of new target compounds that are effective against this weed species.


Subject(s)
2,4-Dichlorophenoxyacetic Acid , Herbicides , Plant Growth Regulators , Setaria Plant , 2,4-Dichlorophenoxyacetic Acid/pharmacology , Setaria Plant/drug effects , Setaria Plant/genetics , Setaria Plant/metabolism , Setaria Plant/growth & development , Plant Growth Regulators/pharmacology , Plant Growth Regulators/metabolism , Herbicides/pharmacology , Plant Leaves/drug effects , Plant Leaves/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology , Gene Expression Regulation, Plant/drug effects , Photosynthesis/drug effects , Gibberellins/pharmacology , Gibberellins/metabolism , Signal Transduction/drug effects , Transcriptome/drug effects , Esters
9.
Plant Signal Behav ; 19(1): 2371693, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38923879

ABSTRACT

One of the main signal transduction pathways that modulate plant growth and stress responses, including drought, is the action of phytohormones. Recent advances in omics approaches have facilitated the exploration of plant genomes. However, the molecular mechanisms underlying the response in the crown of barley, which plays an essential role in plant performance under stress conditions and regeneration after stress treatment, remain largely unclear. The objective of the present study was the elucidation of drought-induced molecular reactions in the crowns of different barley phytohormone mutants. We verified the hypothesis that defects of gibberellins, brassinosteroids, and strigolactones action affect the transcriptomic, proteomic, and hormonal response of barley crown to the transitory drought influencing plant development under stress. Moreover, we assumed that due to the strong connection between strigolactones and branching the hvdwarf14.d mutant, with dysfunctional receptor of strigolactones, manifests the most abundant alternations in crowns and phenotype under drought. Finally, we expected to identify components underlying the core response to drought which are independent of the genetic background. Large-scale analyses were conducted using gibberellins-biosynthesis, brassinosteroids-signaling, and strigolactones-signaling mutants, as well as reference genotypes. Detailed phenotypic evaluation was also conducted. The obtained results clearly demonstrated that hormonal disorders caused by mutations in the HvGA20ox2, HvBRI1, and HvD14 genes affected the multifaceted reaction of crowns to drought, although the expression of these genes was not induced by stress. The study further detected not only genes and proteins that were involved in the drought response and reacted specifically in mutants compared to the reaction of reference genotypes and vice versa, but also the candidates that may underlie the genotype-universal stress response. Furthermore, candidate genes involved in phytohormonal interactions during the drought response were identified. We also found that the interplay between hormones, especially gibberellins and auxins, as well as strigolactones and cytokinins may be associated with the regulation of branching in crowns exposed to drought. Overall, the present study provides novel insights into the molecular drought-induced responses that occur in barley crowns.


Subject(s)
Droughts , Hordeum , Mutation , Plant Growth Regulators , Hordeum/genetics , Hordeum/metabolism , Hordeum/growth & development , Plant Growth Regulators/metabolism , Mutation/genetics , Gibberellins/metabolism , Gene Expression Regulation, Plant , Brassinosteroids/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Stress, Physiological/genetics , Lactones/metabolism
10.
Sci Rep ; 14(1): 14714, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926419

ABSTRACT

Stevia rebaudiana (stevia) is a plant in the Asteraceae that contains several biologically active compounds including the antidiabetic diterpene glycosides (e.g. stevioside, rebaudioside and dulcoside) that can serve as zero-calorie sugar alternatives. In this study, an elicitation strategy was applied using 5% polyethylene glycol (PEG), sodium chloride (NaCl; 50 and 100 mM) and gibberellic acid (2.0 and 4.0 mg/L GA3) to investigate their effect on shoot morphogenesis, and the production of phenolics, flavonoids, total soluble sugars, proline and stevioside, as well as antioxidant activity, in shoot cultures of S. rebaudiana. Herewith, the media supplemented with 2 mg/L and 4 mg/L GA3 exhibited the highest shooting response (87% and 80%). The augmentation of lower concentrations of GA3 (2 mg/L) in combination with 6-benzylaminopurine (BAP) resulted in the maximum mean shoot length (11.1 cm). The addition of 100 mM NaCl salts to the media led to the highest observed total phenolics content (TPC; 4.11 mg/g-DW compared to the control 0.52 mg/g-DW), total flavonoids content (TFC; 1.26 mg/g-DW) and polyphenolics concentration (5.39 mg/g-DW) in shoots cultured. However, the maximum antioxidant activity (81.8%) was observed in shoots raised in media treated with 50 mM NaCl. The application of 2 mg/L of GA3 resulted in the highest accumulation of proline (0.99 µg/mL) as compared to controls (0.37 µg/mL). Maximum stevioside content (71 µL/mL) was observed in cultures supplemented with 100 mM NaCl and 5% PEG, followed by the 4 mg/L GA3 treatment (70 µL/mL) as compared to control (60 µL/mL). Positive correlation was observed between GA3 and stevioside content. Notably, these two compounds are derived from a shared biochemical pathway. These results suggest that elicitation is an effective option to enhance the accumulation of steviosides and other metabolites and provides the groundwork for future industrial scale production using bioreactors.


Subject(s)
Antioxidants , Diterpenes, Kaurane , Gibberellins , Glucosides , Plant Shoots , Stevia , Stevia/metabolism , Stevia/growth & development , Stevia/drug effects , Diterpenes, Kaurane/metabolism , Glucosides/metabolism , Plant Shoots/metabolism , Plant Shoots/growth & development , Plant Shoots/drug effects , Gibberellins/metabolism , Antioxidants/metabolism , Secondary Metabolism , Flavonoids/metabolism , Flavonoids/analysis , Phenols/metabolism , Sodium Chloride/pharmacology , Purines/metabolism , Proline/metabolism , Polyethylene Glycols/pharmacology , Polyethylene Glycols/chemistry , Benzyl Compounds
11.
Sci Rep ; 14(1): 14801, 2024 06 26.
Article in English | MEDLINE | ID: mdl-38926600

ABSTRACT

Several factors, such as pruning and phytohormones, have demonstrated an influence on both the quantity and quality in the bell pepper. A factorial experiment using a completely randomized design was conducted on the Lumos yellow bell in a greenhouse. Treatments were the fruit pruning (0, 10, and 30%) and foliar application of phytohormones auxin (AUX) and gibberellic acid (GA3) at concentrations of 10 µM AUX, 10 µM GA3, 10 µM AUX + 10 µM GA3+, and 20 µM AUX + 10 µM GA3 along with controls. The plants were sprayed with phytohormones in four growth stages (1: flowering stage when 50% of the flowers were on the plant, 2: fruiting stage when 50% of the fruits were the size of peas, 3: fruit growth stage when 50% of the fruits had reached 50% of their growth, and 4: ripening stage when 50% of the fruits were at color break). The results of the present investigation showed that pruning rate of 30% yielded the highest flesh thickness and vitamin C content, decreased seed count and hastened fruit ripening. The use of GA3 along with AUX has been observed to augment diverse fruit quality characteristics. According to the results, the application of 10% pruning in combination with 20 µM AUX and 10 µM GA3 demonstrated the most significant levels of carotenoids, chlorophyll, and fruit length. The experimental group subjected to the combined treatment of 30% pruning and 10 µM AUX + 10 µM GA3 showed the most noteworthy levels of vitamin C, fruit weight, and fruit thickness. The groups that received the 10 µM GA3 and 20 µM AUX + 10 µM GA3 treatments exhibited the most favorable fruit flavor. According to the research results, the implementation of hormonal treatments 10 µM AUX and 10 µM AUX + 10 µM GA3 in combination with a 30% pruning strategy resulted in the most advantageous yield of bell peppers.


Subject(s)
Capsicum , Fruit , Gibberellins , Indoleacetic Acids , Plant Growth Regulators , Capsicum/growth & development , Capsicum/drug effects , Capsicum/metabolism , Plant Growth Regulators/pharmacology , Fruit/drug effects , Fruit/growth & development , Fruit/metabolism , Gibberellins/pharmacology , Gibberellins/metabolism , Indoleacetic Acids/metabolism , Indoleacetic Acids/pharmacology
12.
Physiol Plant ; 176(3): e14378, 2024.
Article in English | MEDLINE | ID: mdl-38887925

ABSTRACT

D-2-hydroxyglutarate dehydrogenase (D2HGDH) is a mitochondrial enzyme containing flavin adenine dinucleotide FAD, existing as a dimer, and it facilitates the specific oxidation of D-2HG to 2-oxoglutarate (2-OG), which is a key intermediate in the tricarboxylic acid (TCA) cycle. A Genome-wide expression analysis (GWEA) has indicated an association between GhD2HGDH and flowering time. To further explore the role of GhD2HGDH, we performed a comprehensive investigation encompassing phenotyping, physiology, metabolomics, and transcriptomics in Arabidopsis thaliana plants overexpressing GhD2HGDH. Transcriptomic and qRT-PCR data exhibited heightened expression of GhD2HGDH in upland cotton flowers. Additionally, early-maturing cotton exhibited higher expression of GhD2HGDH across all tissues than delayed-maturing cotton. Subcellular localization confirmed its presence in the mitochondria. Overexpression of GhD2HGDH in Arabidopsis resulted in early flowering. Using virus-induced gene silencing (VIGS), we investigated the impact of GhD2HGDH on flowering in both early- and delayed-maturing cotton plants. Manipulation of GhD2HGDH expression levels led to changes in photosynthetic pigment and gas exchange attributes. GhD2HGDH responded to gibberellin (GA3) hormone treatment, influencing the expression of GA biosynthesis genes and repressing DELLA genes. Protein interaction studies, including yeast two-hybrid, luciferase complementation (LUC), and GST pull-down assays, confirmed the interaction between GhD2HGDH and GhSOX (Sulfite oxidase). The metabolomics analysis demonstrated GhD2HGDH's modulation of the TCA cycle through alterations in various metabolite levels. Transcriptome data revealed that GhD2HGDH overexpression triggers early flowering by modulating the GA3 and photoperiodic pathways of the flowering core factor genes. Taken together, GhD2HGDH positively regulates the network of genes associated with early flowering pathways.


Subject(s)
Arabidopsis , Flowers , Gene Expression Regulation, Plant , Gibberellins , Gossypium , Photoperiod , Plant Proteins , Gossypium/genetics , Gossypium/physiology , Gossypium/metabolism , Flowers/genetics , Flowers/physiology , Arabidopsis/genetics , Arabidopsis/physiology , Arabidopsis/metabolism , Gibberellins/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Mitochondria/metabolism , Mitochondria/genetics , Plants, Genetically Modified , Electron Transport
13.
BMC Plant Biol ; 24(1): 579, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38890571

ABSTRACT

BACKGROUND: The quality of maize kernels is significantly enhanced by amino acids, which are the fundamental building blocks of proteins. Meanwhile, calcium (Ca) and magnesium (Mg), as important nutrients for maize growth, are vital in regulating the metabolic pathways and enzyme activities of amino acid synthesis. Therefore, our study analyzed the response process and changes of amino acid content, endogenous hormone content, and antioxidant enzyme activity in kernels to the coupling addition of sugar alcohol-chelated Ca and Mg fertilizers with spraying on maize. RESULT: (1) The coupled addition of Ca and Mg fertilizers increased the Ca and Mg content, endogenous hormone components (indole-3-acetic acid, IAA; gibberellin, GA; zeatin riboside, ZR) content, antioxidant enzyme activity, and amino acid content of maize kernels. The content of Ca and Mg in kernels increased with the increasing levels of Ca and Mg fertilizers within a certain range from the filling to the wax ripening stage, and significantly positively correlated with antioxidant enzyme activities. (2) The contents of IAA, GA, and ZR continued to rise, and the activities of superoxide dismutase (SOD) and catalase (CAT) were elevated, which effectively enhanced the ability of cells to resist oxidative damage, promoted cell elongation and division, and facilitated the growth and development of maize. However, the malondialdehyde (MDA) content increased consistently, which would attack the defense system of the cell membrane plasma to some extent. (3) Leucine (LEU) exhibited the highest percentage of essential amino acid components and a gradual decline from the filling to the wax ripening stage, with the most substantial beneficial effect on essential amino acids. (4) CAT and SOD favorably governed essential amino acids, while IAA and MDA negatively regulated them. The dominant physiological driving pathway for the synthesis of essential amino acids was "IAA-CAT-LEU", in which IAA first negatively drove CAT activity, and CAT then advantageously controlled LEU synthesis. CONCLUSION: These findings provide a potential approach to the physiological and biochemical metabolism of amino acid synthesis, and the nutritional quality enhancement of maize kernel.


Subject(s)
Amino Acids , Calcium , Magnesium , Plant Growth Regulators , Zea mays , Zea mays/metabolism , Zea mays/growth & development , Zea mays/physiology , Magnesium/metabolism , Amino Acids/metabolism , Calcium/metabolism , Plant Growth Regulators/metabolism , Fertilizers , Indoleacetic Acids/metabolism , Antioxidants/metabolism , Superoxide Dismutase/metabolism , Gibberellins/metabolism
14.
BMC Plant Biol ; 24(1): 581, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898382

ABSTRACT

Asparagus is a nutritionally dense stem vegetable whose growth and development are correlated with its quality and yield. To investigate the dynamic changes and underlying mechanisms during the elongation and growth process of asparagus stems, we documented the growth pattern of asparagus and selected stem segments from four consecutive elongation stages using physiological and transcriptome analyses. Notably, the growth rate of asparagus accelerated at a length of 25 cm. A significant decrease in the concentration of sucrose, fructose, glucose, and additional sugars was observed in the elongation region of tender stems. Conversely, the levels of auxin and gibberellins(GAs) were elevated along with increased activity of enzymes involved in sucrose degradation. A significant positive correlation existed between auxin, GAs, and enzymes involved in sucrose degradation. The ABA content gradually increased with stem elongation. The tissue section showed that cell elongation is an inherent manifestation of stem elongation. The differential genes screened by transcriptome analysis were enriched in pathways such as starch and sucrose metabolism, phytohormone synthesis metabolism, and signal transduction. The expression levels of genes such as ARF, GA20ox, NCED, PIF4, and otherswere upregulated during stem elongation, while DAO, GA2ox, and other genes were downregulated. The gene expression level was consistent with changes in hormone content and influenced the cell length elongation. Additionally, the expression results of RT-qPCR were consistent with RNA-seq. The observed variations in gene expression levels, endogenous hormones and sugar changes during the elongation and growth of asparagus tender stems offer valuable insights for future investigations into the molecular mechanisms of asparagus stem growth and development and provide a theoretical foundation for cultivation and production practices.


Subject(s)
Asparagus Plant , Gene Expression Profiling , Plant Growth Regulators , Plant Stems , Asparagus Plant/genetics , Asparagus Plant/metabolism , Asparagus Plant/growth & development , Plant Stems/genetics , Plant Stems/metabolism , Plant Stems/growth & development , Plant Growth Regulators/metabolism , Gene Expression Regulation, Plant , Transcriptome , Sugars/metabolism , Gibberellins/metabolism
15.
Int J Mol Sci ; 25(11)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38892313

ABSTRACT

Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.


Subject(s)
Flowers , Gene Expression Regulation, Plant , Gene Regulatory Networks , Spinacia oleracea , Transcription Factors , Spinacia oleracea/genetics , Spinacia oleracea/growth & development , Flowers/genetics , Flowers/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Profiling , Abscisic Acid/metabolism , Gibberellins/metabolism
16.
Int J Biol Macromol ; 273(Pt 1): 132954, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38852726

ABSTRACT

This study explores the potential of liposome encapsulated silica immobilized cytochrome P450 monooxygenase (LSICY) for bioremediation of mercury (Hg2+). Current limitations in Hg2+ reduction, including sensitivity to factors like pH and cost, necessitate alternative methods. We propose LSICY as a solution, leveraging the enzymatic activities of cytochrome P450 monooxygenase (CYPM) for Hg2+ reduction through hydroxylation and oxygenation. Our investigation employs LSICY to assess its efficacy in mitigating Hg2+ toxicity in Oryza sativa (rice) plants. Gas chromatography confirmed gibberellic acid (GA) presence in the Hg2+ reducing bacteria Priestia megaterium RP1 (PMRP1), highlighting a potential link between CYP450 activity and plant health. This study demonstrates the promise of LSICY as a sustainable and effective approach for Hg2+ bioremediation, promoting a safer soil environment.


Subject(s)
Biodegradation, Environmental , Cytochrome P-450 Enzyme System , Gibberellins , Liposomes , Mercury , Oryza , Cytochrome P-450 Enzyme System/metabolism , Gibberellins/metabolism , Gibberellins/pharmacology
17.
Genes (Basel) ; 15(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38927602

ABSTRACT

The low survival rate of transplanted plantlets, which has limited the utility of tissue-culture-based methods for the rapid propagation of tree peonies, is due to plantlet dormancy after rooting. We previously determined that the auxin response factor PsARF may be a key regulator of tree peony dormancy. To clarify the mechanism mediating tree peony plantlet dormancy, PsARF genes were systematically identified and analyzed. Additionally, PsARF16a was transiently expressed in the leaves of tree peony plantlets to examine its regulatory effects on a downstream gene network. Nineteen PsARF genes were identified and divided into four classes. All PsARF genes encoded proteins with conserved B3 and ARF domains. The number of motifs, exons, and introns varied between PsARF genes in different classes. The overexpression of PsARF16a altered the expression of NCED, ZEP, PYL, GA2ox1, GID1, and other key genes in abscisic acid (ABA) and gibberellin (GA) signal transduction pathways, thereby promoting ABA synthesis and decreasing GA synthesis. Significant changes to the expression of some key genes contributing to starch and sugar metabolism (e.g., AMY2A, BAM3, BGLU, STP, and SUS2) may be associated with the gradual conversion of sugar into starch. This study provides important insights into PsARF functions in tree peonies.


Subject(s)
Gene Expression Regulation, Plant , Paeonia , Plant Dormancy , Plant Proteins , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Dormancy/genetics , Paeonia/genetics , Paeonia/growth & development , Paeonia/metabolism , Abscisic Acid/metabolism , Gibberellins/metabolism , Plant Growth Regulators/genetics , Plant Growth Regulators/metabolism , Trees/genetics , Trees/growth & development , Transcription Factors/genetics , Transcription Factors/metabolism , Signal Transduction/genetics
18.
BMC Plant Biol ; 24(1): 542, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38872107

ABSTRACT

BACKGROUND: Hydrogen gas (H2), a novel and beneficial gaseous molecule, plays a significant role in plant growth and development processes. Hydrogen-rich water (HRW) is regarded as a safe and easily available way to study the physiological effects of H2 on plants. Several recent research has shown that HRW attenuates stress-induced seed germination inhibition; however, the underlying modes of HRW on seed germination remain obscure under non-stress condition. RESULTS: In this current study, we investigated the possible roles of gibberellin (GA) and abscisic acid (ABA) in HRW-regulated seed germination in wax gourd (Benincasa hispida) through pharmacological, physiological, and transcriptome approaches. The results showed that HRW application at an optimal dose (50% HRW) significantly promoted seed germination and shortened the average germination time (AGT). Subsequent results suggested that 50% HRW treatment stimulated GA production by regulating GA biosynthesis genes (BhiGA3ox, BhiGA2ox, and BhiKAO), whereas it had no effect on the content of ABA and the expression of its biosynthesis (BhiNCED6) and catabolism genes (BhiCYP707A2) but decreased the expression of ABA receptor gene (BhiPYL). In addition, inhibition of GA production by paclobutrazol (PAC) could block the HRW-mediated germination. Treatment with ABA could hinder HRW-mediated seed germination and the ABA biosynthesis inhibitor sodium tungstate (ST) could recover the function of HRW. Furthermore, RNA-seq analysis revealed that, in the presence of GA or ABA, an abundance of genes involved in GA, ABA, and ethylene signal sensing and transduction might involve in HRW-regulated germination. CONCLUSIONS: This study portrays insights into the mechanism of HRW-mediated seed germination, suggesting that HRW can regulate the balance between GA and ABA to mediate seed germination through ethylene signals in wax gourd.


Subject(s)
Abscisic Acid , Germination , Gibberellins , Hydrogen , Plant Growth Regulators , Seeds , Signal Transduction , Gibberellins/metabolism , Germination/drug effects , Abscisic Acid/metabolism , Seeds/growth & development , Seeds/drug effects , Seeds/genetics , Seeds/physiology , Plant Growth Regulators/metabolism , Hydrogen/metabolism , Gene Expression Regulation, Plant/drug effects
19.
J Plant Physiol ; 300: 154299, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38936241

ABSTRACT

The F-box protein (FBP) family plays diverse functions in the plant kingdom, with the function of many members still unrevealed. In this study, a specific FBP called PmFBK2, containing Kelch repeats from Persicaria minor, was functionally investigated. Employing the yeast two-hybrid (Y2H) assay, PmFBK2 was found to interact with Skp1-like proteins from P. minor, suggesting its potential to form an E3 ubiquitin ligase, known as the SCF complex. Y2H and co-immunoprecipitation tests revealed that PmFBK2 interacts with full-length PmGID1b. The interaction marks the first documented binding between these two protein types, which have never been reported in other plants before, and they exhibited a negative effect on gibberellin (GA) signal transduction. The overexpression of PmFBK2 in the kmd3 mutant, a homolog from Arabidopsis, demonstrated the ability of PmFBK2 to restore the function of the mutated KMD3 gene. The function restoration was supported by morphophysiological and gene expression analyses, which exhibited patterns similar to the wild type (WT) compared to the kmd3 mutant. Interestingly, the overexpression of PmFBK2 or PmGID1b in Arabidopsis had opposite effects on rosette diameter, seed weight, and plant height. This study provides new insights into the complex GA signalling. It highlights the crucial roles of the interaction between FBP and the GA receptor (GID1b) in regulating GA responses. These findings have implications for developing strategies to enhance plant growth and yield by modulating GA signalling in crops.


Subject(s)
F-Box Proteins , Gibberellins , Plant Proteins , Signal Transduction , Gibberellins/metabolism , F-Box Proteins/metabolism , F-Box Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/genetics , Gene Expression Regulation, Plant , Two-Hybrid System Techniques , Plant Growth Regulators/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism
20.
Int J Mol Sci ; 25(12)2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38928189

ABSTRACT

Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.


Subject(s)
Exons , Gene Expression Regulation, Plant , Glycine max , Hypocotyl , Photosynthesis , Glycine max/genetics , Glycine max/growth & development , Glycine max/metabolism , Photosynthesis/genetics , Exons/genetics , Hypocotyl/genetics , Hypocotyl/growth & development , Sequence Deletion , Plant Proteins/genetics , Plant Proteins/metabolism , Gibberellins/metabolism , Gene Expression Profiling , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL