Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 189
Filter
1.
Gene ; 928: 148800, 2024 Nov 30.
Article in English | MEDLINE | ID: mdl-39067545

ABSTRACT

ETHYLENE-INSENSITIVE3 (EIN3) or EIN3-Like (EIL) proteins, play critical roles in integrating ethylene signaling and physiological regulation in plants by modulating the expression of various downstream genes, such as ethylene-response factors (ERFs). However, little is known about the characteristics of EIN3/EILs in the gymnosperm Ginkgo biloba. In the present study, a genome-wide comparative analysis of Ginkgo EIN3/EIL gene family was performed with those from an array of species, including bryophytes (Physcomitrella patens), gymnosperms (Cycas panzhihuaensis), and angiosperms (Arabidopsis thaliana, Gossypium raimondii, Gossypium hirsutum, Oryza sativa, and Brachypodium distachyon). Within the constructed phylogenetic tree for the 53 EIN3/EILs identified, 5 GbEILs from G. biloba, 2 PpEILs from P. patens, and 3 CpEILs from C. panzhihuaensis were assigned to one cluster, suggesting that their derivation occurred after the split of their ancestors and angiosperms. Although considerable divergence accumulated in amino acid sequences along with the evolutionary process, the specific EIN3_DNA-binding domains were evolutionarily conserved among the 53 EIN3/EILs. Collinearity analysis indicated that whole-genome or segmental duplication and subsequent purifying selection might have prompted the generation and evolution of EIN3/EIL multigene families. Based on the expression patterns of five GbEILs at the four developmental stages of Ginkgo ovules, one GbEIL gene (Gb_03292) was further investigated for its role in mediating ethylene signaling. The functional activity of Gb_03292 was closely related to ethylene signaling, as it complemented the triple response via ectopic expression in ein3eil1 double mutant Arabidopsis. Additionally, GbEIL likely modulates the expression of a Ginkgo ERF (Gb_15517) by directly binding to its promoter. These results demonstrated that the GbEIL gene could have participated in mediating ethylene signal transduction during ovule development in G. biloba. The present study also provides insights into the conservation of ethylene signaling across the gymnosperm G. biloba and angiosperm species.


Subject(s)
Ethylenes , Gene Expression Regulation, Plant , Ginkgo biloba , Multigene Family , Phylogeny , Plant Proteins , Signal Transduction , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ethylenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Transcription Factors/genetics , Transcription Factors/metabolism
2.
Food Chem ; 456: 139979, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38852441

ABSTRACT

Pulsed light (PL) is a prospective non-thermal technology that can improve the degradation of ginkgolic acid (GA) and retain the main bioactive compounds in Ginkgo biloba leaves (GBL). However, only using PL hasn't yet achieved the ideal effect of reducing GA. Fermentation of GBL to make ginkgo dark tea (GDT) could decrease GA. Because different microbial strains are used for fermentation, their metabolites and product quality might differ. However, there is no research on the combinative effect of PL irradiation fixation and microbial strain fermentation on main bioactive compounds and sensory assessment of GDT. In this research, first, Bacillus subtilis and Saccharomyces cerevisiae were selected as fermentation strains that can reduce GA from the five microbial strains. Next, the fresh GBL was irradiated by PL for 200 s (fluences of 0.52 J/cm2), followed by B. subtilis, S. cerevisiae, or natural fermentation to make GDT. The results showed that compared with the control (unirradiated and unfermented GBL) and the only PL irradiated GBL, the GA in GDT using PL + B. subtilis fermentation was the lowest, decreasing by 29.74%; PL + natural fermentation reduced by 24.53%. The total flavonoid content increased by 14.64% in GDT using PL + B. subtilis fermentation, whose phenolic and antioxidant levels also increased significantly. Sensory evaluation showed that the color, aroma, and taste of the tea infusion of PL + B. subtilis fermentation had the highest scores. In conclusion, the combined PL irradiation and solid-state fermentation using B. subtilis can effectively reduce GA and increase the main bioactive compounds, thus providing a new technological approach for GDT with lower GA.


Subject(s)
Bacillus subtilis , Fermentation , Flavonoids , Ginkgo biloba , Ginkgolides , Saccharomyces cerevisiae , Salicylates , Taste , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Ginkgo biloba/microbiology , Salicylates/metabolism , Salicylates/analysis , Saccharomyces cerevisiae/metabolism , Bacillus subtilis/metabolism , Flavonoids/analysis , Flavonoids/metabolism , Humans , Ginkgolides/metabolism , Ginkgolides/analysis , Light , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Leaves/chemistry , Plant Leaves/metabolism , Food Irradiation
3.
Plant Physiol Biochem ; 212: 108754, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38824693

ABSTRACT

Ginkgo biloba L. is a relict plant endemic to China that is commonly considered a "living fossil". It contains unique medicinal compounds that play important roles in its response to various stresses and help maintain human health. Ginkgo terpenoids are known to be important active ingredients but have received less attention than flavonoids. Hence, this review focuses on recent progress in research on the pharmacological effects of ginkgo terpenoid and the bioactivities of different terpenoid monomers. Many key structural genes, enzyme-encoding genes, transcription factors, and noncoding RNAs involved in the ginkgo terpenoid pathway were identified. Finally, many external factors (ecological factors, hormones, etc.) that regulate the biosynthesis and metabolism of terpenoids were proposed. All these findings improve the understanding of the biosynthesis, accumulation, and medicinal functions of terpenoids. Finally, this review includes an in-depth discussion regarding the limitations of terpenoid-related studies and potential future research directions.


Subject(s)
Ginkgo biloba , Terpenes , Ginkgo biloba/metabolism , Ginkgo biloba/genetics , Terpenes/metabolism , Gene Expression Regulation, Plant
4.
Tree Physiol ; 44(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38728368

ABSTRACT

Flavonoids are crucial medicinal active ingredients in Ginkgo biloba L. However, the effect of protein post-translational modifications on flavonoid biosynthesis remains poorly explored. Lysine acetylation, a reversible post-translational modification, plays a crucial role in metabolic regulation. This study aims to investigate the potential role of acetylation in G. biloba flavonoid biosynthesis. Through comprehensive analysis of transcriptomes, metabolomes, proteomes and acetylated proteins in different tissues, a total of 11,788 lysine acetylation sites were identified on 4324 acetylated proteins, including 89 acetylation sites on 23 proteins. Additionally, 128 types of differentially accumulated flavonoids were identified among tissues, and a dataset of differentially expressed genes related to the flavonoid biosynthesis pathway was constructed. Twelve (CHI, C3H1, ANR, DFR, CCoAOMT1, F3H1, F3H2, CCoAOMT2, C3H2, HCT, F3'5'H and FG2) acetylated proteins that might be involved in flavonoid biosynthesis were identified. Specifically, we found that the modification levels of CCoAOMT1 and F3'5'H sites correlated with the catalytic production of homoeriodictyol and dihydromyricetin, respectively. Inhibitors of lysine deacetylase (trichostatin A) impacted total flavonoid content in different tissues and increased flavonoid levels in G. biloba roots. Treatment with trichostatin A revealed that expression levels of GbF3'5'H and GbCCoAOMT1 in stems and leaves aligned with total flavonoid content variations, while in roots, expression levels of GbC3H2 and GbFG2 corresponded to total flavonoid content changes. Collectively, these findings reveal for the first time the important role of acetylation in flavonoid biosynthesis.


Subject(s)
Flavonoids , Ginkgo biloba , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Flavonoids/metabolism , Flavonoids/biosynthesis , Acetylation , Plant Proteins/metabolism , Plant Proteins/genetics , Protein Processing, Post-Translational , Transcriptome , Proteome/metabolism , Gene Expression Regulation, Plant , Multiomics
5.
Plant Genome ; 17(2): e20440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38462710

ABSTRACT

4-Coumarate-CoA ligase (4CL) gene plays vital roles in plant growth and development, especially the regulation of lignin metabolism and flavonoid synthesis. To investigate the potential function of 4CL in the lignin biosynthesis of Ginkgo biloba, this study identified two 4CL genes, Gb4CL1 and Gb4CL2, from G. biloba genome. Based on the phylogenetic tree analysis, Gb4CL1 and Gb4CL2 protein were classified into Class I, which has been confirmed to be involved in lignin biosynthesis. Therefore, it can be inferred that these two genes may also participate in lignin metabolism. The tissue-specific expression patterns of these two genes revealed that Gb4CL1 was highly expressed in microstrobilus, whereas Gb4CL2 was abundant in immature leaves. The onion transient expression assay indicated that Gb4CL1 was predominantly localized in the nucleus, indicating its potential involvement in nuclear functions, while Gb4CL2 was observed in the cell wall, suggesting its role in cell wall-related processes. Phytohormone response analysis revealed that the expression of both genes was upregulated in response to indole acetic acid, while methyl jasmonate suppressed it, gibberellin exhibited opposite effects on these genes. Furthermore, Gb4CL1 and Gb4CL2 expressed in all tissues containing lignin that showed a positive correlation with lignin content. Thus, these findings suggest that Gb4CL1 and Gb4CL2 are likely involved in lignin biosynthesis. Gb4CL1 and Gb4CL2 target proteins were successfully induced in Escherichia coli BL21 with molecular weights of 85.5 and 89.2 kDa, proving the integrity of target proteins. Our findings provided a basis for revealing that Gb4CL participated in lignin synthesis in G. biloba.


Subject(s)
Cloning, Molecular , Ginkgo biloba , Lignin , Plant Proteins , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Lignin/biosynthesis , Lignin/metabolism , Gene Expression Regulation, Plant , Phylogeny , Coenzyme A Ligases/genetics , Coenzyme A Ligases/metabolism , Plant Growth Regulators/metabolism
6.
Ecotoxicol Environ Saf ; 274: 116183, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38471343

ABSTRACT

Arsenic is an environmentally ubiquitous toxic metalloid. Chronic exposure to arsenic may lead to arsenicosis, while no specific therapeutic strategies are available for the arsenism patients. And Ginkgo biloba extract (GBE) exhibited protective effect in our previous study. However, the mechanisms by which GBE protects the arsenism patients remain poorly understood. A liquid chromatography-mass spectrometry (LC-MS) based untargeted metabolomics analysis was used to study metabolic response in arsenism patients upon GBE intervention. In total, 39 coal-burning type of arsenism patients and 50 healthy residents were enrolled from Guizhou province of China. The intervention group (n = 39) were arsenism patients orally administered with GBE (three times per day) for continuous 90 days. Plasma samples from 50 healthy controls (HC) and 39 arsenism patients before and after GBE intervention were collected and analyzed by established LC-MS method. Statistical analysis was performed by MetaboAnalyst 5.0 to identify differential metabolites. Multivariate analysis revealed a separation in arsenism patients between before (BG) and after GBE intervention (AG) group. It was observed that 35 differential metabolites were identified between BG and AG group, and 30 of them were completely or partially reversed by GBE intervention, with 14 differential metabolites significantly up-regulated and 16 differential metabolites considerably down-regulated. These metabolites were involved in promoting immune response and anti-inflammatory functions, and alleviating oxidative stress. Taken together, these findings indicate that the GBE intervention could probably exert its protective effects by reversing disordered metabolites modulating these functions in arsenism patients, and provide insights into further exploration of mechanistic studies.


Subject(s)
Arsenic , Ginkgo Extract , Ginkgo biloba , Humans , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Chromatography, Liquid , Liquid Chromatography-Mass Spectrometry , Arsenic/toxicity , Tandem Mass Spectrometry/methods , Plant Extracts/pharmacology , Plant Extracts/analysis
7.
Plant Physiol ; 195(2): 1446-1460, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38431523

ABSTRACT

Terpene trilactones (TTLs) are important secondary metabolites in ginkgo (Ginkgo biloba); however, their biosynthesis gene regulatory network remains unclear. Here, we isolated a G. biloba ethylene response factor 4 (GbERF4) involved in TTL synthesis. Overexpression of GbERF4 in tobacco (Nicotiana tabacum) significantly increased terpenoid content and upregulated the expression of key enzyme genes (3-hydroxy-3-methylglutaryl-CoA reductase [HMGR], 3-hydroxy-3-methylglutaryl-CoA synthase [HMGS], 1-deoxy-D-xylulose-5-phosphate reductoisomerase [DXR], 1-deoxy-D-xylulose-5-phosphate synthase [DXS], acetyl-CoA C-acetyltransferase [AACT], and geranylgeranyl diphosphate synthase [GGPPS]) in the terpenoid pathway in tobacco, suggesting that GbERF4 functions in regulating the synthesis of terpenoids. The expression pattern analysis and previous microRNA (miRNA) sequencing showed that gb-miR160 negatively regulates the biosynthesis of TTLs. Transgenic experiments showed that overexpression of gb-miR160 could significantly inhibit the accumulation of terpenoids in tobacco. Targeted inhibition and dual-luciferase reporter assays confirmed that gb-miR160 targets and negatively regulates GbERF4. Transient overexpression of GbERF4 increased TTL content in G. biloba, and further transcriptome analysis revealed that DXS, HMGS, CYPs, and transcription factor genes were upregulated. In addition, yeast 1-hybrid and dual-luciferase reporter assays showed that GbERF4 could bind to the promoters of the HMGS1, AACT1, DXS1, levopimaradiene synthase (LPS2), and GGPPS2 genes in the TTL biosynthesis pathway and activate their expression. In summary, this study investigated the molecular mechanism of the gb-miR160-GbERF4 regulatory module in regulating the biosynthesis of TTLs. It provides information for enriching the understanding of the regulatory network of TTL biosynthesis and offers important gene resources for the genetic improvement of G. biloba with high contents of TTLs.


Subject(s)
Gene Expression Regulation, Plant , Ginkgo biloba , Lactones , MicroRNAs , Nicotiana , Plant Proteins , Terpenes , MicroRNAs/genetics , MicroRNAs/metabolism , Terpenes/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Lactones/metabolism , Plants, Genetically Modified , Biosynthetic Pathways/genetics
8.
Tree Physiol ; 44(1)2024 02 06.
Article in English | MEDLINE | ID: mdl-37741055

ABSTRACT

Ginkgo biloba L., an ancient relict plant known as a 'living fossil', has a high medicinal and nutritional value in its kernels and leaves. Ginkgolides are unique diterpene lactone compounds in G. biloba, with favorable therapeutic effects on cardiovascular and cerebrovascular diseases. Thus, it is essential to study the biosynthesis and regulatory mechanism of ginkgolide, which will contribute to quality improvement and medication requirements. In this study, the regulatory roles of the JAZ gene family and GbCOI1/GbJAZs/GbMYC2 module in ginkgolide biosynthesis were explored based on genome and methyl jasmonate-induced transcriptome. Firstly, 18 JAZ proteins were identified from G. biloba, and the gene characteristics and expansion patterns along with evolutionary relationships of these GbJAZs were analyzed systematically. Expression patterns analysis indicated that most GbJAZs expressed highly in the fibrous root and were induced significantly by methyl jasmonate. Mechanistically, yeast two-hybrid assays suggested that GbJAZ3/11 interacted with both GbMYC2 and GbCOI1, and several GbJAZ proteins could form homodimers or heterodimers between the GbJAZ family. Moreover, GbMYC2 is directly bound to the G-box element in the promoter of GbLPS, to regulate the biosynthesis of ginkgolide. Collectively, these results systematically characterized the JAZ gene family in G. biloba and demonstrated that the GbCOI1/GbJAZs/GbMYC2 module could regulate ginkgolides biosynthesis, which provides a novel insight for studying the mechanism of JA regulating ginkgolide biosynthesis.


Subject(s)
Acetates , Ginkgo biloba , Ginkgolides , Oxylipins , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Ginkgolides/metabolism , Plant Extracts/pharmacology , Cyclopentanes/pharmacology , Cyclopentanes/metabolism
9.
Int J Mol Sci ; 24(23)2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38069325

ABSTRACT

As a medicinal tree species, ginkgo (Ginkgo biloba L.) and terpene trilactones (TTLs) extracted from its leaves are the main pharmacologic activity constituents and important economic indicators of its value. The accumulation of TTLs is known to be affected by environmental stress, while the regulatory mechanism of environmental response mediated by microRNAs (miRNAs) at the post-transcriptional levels remains unclear. Here, we focused on grafted ginkgo grown in northwestern, southwestern, and eastern-central China and integrally analyzed RNA-seq and small RNA-seq high-throughput sequencing data as well as metabolomics data from leaf samples of ginkgo clones grown in natural environments. The content of bilobalide was highest among detected TTLs, and there was more than a twofold variation in the accumulation of bilobalide between growth conditions. Meanwhile, transcriptome analysis found significant differences in the expression of 19 TTL-related genes among ginkgo leaves from different environments. Small RNA sequencing and analysis showed that 62 of the 521 miRNAs identified were differentially expressed among different samples, especially the expression of miRN50, miR169h/i, and miR169e was susceptible to environmental changes. Further, we found that transcription factors (ERF, MYB, C3H, HD-ZIP, HSF, and NAC) and miRNAs (miR319e/f, miRN2, miRN54, miR157, miR185, and miRN188) could activate or inhibit the expression of TTL-related genes to participate in the regulation of terpene trilactones biosynthesis in ginkgo leaves by weighted gene co-regulatory network analysis. Our findings provide new insights into the understanding of the regulatory mechanism of TTL biosynthesis but also lay the foundation for ginkgo leaves' medicinal value improvement under global change.


Subject(s)
Bilobalides , MicroRNAs , MicroRNAs/genetics , Ginkgolides , Terpenes/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Extracts , Lactones/metabolism
10.
Plant Signal Behav ; 18(1): 2271807, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37903458

ABSTRACT

The PAL gene family plays an important role in plant growth, development, and response to abiotic stresses and has been identified in a variety of plants. However, a systematic characterization is still lacking in Ginkgo biloba. Using a bioinformatics approach, 11 GbPAL members of the PAL gene family identified in ginkgo were identified in this study. The protein structure and physicochemical properties indicated that the GbPAL genes were highly similar. Based on their exon-intron structures, they can be classified into three groups. A total of 62 cis-elements for hormone, light, and abiotic stress responses were identified in the promoters of GbPAL genes, indicating that PAL is a multifunctional gene family. GbPAL genes were specifically expressed in different tissues and ploidy of ginkgo. These results provide a theoretical basis for further studies on the functional expression of the GbPAL genes.


Subject(s)
Ginkgo biloba , Phenylalanine Ammonia-Lyase , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Phenylalanine Ammonia-Lyase/genetics , Phenylalanine Ammonia-Lyase/metabolism , Promoter Regions, Genetic/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Profiling
11.
J Plant Physiol ; 287: 154054, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37487356

ABSTRACT

Ginkgo biloba is the oldest relict plant on Earth and an economic plant resource derived from China. Flavonoids extracted from G. biloba are beneficial to the prevention and treatment of cardiovascular and cerebrovascular diseases. Basic leucine zipper (bZIP) transcription factors (TFs) have been recognized to play important roles in plant secondary metabolism. In this study, GbbZIP08 was isolated and characterized. It encodes a protein containing 154 amino acids, which belongs to hypocotyl 5 in group H of the bZIP family. Tobacco transient expression assay indicated that GbbZIP08 was localized in the plant nucleus. GbbZIP08 overexpression showed that the contents of total flavonoids, kaempferol, and anthocyanin in transgenic tobacco were significantly higher than those in the wild type. Transcriptome sequencing analysis revealed significant upregulation of structural genes in the flavonoid biosynthesis pathway. In addition, phytohormone signal transduction pathways, such as the abscisic acid, salicylic acid, auxin, and jasmonic acid pathways, were enriched with a large number of differentially expressed genes. TFs such as MYB, AP2, WRKY, NAC, bZIP, and bHLH, were also differentially expressed. The above results indicated that GbbZIP08 overexpression promoted flavonoid accumulation and increased the transcription levels of flavonoid-synthesis-related genes in plants.


Subject(s)
Ginkgo biloba , Transcription Factors , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Transcription Factors/metabolism , Gene Expression Regulation, Plant , Flavonoids/metabolism , Anthocyanins/metabolism , Plant Proteins/metabolism
12.
J Agric Food Chem ; 71(27): 10326-10337, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37288757

ABSTRACT

Food-derived α-glucosidase inhibitory peptides have gained significant interest in treating type 2 diabetes mellitus (T2DM) owing to their favorable safety profiles. Molecular docking combined with molecular dynamics simulation was performed to screen α-glucosidase inhibitory peptides from Ginkgo biloba seed cake (GBSC), and two novel peptides (Met-Pro-Gly-Pro-Pro (MPGPP) and Phe-Ala-Pro-Ser-Trp (FAPSW)) were acquired. The results of molecular docking and molecular dynamics simulation suggested that FAPSW and MPGPP could generate stable complexes with 3wy1, and the electrostatic and van der Waals forces played contributory roles in FAPSW and MPGPP binding to 3wy1. The α-glucosidase inhibition assay corroborated that FAPSW and MPGPP had good α-glucosidase inhibition capacity, with IC50 values of 445.34 ± 49.48 and 1025.68 ± 140.78 µM, respectively. In vitro simulated digestion results demonstrated that FAPSW and MPGPP strongly resisted digestion. These findings lay a theoretical foundation for FAPSW and MPGPP in treating T2DM.


Subject(s)
Diabetes Mellitus, Type 2 , Glycoside Hydrolase Inhibitors , Humans , Molecular Docking Simulation , Glycoside Hydrolase Inhibitors/chemistry , alpha-Glucosidases/chemistry , Ginkgo biloba/metabolism , Molecular Dynamics Simulation , Diabetes Mellitus, Type 2/drug therapy , Peptides/chemistry , Seeds/metabolism , Kinetics
13.
J Trace Elem Med Biol ; 79: 127216, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37224746

ABSTRACT

BACKGROUND: Apoptotic and oxido-inflammatory pathways have been found to be up-regulated in lead acetate poisoning which has been associated to endothelial and testicular dysfunctions. It is yet uncertain, nevertheless, if treatment with Ginkgo biloba supplements (GBS), a flavonoid-rich natural product can lessen the adverse effects of lead on endothelial and testicular functions. This study investigated the impact of Ginkgo biloba supplementation on lead-induced endothelial and testicular dysfunctions. METHODS: The animals were treated with GBS (50 mg/kg and 100 mg/kg orally) for 14 days following oral exposure to lead acetate (25 mg/kg) for 14 days. After euthanasia, blood samples, epididymal sperm, testes, and aorta were collected. The quantities of the hormones (testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH), as well as the anti-apoptotic, oxidative, nitrergic, inflammatory markers, were then determined using immunohistochemistry, ELISA, and conventional biochemical methods. RESULTS: GBS reduced lead-induced oxidative stress by increasing the levels of the antioxidant enzymes catalase (CAT), glutathione (GSH), and superoxide dismutase (SOD), while lowering malondialdehyde (MDA) in endothelium and testicular cells. Normal testicular weight was restored by GBS which also decreased endothelial endothelin-I and increased nitrite levels. TNF-α and IL-6 were decreased while Bcl-2 protein expression was enhanced. Lead-induced alterations in reproductive hormones (FSH, LH, and testosterone) were also restored to normal. CONCLUSION: According to our result, using Ginkgo biloba supplement prevented lead from causing endothelial and testicular dysfunction by raising pituitary-testicular hormone levels, boosting Bcl-2 protein expression and lowering oxidative and inflammatory stress in the endothelium and testes.


Subject(s)
Testicular Hormones , Testis , Rats , Animals , Male , Rats, Wistar , Ginkgo biloba/metabolism , Down-Regulation , Up-Regulation , Testicular Hormones/metabolism , Testicular Hormones/pharmacology , Lead/metabolism , Antioxidants/metabolism , Testosterone , Oxidative Stress , Follicle Stimulating Hormone/metabolism , Follicle Stimulating Hormone/pharmacology , Glutathione/metabolism , Dietary Supplements , Seeds/metabolism
14.
J Alzheimers Dis ; 93(2): 705-726, 2023.
Article in English | MEDLINE | ID: mdl-37066913

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is the most common type of neurodegenerative dementia affecting people in their later years of life. The AD prevalence rate has significantly increased due to a lack of early detection technology and low therapeutic efficacy. Despite recent scientific advances, some aspects of AD pathological targets still require special attention. Certain traditionally consumed phytocompounds have been used for thousands of years to treat such pathologies. The standard extract of Gingko biloba (EGB761) is a combination of 13 macro phyto-compounds and various other micro phytocompounds that have shown greater therapeutic potential against the pathology of AD. OBJECTIVE: Strong physiological evidence of cognitive health preservation has been observed in elderly people who keep an active lifestyle. According to some theories, consuming certain medicinal extracts helps build cognitive reserve. We outline the research employing EGB761 as a dual target for AD. METHODS: This study investigates various inhibitory targets against AD using computational approaches such as molecular docking, network pharmacology, ADMET (full form), and bioactivity prediction of the selected compounds. RESULTS: After interaction studies were done for all the phytoconstituents of EGB761, it was concluded that all four of the phytocompounds (kaempferol, isorhamnetin, quercetin, and ginkgotoxin) showed the maximum inhibitory activity against acetylcholinesterase (AChE) and GSK3ß. CONCLUSION: The highly active phytocompounds of EGB761, especially quercetin, kaempferol, and isorhamnetin, have better activity against AChE and GSK3ß than its reported synthetic drug, according to molecular docking and network pharmacology research. These compounds may act on multiple targets in the protein network of AD. The AChE theory was primarily responsible for EGB761's therapeutic efficacy in treating AD.


Subject(s)
Alzheimer Disease , Ginkgo biloba , Humans , Aged , Ginkgo biloba/metabolism , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Molecular Docking Simulation , Glycogen Synthase Kinase 3 beta , Kaempferols/pharmacology , Kaempferols/therapeutic use , Quercetin/therapeutic use , Acetylcholinesterase/metabolism , Network Pharmacology , Plant Extracts/pharmacology , Plant Extracts/therapeutic use
15.
Int J Mol Sci ; 24(6)2023 Mar 21.
Article in English | MEDLINE | ID: mdl-36982974

ABSTRACT

Expansins are pH-dependent enzymatic proteins that irreversibly and continuously facilitate cell-wall loosening and extension. The identification and comprehensive analysis of Ginkgo biloba expansins (GbEXPs) are still lacking. Here, we identified and investigated 46 GbEXPs in Ginkgo biloba. All GbEXPs were grouped into four subgroups based on phylogeny. GbEXPA31 was cloned and subjected to a subcellular localization assay to verify our identification. The conserved motifs, gene organization, cis-elements, and Gene Ontology (GO) annotation were predicted to better understand the functional characteristics of GbEXPs. The collinearity test indicated segmental duplication dominated the expansion of the GbEXPA subgroup, and seven paralogous pairs underwent strong positive selection during expansion. A majority of GbEXPAs were mainly expressed in developing Ginkgo kernels or fruits in transcriptome and real-time quantitative PCR (qRT-PCR). Furthermore, GbEXLA4, GbEXLA5, GbEXPA5, GbEXPA6, GbEXPA8, and GbEXPA24 were inhibited under the exposure of abiotic stresses (UV-B and drought) and plant hormones (ABA, SA, and BR). In general, this study expanded our understanding for expansins in Ginkgo tissues' growth and development and provided a new basis for studying GbEXPs in response to exogenous phytohormones.


Subject(s)
Gene Expression Profiling , Ginkgo biloba , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Genome, Plant , Hormones , Plant Growth Regulators/pharmacology , Phylogeny , Gene Expression Regulation, Plant
16.
Genes (Basel) ; 14(2)2023 01 28.
Article in English | MEDLINE | ID: mdl-36833270

ABSTRACT

WRKY transcription factors (TFs) are one of the largest families in plants which play essential roles in plant growth and stress response. Ginkgo biloba is a living fossil that has remained essentially unchanged for more than 200 million years, and now has become widespread worldwide due to the medicinal active ingredients in its leaves. Here, 37 WRKY genes were identified, which were distributed randomly in nine chromosomes of G. biloba. Results of the phylogenetic analysis indicated that the GbWRKY could be divided into three groups. Furthermore, the expression patterns of GbWRKY genes were analyzed. Gene expression profiling and qRT-PCR revealed that different members of GbWRKY have different spatiotemporal expression patterns in different abiotic stresses. Most of the GbWRKY genes can respond to UV-B radiation, drought, high temperature and salt treatment. Meanwhile, all GbWRKY members performed phylogenetic tree analyses with the WRKY proteins of other species which were known to be associated with abiotic stress. The result suggested that GbWRKY may play a crucial role in regulating multiple stress tolerances. Additionally, GbWRKY13 and GbWRKY37 were all located in the nucleus, while GbWRKY15 was located in the nucleus and cytomembrane.


Subject(s)
Genome, Plant , Ginkgo biloba , Humans , Phylogeny , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Plant Proteins/genetics , Transcription Factors/genetics
17.
Food Chem Toxicol ; 172: 113587, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36596446

ABSTRACT

The aim of this study was to investigate the antiglycation activity and mechanism of two identified peptides, Valine-Valine-Phenylalanine-Proline-Glycine-Cysteine-Proline-Glutamic acid (VVFPGCPE) and Serine-Valine-Aspartic acid-Aspartic acid-Proline-Arginine-Threonine-Lysine (SVDDPRTL), from Ginkgo biloba seeds protein hydrolysates. Both VVFPGCPE and SVDDPRTL were efficient in bovine serum albumin (BSA)-methylglyoxal (MGO) model to inhibit BSA glycation, while VVFPGCPE showed higher antiglycation activity than SVDDPRTL. In antioxidant assays, VVFPGCPE scavenged more hydroxyl and super anion radicals, and chelated more Fe2+. Moreover, VVFPGCPE was more efficient in alleviating glycoxidation since it retained higher content of tryptophan and reduced dityrosine and kynurenine generation. Compared with SVDDPRTL, VVFPGCPE showed better performance in inhibiting protein aggregation and amyloid-like fibrillation formation. Therefore, VVFPGCPE was selected for further mechanism study. The circular dichroism analysis suggested VVFPGCPE could preserve α-helix structure and stabilize protein structure. The MGO trapping assay indicated VVFPGCPE (5 mg/mL) could capture 66.25% MGO within 24 h, and the mass spectrometry revealed VVFPGCPE could trap MGO by forming VVFPGCPE-mono-MGO adducts. Besides, molecular simulations suggested VVFPGCPE could interact with key glycation residues, arginine and lysine residues, of BSA mainly through van der Waals and hydrogen bonds. This study might supply a theoretical basis for the development of VVFPGCPE as an effective antiglycation agent.


Subject(s)
Ginkgo biloba , Maillard Reaction , Peptides , Arginine , Aspartic Acid , Ginkgo biloba/chemistry , Ginkgo biloba/metabolism , Glycation End Products, Advanced/metabolism , Lysine/pharmacology , Lysine/chemistry , Maillard Reaction/drug effects , Peptides/pharmacology , Proline , Pyruvaldehyde/chemistry , Serum Albumin, Bovine/metabolism , Valine
18.
Fish Shellfish Immunol ; 132: 108500, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36572268

ABSTRACT

Ginkgo biloba leaf extract (GBE) has been extensively used in the treatment of diseases due to its anti-inflammatory, antioxidant, and immunomodulatory effects. In aquaculture, GBE is widely used as a feed additive, which is important to enhance the immunity of aquatic animals. The current study evaluated the effects of adding GBE to the diet of Penaeus vannamei (P. vannamei) under intensive aquaculture. The GBE0 (control group), GBE1, GBE2, and GBE4 groups were fed a commercial feed supplemented with 0.0, 1.0, 2.0, and 4.0 g/kg GBE for 21 days, respectively. The results showed that dietary GBE could alleviate hepatopancreas tissue damage and improve the survival rate of shrimp, and dietary 2 g/kg GBE could significantly increase the total hemocyte count (THC), the hemocyanin content, the antioxidant gene's expression, and the activity of their encoded enzymes in P. vannamei. Furthermore, transcriptome data revealed that immunity-related genes were upregulated in the GBE2 group compared with the GBE0 group after 21 days of culture. Drug metabolism-cytochrome P450, sphingolipid metabolism, linoleic acid metabolism, glycerolipid metabolism, fat digestion and protein digestion and absorption pathways were significantly enriched, according to KEGG results. Surprisingly, all of the above KEGG-enriched pathways were significantly upregulated. These findings demonstrated that supplementing P. vannamei with 2 g/kg GBE improved its environmental adaptability by improving immunity, lipid metabolism, and detoxification. In this study, a comprehensive evaluation of the effects of dietary GBE on the intensive aquaculture of P. vannamei was conducted to provide a reference for the healthy culture of P. vannamei.


Subject(s)
Ginkgo biloba , Penaeidae , Animals , Ginkgo biloba/metabolism , Antioxidants/metabolism , Plant Extracts , Diet/veterinary
19.
Plant Biol (Stuttg) ; 25(1): 107-118, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36377299

ABSTRACT

NAC (NAM, ATAF, CUC2) transcription factors constitute one of the largest families of plant-specific transcription factors with important roles in plant growth and development and in biotic and abiotic stresses. The physicochemical properties, gene structure, cis-acting elements and expression patterns of NAC transcription factors in Ginkgo biloba were analysed using bioinformatics, and expression of this gene family was analysed via quantitative reverse transcription PCR. The family of G. biloba NAC transcription factors had 50 members, distributed on 12 chromosomes and divided into 11 groups. Members in the same group share a similar gene structure and motif distribution. Transcriptome data analysis of G. biloba showed that 35 genes were expressed in eight tissues. Correlation analysis suggested that GbNAC007 and GNAC008 might be involved in flavonoid biosynthesis. Expression levels of 12 GbNACs under cold, het, and salt stresses were analysed. Results indicate that NAC transcription factors play an important role in response to abiotic stresses. This study provides a reference for the functional analysis of the G. biloba family of NAC transcription factors, as well as a resource for studies on the involvement of this family in responses to abiotic stresses and flavonoid biosynthesis.


Subject(s)
Gene Expression Regulation, Plant , Plant Proteins , Plant Proteins/metabolism , Ginkgo biloba/genetics , Ginkgo biloba/metabolism , Phylogeny , Transcription Factors/genetics , Transcription Factors/metabolism , Stress, Physiological/genetics , Flavonoids
20.
Protein J ; 42(1): 1-13, 2023 02.
Article in English | MEDLINE | ID: mdl-36527585

ABSTRACT

Ginkgo seed is an important Chinese medicine and food resource in China, but the toxicity of ginkgo acid in it limits its application. Previous studies have found that salicylic acid decarboxylase (Sdc) has a decarboxylation degradation effect on ginkgo acid. In order to improve the decarboxylation ability of Sdc to Ginkgo acid, 11 residues of the Sdc around the substrate (salicylic acid) were determined as mutation targets according to the analysis of crystal structure of Sdc (PDB ID:6JQX), from Trichosporon moniliiforme WU-0401, and a total of 30 single point mutant enzymes and one compound mutant enzyme were obtained. With Ginkgo acid C15:1 as the substrate, it was found from activity assay that Sdc-Y64T and Sdc-P191A had higher decarboxylation activity, which increased by 105.18% and 116.74% compared with that of wild type Sdc, respectively. The optimal pH for Sdc Y64T and Sdc-P191A to decarboxylate Ginkgo acid C15:1 was 5.5, which is the same as the wild type Sdc. The optimal temperature of Sdc-P191A was 50 °C, which was consistent with that of the wild type Sdc, but the optimal temperature of the mutant Sdc-Y64T was 40 °C, which was 10 °C lower than that of wild type Sdc.


Subject(s)
Carboxy-Lyases , Ginkgo biloba , Ginkgo biloba/metabolism , Decarboxylation , Salicylic Acid/metabolism , Carboxy-Lyases/chemistry , Carboxy-Lyases/genetics , Carboxy-Lyases/metabolism , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL