ABSTRACT
OBJECTIVE: Osteosarcoma is a primary malignancy originating from mesenchymal tissue characterized by rapid growth, early metastasis and poor prognosis. Ginsenoside Rg5 (G-Rg5) is a minor ginsenoside extracted from Panax ginseng C.A. Meyer which has been discovered to possess anti-tumor properties. The objective of current study was to explore the mechanism of G-Rg5 in the treatment of osteosarcoma by network pharmacology and molecular docking technology. METHODS: Pharmmapper, SwissTargetPrediction and similarity ensemble approach databases were used to obtain the pharmacological targets of G-Rg5. Related genes of osteosarcoma were searched for in the GeneCards, OMIM and DrugBank databases. The targets of G-Rg5 and the related genes of osteosarcoma were intersected to obtain the potential target genes of G-Rg5 in the treatment of osteosarccoma. The STRING database and Cytoscape 3.8.2 software were used to construct the protein-protein interaction (PPI) network, and the Database for Annotation, Visualization and Integrated Discovery (DAVID) platform was used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. AutoDock vina software was used to perform molecular docking between G-Rg5 and hub targets. The hub genes were imported into the Kaplan-Meier Plotter online database for survival analysis. RESULTS: A total of 61 overlapping targets were obtained. The related signaling pathways mainly included PI3K-Akt signaling pathway, Proteoglycans in cancer, Lipid and atherosclerosis and Kaposi sarcoma-associated herpesvirus infection. Six hub targets including PIK3CA, SRC, TP53, MAPK1, EGFR, and VEGFA were obtained through PPI network and targets-pathways network analyses. The results of molecular docking showed that the binding energies were all less than -7 kcal/mol. And the results of survival analysis showed TP53 and VEGFA affect the prognosis of sarcoma patients. CONCLUSION: This study explored the possible mechanism of G-Rg5 in the treatment of osteosarcoma using network pharmacology method, suggesting that G-Rg5 has the characteristics of multi-targets and multi-pathways in the treatment of osteosarcoma, which lays a foundation for the follow-up experimental and clinical researches on the therapeutic effects of G-Rg5 on osteosarcoma.
Subject(s)
Bone Neoplasms , Drugs, Chinese Herbal , Ginsenosides , Osteosarcoma , Humans , Molecular Docking Simulation , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Network Pharmacology , Phosphatidylinositol 3-Kinases , Osteosarcoma/drug therapy , Bone Neoplasms/drug therapyABSTRACT
Purpose: Myocardial ischemia/reperfusion injury (MIRI) leads to myocardial tissue necrosis, which will increase the size of myocardial infarction. The study examined the protective effect and mechanism of the Guanxin Danshen formula (GXDSF) on MIRI in rats. Methods: MIRI model was performed in rats; rat H9C2 cardiomyocytes were hypoxia-reoxygenated to establish a cell injury model. Results: The GXDSF significantly reduced myocardial ischemia area, reduced myocardial structural injury, decreased the levels of interleukin (IL-1ß, IL-6) in serum, decreased the activity of myocardial enzymes, increased the activity of superoxide dismutase (SOD), and reduced glutathione in rats with MIRI. The GXDSF can reduce the expression of nucleotide- binding oligomerization domain, leucine-rich repeat and pyrin domain containing nod-like receptor family protein 3 (NLRP3), IL-1ß, caspase-1, and gasdermin D (GSDMD) in myocardial tissue cells. Salvianolic acid B and notoginsenoside R1 protected H9C2 cardiomyocytes from hypoxia and reoxygenation injury and reduced the levels of tumor necrosis factor α (TNF-α) and IL-6 in the cell supernatant, decreasing the NLRP3, IL-18, IL-1ß, caspase-1, and GSDMD expression in H9C2 cardiomyocytes. GXDSF can reduce the myocardial infarction area and alleviate the damage to myocardial structure in rats with MIRI, which may be related to the regulation of the NLRP3. Conclusion: GXDSF reduces MIRI in rat myocardial infarction injury, improves structural damage in myocardial ischemia injury, and reduces myocardial tissue inflammation and oxidative stress by lowering inflammatory factors and controlling focal cell death signaling pathways.
Subject(s)
Animals , Rats , Myocardial Reperfusion , Reperfusion Injury , Ginsenosides/administration & dosage , NLR Family, Pyrin Domain-Containing 3 ProteinABSTRACT
OBJECTIVE: Tongue squamous cell carcinoma (TSCC) is an oral cancer, with high malignancy and frequent early migration and invasion. Only a few drugs can treat tongue cancer. Ginsenoside Rd is a ginseng extract with anti-cancer effects. Many noncoding RNAs are abnormally expressed in tongue cancer, thus influencing its occurrence and development. H19 and miR-675-5p can promote cancer cell growth. This study aimed to analyze the regulation effect of ginsenoside Rd on H19 and miR-675-5p in tongue cancer. METHODOLOGY: We used CCK8 and flow cytometry to study the growth and apoptosis. Transwell assay was used to assess invasion; wound-healing assay to assess migration; and colony formation assays to test the ability of cells to form colonies. H19, miR-675-5p, and CDH1 expressions were analyzed by qPCR. E-cadherin expression was detected using western blot. CRISPR/cas9 system was used for CDH1 knockout. RESULTS: Ginsenoside Rd inhibited the growth and increased the apoptosis of SCC9 cells. Ginsenoside Rd also inhibited the migration and invasion of SCC9 cells. H19 and miR-675-5p were highly expressed, while CDH1 and E-cadherin expressions were low. H19 and miR-675-5p promoted SCC9 metastasis. In contrast, CDH1 and E-cadherin inhibited the metastasis of SCC9 cells. Bioinformatics analysis showed that miR-675-5p was associated with CDH1. H19 and miR-675-5p expressions decreased after ginsenoside Rd treatment, while CDH1 and E-cadherin expressions increased. CONCLUSIONS: Ginsenoside Rd inhibits tongue cancer cell migration and invasion via the H19/miR-675-5p/CDH1 axis.
Subject(s)
Carcinoma, Squamous Cell , MicroRNAs , RNA, Long Noncoding , Tongue Neoplasms , Antigens, CD/pharmacology , Cadherins , Cell Line, Tumor , Cell Movement , Cell Proliferation , Ginsenosides , Histones/metabolism , Humans , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/pharmacology , Tongue/metabolism , Tongue Neoplasms/drug therapyABSTRACT
The aging process predisposes numerous homeostatic disorders, metabolic disorders, cardiovascular diseases, neurodegenerative diseases, and cancer. Changes in diet and lifestyle and therapeutic adjuvants are essential to minimize the effects of comorbidities associated with aging. Natural products such as Panax ginseng have been used to treat and prevent diseases related to aging. This review aims to investigate the effects of Panax ginseng in various conditions associated with aging, such as inflammation, oxidative stress, mitochondrial dysfunction, apoptosis, neurodegenerative and metabolic disorders, cardiovascular diseases, and cancer. The ginsenosides, chemical constituents found in Panax ginseng, can inhibit the effects of inflammatory cytokines, inhibit signaling pathways that induce inflammation, and inhibit cells that participate in inflammatory processes. Besides, ginsenosides are involved in neuroprotective effects on the central nervous system due to anti-apoptotic, antioxidant, and anti-inflammatory effects. The use of ginseng extract showed actions on lipid homeostasis, positively regulating high-density lipoprotein, down-regulating low-density lipoprotein and triglyceride levels, and producing beneficial effects on vascular endothelial function. The use of this plant in cancer resulted in improved quality of life and mood. It decreased symptoms of fatigue, nausea, vomiting, and dyspnea, reducing anxiety. Panax ginseng has been shown to exert potent therapeutic benefits that can act as a complementary treatment in managing patients with chronic diseases related to aging.
Subject(s)
Ginsenosides , Panax , Aging , Ginsenosides/pharmacology , Ginsenosides/therapeutic use , Humans , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Quality of LifeABSTRACT
Abstract RGX-365 is the main fraction of black ginseng conmprising protopanaxatriol (PPT)-type rare ginsenosides (ginsenosides Rg4, Rg6, Rh4, Rh1, and Rg2). No studies on the antiseptic activity of RGX-365 have been reported. High mobility group box 1 (HMGB1) is recognized as a late mediator of sepsis, and the inhibition of HMGB1 release and recovery of vascular barrier integrity have emerged as attractive therapeutic strategies for the management of sepsis. In this study, we examined the effects of RGX-365 on HMGB1-mediated septic responses and survival rate in a mouse sepsis model. RGX-365 was administered to the mice after HMGB1 challenge. The antiseptic activity of RGX-365 was assessed based on the production of HMGB1, measurement of permeability, and septic mouse mortality using a cecal ligation and puncture (CLP)-induced sepsis mouse model and HMGB1-activated human umbilical vein endothelial cells (HUVECs). We found that RGX-365 significantly reduced HMGB1 release from LPS- activated HUVECs and CLP-induced release of HMGB1 in mice. RGX-365 also restored HMGB1-mediated vascular disruption and inhibited hyperpermeability in the mice. In addition, treatment with RGX-365 reduced sepsis-related mortality in vivo. Our results suggest that RGX- 365 reduces HMGB1 release and septic mortality in vivo, indicating that it is useful in the treatment of sepsis.
Subject(s)
HMGB1 Protein/analysis , Panax/adverse effects , Permeability , Sepsis/pathology , Ginsenosides , Human Umbilical Vein Endothelial Cells/classification , Anti-Infective Agents, Local/adverse effectsABSTRACT
Aim: With the increasing abuse of antibacterial drugs, multidrug-resistant bacteria have become a burden on human health and the healthcare system. To find alternative compounds effective against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA), novel derivatives of ocotillol were synthesized. Methods & Results: Ocotillol derivatives with polycyclic nitrogen-containing groups were synthesized and evaluated for in vitro antibacterial activity. Compounds 36-39 exhibited potent antibacterial activity against HA-MRSA, with MIC = 8-64 µg/ml. Additionally, a combination of compound 37 and the commercially available antibiotic kanamycin showed synergistic inhibitory effects, with a fractional inhibitory concentration index of ≤0.375. Conclusion: Compound 37 has a strong inhibitory effect, and this derivative has potential for use as a pharmacological tool to explore antibacterial mechanisms.
Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Design , Ginsenosides/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Nitrogen Compounds/pharmacology , Polycyclic Compounds/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Ginsenosides/chemical synthesis , Ginsenosides/chemistry , Microbial Sensitivity Tests , Molecular Structure , Nitrogen Compounds/chemistry , Polycyclic Compounds/chemistryABSTRACT
Atherosclerosis (AS) is a common vascular disease, which can cause apoptosis of vascular endothelial cells. Notoginsenoside R1 (NGR1) is considered an anti-AS drug. MicroRNAs (miRNAs) are believed to play a vital role in cell apoptosis and angiogenesis. This study aimed to explore the mechanism of NGR1 for treating AS through miRNAs. Flow cytometry was used to detect the apoptosis rate. The levels of inflammatory cytokines interleukin (IL)-6 and IL-1ß were detected using ELISA. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were measured using corresponding assay kits. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect miR-221-3p expression. Dual-luciferase reporter and RNA immunoprecipitation assays were carried out to examine the relationship between miR-221-3p and toll-like receptors 4 (TLR4). Also, western blot analysis was performed to determine the levels of TLR4 and nuclear factor kappa B (NF-κB) signaling pathway-related proteins. Oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) apoptosis, inflammation, and oxidative stress. NGR1 alleviated the negative effect of ox-LDL through promoting the expression of miR-221-3p in HUVECs. TLR4 was a target of miR-221-3p, and its overexpression could reverse the inhibition effects of miR-221-3p on apoptosis, inflammation, and oxidative stress. NGR1 improved miR-221-3p expression to inhibit the activation of the TLR4/NF-κB pathway in ox-LDL-treated HUVECs. NGR1 decreased ox-LDL-induced HUVECs apoptosis, inflammation, and oxidative stress through increasing miR-221-3p expression, thereby inhibiting the activation of the TLR4/NF-κB pathway. This study of the mechanism of NGR1 provided a more theoretical basis for the treatment of AS.
Subject(s)
Apoptosis/drug effects , Ginsenosides/pharmacology , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/metabolism , Lipoproteins, LDL/metabolism , MicroRNAs/drug effects , Oxidative Stress/drug effects , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Immunoprecipitation , MicroRNAs/metabolism , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species , Real-Time Polymerase Chain Reaction , Signal Transduction , Toll-Like Receptor 4/antagonists & inhibitors , Transcriptional Activation , Up-RegulationABSTRACT
BACKGROUND: This work aimed to investigate the inhibitory effect of regorafenib in combination with ginsenoside on the growth of HepG2 liver cancer cells. METHODS: HepG2 liver cancer cells were divided into blank control group, regorafenib single-drug group, ginsenoside single-drug group, and regorafenib/ginsenoside combination group. Cells in the regorafenib single-drug group were treated with regorafenib at 0.25 mg/L, 0.5 mg/L, and 1 mg/L, respectively, while cells in the ginsenoside single-drug group were treated with ginsenoside at 5.0 mg/L, 10.0 mg/L, and 20.0 mg/L, respectively. HepG2 cell proliferation, expression of survivin mRNA, and the apoptotic effector caspase-3 in HepG2 liver cancer cells were assessed. RESULTS: An inhibitory effect on the growth of HepG2 liver cancer cells was observed for both the single-drug therapies and the combination therapy. The synergistic inhibitory effect presented by the combination therapy was dependent on the gradient concentration and treatment time. RT-qPCR results showed that both regorafenib and ginsenoside significantly reduced the expression of survivin mRNA in HepG2 liver cancer cells and the expression level of survivin mRNA in the regorafenib/ginsenoside combination group was much lower than those in the regorafenib single-drug group and ginsenoside single-drug group. The two drugs demonstrated synergistic inhibitory effect when used in combination. CONCLUSIONS: The findings in this study offered a theoretical insight into clinical use of regorafenib and ginsenoside for treatment of liver cancer.
Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Caspase 3/biosynthesis , Ginsenosides/pharmacology , Liver Neoplasms/drug therapy , Phenylurea Compounds/pharmacology , Pyridines/pharmacology , Survivin/biosynthesis , Apoptosis/drug effects , Caspase 3/genetics , Caspase 3/metabolism , Cell Proliferation/drug effects , Drug Synergism , Ginsenosides/administration & dosage , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Phenylurea Compounds/administration & dosage , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/pharmacology , Pyridines/administration & dosage , Survivin/genetics , Survivin/metabolismABSTRACT
Atherosclerosis (AS) is a common vascular disease, which can cause apoptosis of vascular endothelial cells. Notoginsenoside R1 (NGR1) is considered an anti-AS drug. MicroRNAs (miRNAs) are believed to play a vital role in cell apoptosis and angiogenesis. This study aimed to explore the mechanism of NGR1 for treating AS through miRNAs. Flow cytometry was used to detect the apoptosis rate. The levels of inflammatory cytokines interleukin (IL)-6 and IL-1β were detected using ELISA. Reactive oxygen species (ROS) and malondialdehyde (MDA) levels were measured using corresponding assay kits. Quantitative real-time polymerase chain reaction (qRT-PCR) assay was performed to detect miR-221-3p expression. Dual-luciferase reporter and RNA immunoprecipitation assays were carried out to examine the relationship between miR-221-3p and toll-like receptors 4 (TLR4). Also, western blot analysis was performed to determine the levels of TLR4 and nuclear factor kappa B (NF-κB) signaling pathway-related proteins. Oxidized low-density lipoprotein (ox-LDL) induced human umbilical vein endothelial cells (HUVECs) apoptosis, inflammation, and oxidative stress. NGR1 alleviated the negative effect of ox-LDL through promoting the expression of miR-221-3p in HUVECs. TLR4 was a target of miR-221-3p, and its overexpression could reverse the inhibition effects of miR-221-3p on apoptosis, inflammation, and oxidative stress. NGR1 improved miR-221-3p expression to inhibit the activation of the TLR4/NF-κB pathway in ox-LDL-treated HUVECs. NGR1 decreased ox-LDL-induced HUVECs apoptosis, inflammation, and oxidative stress through increasing miR-221-3p expression, thereby inhibiting the activation of the TLR4/NF-κB pathway. This study of the mechanism of NGR1 provided a more theoretical basis for the treatment of AS.
Subject(s)
Humans , Apoptosis/drug effects , Oxidative Stress/drug effects , Ginsenosides/pharmacology , MicroRNAs/adverse effects , Human Umbilical Vein Endothelial Cells/drug effects , Inflammation/metabolism , Lipoproteins, LDL/metabolism , Enzyme-Linked Immunosorbent Assay , Signal Transduction , Transcriptional Activation , Up-Regulation , Blotting, Western , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species , MicroRNAs/metabolism , Immunoprecipitation , Toll-Like Receptor 4/antagonists & inhibitors , Human Umbilical Vein Endothelial Cells/metabolism , Real-Time Polymerase Chain ReactionABSTRACT
Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1ß, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1ß by suppressing the increase in IL-1ß, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1ß-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1ß to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1ß-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.
Subject(s)
Chondrocytes/drug effects , Ginsenosides/pharmacology , Interleukin-1 Receptor Accessory Protein/metabolism , Interleukin-1beta/drug effects , Intervertebral Disc Degeneration/metabolism , Adult , Aged , Aggrecans/metabolism , Cell Survival/drug effects , Chondrocytes/cytology , Chondrocytes/metabolism , Cyclooxygenase 2/metabolism , Dinoprostone/metabolism , Female , Ginsenosides/metabolism , Humans , Inflammation/metabolism , Interleukin-1beta/metabolism , Low Back Pain/metabolism , Male , Middle Aged , Nitric Oxide Synthase/metabolism , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Tumor Necrosis Factor-alpha/metabolism , UbiquitinationABSTRACT
PURPOSE: To investigated the effects of ginsenoside Rb1 on diabetic retinopathy in streptozotocin-induced diabetic rats. METHODS: Diabetes was induced by a single intraperitoneal injection of streptozotocin (80 mg/kg) in male Wistar rats. Ginsenoside Rb1 (20, 40 mg/kg) was injected (i.p.) once a day for 4 weeks. Then, using fundus photography, the diameter and vascular permeability of retinal vessels were investigated. Retinal histopathology was undertaken. Contents of malondialdehyde (MDA) and glutathione (GSH) in retinas were assayed. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione cysteine ligase catalytic subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM) were measured. RESULTS: Treatment with ginsenoside Rb1 attenuated the diabetes-induced increase in the diameter of retinal blood vessels. Ginsenoside Rb1 reduced extravasation of Evans Blue dye from retinal blood vessels. Ginsenoside Rb1 partially inhibited the increase in MDA content and decrease in GSH level in rat retinas. Nrf2 levels in the nuclei of retinal cells and expression of GCLC and GCLM were increased significantly in rats treated with ginsenoside Rb1. CONCLUSION: These findings suggest that ginsenoside Rb1 can attenuate diabetic retinopathy by regulating the antioxidative function in rat retinas.
Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Ginsenosides/therapeutic use , Animals , Male , Rats , Rats, Wistar , Retinal Vessels/drug effects , Retinal Vessels/pathology , StreptozocinABSTRACT
Purpose:To investigated the effects of ginsenoside Rb1 on diabetic retinopathy in streptozotocin-induced diabetic rats.Methods:Diabetes was induced by a single intraperitoneal injection of streptozotocin (80 mg/kg) in male Wistar rats. Ginsenoside Rb1 (20, 40 mg/kg) was injected (i.p.) once a day for 4 weeks. Then, using fundus photography, the diameter and vascular permeability of retinal vessels were investigated. Retinal histopathology was undertaken. Contents of malondialdehyde (MDA) and glutathione (GSH) in retinas were assayed. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione cysteine ligase catalytic subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM) were measured.Results:Treatment with ginsenoside Rb1 attenuated the diabetes-induced increase in the diameter of retinal blood vessels. Ginsenoside Rb1 reduced extravasation of Evans Blue dye from retinal blood vessels. Ginsenoside Rb1 partially inhibited the increase in MDA content and decrease in GSH level in rat retinas. Nrf2 levels in the nuclei of retinal cells and expression of GCLC and GCLM were increased significantly in rats treated with ginsenoside Rb1.Conclusion:These findings suggest that ginsenoside Rb1 can attenuate diabetic retinopathy by regulating the antioxidative function in rat retinas.(AU)
Subject(s)
Animals , Rats , Ginsenosides/therapeutic use , Diabetic Retinopathy/therapy , Diabetic Retinopathy/veterinary , Diabetes Mellitus, Experimental , GlutathioneABSTRACT
Abstract Purpose: To investigated the effects of ginsenoside Rb1 on diabetic retinopathy in streptozotocin-induced diabetic rats. Methods: Diabetes was induced by a single intraperitoneal injection of streptozotocin (80 mg/kg) in male Wistar rats. Ginsenoside Rb1 (20, 40 mg/kg) was injected (i.p.) once a day for 4 weeks. Then, using fundus photography, the diameter and vascular permeability of retinal vessels were investigated. Retinal histopathology was undertaken. Contents of malondialdehyde (MDA) and glutathione (GSH) in retinas were assayed. Levels of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione cysteine ligase catalytic subunit (GCLC), and glutathione cysteine ligase modulatory subunit (GCLM) were measured. Results: Treatment with ginsenoside Rb1 attenuated the diabetes-induced increase in the diameter of retinal blood vessels. Ginsenoside Rb1 reduced extravasation of Evans Blue dye from retinal blood vessels. Ginsenoside Rb1 partially inhibited the increase in MDA content and decrease in GSH level in rat retinas. Nrf2 levels in the nuclei of retinal cells and expression of GCLC and GCLM were increased significantly in rats treated with ginsenoside Rb1. Conclusion: These findings suggest that ginsenoside Rb1 can attenuate diabetic retinopathy by regulating the antioxidative function in rat retinas.
Subject(s)
Animals , Male , Rats , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/drug therapy , Retinal Vessels/drug effects , Retinal Vessels/pathology , Rats, Wistar , Streptozocin , Ginsenosides/therapeutic useABSTRACT
Many compounds of ginsenosides show anti-inflammatory properties. However, their anti-inflammatory effects in intervertebral chondrocytes in the presence of inflammatory factors have never been shown. Increased levels of pro-inflammatory cytokines are generally associated with the degradation and death of chondrocytes; therefore, finding an effective and nontoxic substance that attenuates the inflammation is worthwhile. In this study, chondrocytes were isolated from the nucleus pulposus tissues, and the cells were treated with ginsenoside compounds and IL-1β, alone and in combination. Cell viability and death rate were assessed by CCK-8 and flow cytometry methods, respectively. PCR, western blot, and immunoprecipitation assays were performed to determine the mRNA and protein expression, and the interactions between proteins, respectively. Monomeric component of ginsenoside Rd had no toxicity at the tested range of concentrations. Furthermore, Rd suppressed the inflammatory response of chondrocytes to interleukin (IL)-1β by suppressing the increase in IL-1β, tumor necrosis factor (TNF)-α, IL-6, COX-2, and inducible nitric oxide synthase (iNOS) expression, and retarding IL-1β-induced degradation of chondrocytes by improving cell proliferation characteristics and expression of aggrecan and COL2A1. These protective effects of Rd were associated with ubiquitination of IL-1 receptor accessory protein (IL1RAP), blocking the stimulation of IL-1β to NF-κB. Bioinformatics analysis showed that NEDD4, CBL, CBLB, CBLC, and ITCH most likely target IL1RAP. Rd increased intracellular ITCH level and the amount of ITCH attaching to IL1RAP. Thus, IL1RAP ubiquitination promoted by Rd is likely to occur by up-regulation of ITCH. In summary, Rd inhibited IL-1β-induced inflammation and degradation of intervertebral disc chondrocytes by increasing IL1RAP ubiquitination.
Subject(s)
Humans , Male , Female , Adult , Middle Aged , Aged , Chondrocytes/drug effects , Ginsenosides/pharmacology , Interleukin-1beta/drug effects , Interleukin-1 Receptor Accessory Protein/metabolism , Intervertebral Disc Degeneration/metabolism , Dinoprostone/metabolism , Cell Survival/drug effects , Tumor Necrosis Factor-alpha/metabolism , Low Back Pain/metabolism , Nitric Oxide Synthase/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Ginsenosides/metabolism , Cyclooxygenase 2/metabolism , Aggrecans/metabolism , Interleukin-1beta/metabolism , Ubiquitination , Nucleus Pulposus/cytology , Nucleus Pulposus/drug effects , Nucleus Pulposus/metabolism , Inflammation/metabolismABSTRACT
Obesity and its consequent type 2 diabetes are significant threats to global health. Emerging evidence indicates that ginsenosides from ginseng (Panax ginseng) have anti-diabetic activity. We hypothesized that ginsenosides Rg1 could suppress dietary-induced obesity and improve obesity-related glucose metabolic disorders. Our results showed that ginsenoside Rg1 attenuated dietary-induced body weight gain and fat accumulation in white adipocyte tissue of mice fed a high-fat diet. Furthermore, we found that ginsenosides Rg1 not only decreased fasting glucose concentration and the 2-h postprandial glucose concentration, but also improved insulin resistance and glucose intolerance in those mice. Ginsenoside Rg1 also activated the AMPK pathway in vitro and in vivo and increased plasma membrane translocation of GLUT4 in C2C12 skeletal muscle cells. In conclusion, our observations suggested that ginsenoside Rg1 inhibited dietary-induced obesity and improved obesity-related insulin resistance and glucose intolerance by activation of the AMPK pathway.
Subject(s)
Diet, High-Fat , Ginsenosides/pharmacology , Glucose Metabolism Disorders/prevention & control , Obesity/complications , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Animals , Glucose Metabolism Disorders/etiology , Glucose Metabolism Disorders/metabolism , Insulin Resistance , Male , Mice , Obesity/metabolism , Signal Transduction , Time FactorsABSTRACT
Obesity and its consequent type 2 diabetes are significant threats to global health. Emerging evidence indicates that ginsenosides from ginseng (Panax ginseng) have anti-diabetic activity. We hypothesized that ginsenosides Rg1 could suppress dietary-induced obesity and improve obesity-related glucose metabolic disorders. Our results showed that ginsenoside Rg1 attenuated dietary-induced body weight gain and fat accumulation in white adipocyte tissue of mice fed a high-fat diet. Furthermore, we found that ginsenosides Rg1 not only decreased fasting glucose concentration and the 2-h postprandial glucose concentration, but also improved insulin resistance and glucose intolerance in those mice. Ginsenoside Rg1 also activated the AMPK pathway in vitro and in vivo and increased plasma membrane translocation of GLUT4 in C2C12 skeletal muscle cells. In conclusion, our observations suggested that ginsenoside Rg1 inhibited dietary-induced obesity and improved obesity-related insulin resistance and glucose intolerance by activation of the AMPK pathway.
Subject(s)
Animals , Male , Mice , Diet, High-Fat , Ginsenosides/pharmacology , Glucose Metabolism Disorders/prevention & control , Obesity/complications , AMP-Activated Protein Kinases/drug effects , AMP-Activated Protein Kinases/metabolism , Glucose Metabolism Disorders/etiology , Glucose Metabolism Disorders/metabolism , Insulin Resistance , Obesity/metabolism , Signal Transduction , Time FactorsABSTRACT
Ginsenoside Rg1, one of the most notable active components of Panax ginseng, has been widely reported to exert anti-inflammatory actions. This study aimed to reveal whether ginsenoside Rg1 also exhibits beneficial roles against lipopolysaccharide (LPS)-induced apoptosis and inflammation in human renal tubular epithelial cells, and to evaluate the potential role of the component on tubulointerstitial nephritis treatment. HK-2 cells were treated with various doses of ginsenoside Rg1 (0, 50, 100, 150, and 200 μM) in the absence or presence of 5 μg/mL LPS. Thereafter, CCK-8 assay, flow cytometry, western blot, migration assay, reactive oxygen species (ROS) assay, and ELISA were carried out to respectively assess cell viability, apoptosis, migration, ROS activity, and the release of inflammatory cytokines. As a result, ginsenoside Rg1 protected HK-2 cells from LPS-induced injury, as cell viability was increased, cell apoptosis was decreased, and the release of MCP-1, IL-1β, IL-6, and TNF-α was reduced. Ginsenoside Rg1 functioned to HK-2 cells in a dose-dependent manner, and the 150 μM dose exhibited the most protective functions. Ginsenoside Rg1 had no significant impact on cell migration and ROS activity, while it alleviated LPS-induced ROS release and migration impairment. Furthermore, the down-regulations of p-PI3K, p-AKT, and up-regulations of PTEN, p-IκBα, p-p65, Bcl-3 induced by LPS were recovered to some extent after ginsenoside Rg1 treatment. In conclusion, ginsenoside Rg1 protects HK-2 cells against LPS-induced inflammation and apoptosis via activation of the PI3K/AKT pathway and suppression of NF-κB pathway.
Subject(s)
Humans , Lipopolysaccharides , Apoptosis/drug effects , Ginsenosides/pharmacology , Epithelial Cells/drug effects , Kidney Tubules/cytology , Anti-Inflammatory Agents/pharmacology , Enzyme-Linked Immunosorbent Assay , Cell Line , Cell Survival/drug effects , Blotting, Western , Reproducibility of Results , Analysis of Variance , Cytokines/analysis , Cytokines/drug effects , Cell Migration AssaysABSTRACT
Ginsenoside Rg1, one of the most notable active components of Panax ginseng, has been widely reported to exert anti-inflammatory actions. This study aimed to reveal whether ginsenoside Rg1 also exhibits beneficial roles against lipopolysaccharide (LPS)-induced apoptosis and inflammation in human renal tubular epithelial cells, and to evaluate the potential role of the component on tubulointerstitial nephritis treatment. HK-2 cells were treated with various doses of ginsenoside Rg1 (0, 50, 100, 150, and 200 µM) in the absence or presence of 5 µg/mL LPS. Thereafter, CCK-8 assay, flow cytometry, western blot, migration assay, reactive oxygen species (ROS) assay, and ELISA were carried out to respectively assess cell viability, apoptosis, migration, ROS activity, and the release of inflammatory cytokines. As a result, ginsenoside Rg1 protected HK-2 cells from LPS-induced injury, as cell viability was increased, cell apoptosis was decreased, and the release of MCP-1, IL-1ß, IL-6, and TNF-α was reduced. Ginsenoside Rg1 functioned to HK-2 cells in a dose-dependent manner, and the 150 µM dose exhibited the most protective functions. Ginsenoside Rg1 had no significant impact on cell migration and ROS activity, while it alleviated LPS-induced ROS release and migration impairment. Furthermore, the down-regulations of p-PI3K, p-AKT, and up-regulations of PTEN, p-IκBα, p-p65, Bcl-3 induced by LPS were recovered to some extent after ginsenoside Rg1 treatment. In conclusion, ginsenoside Rg1 protects HK-2 cells against LPS-induced inflammation and apoptosis via activation of the PI3K/AKT pathway and suppression of NF-κB pathway.
Subject(s)
Anti-Inflammatory Agents/pharmacology , Apoptosis/drug effects , Epithelial Cells/drug effects , Ginsenosides/pharmacology , Kidney Tubules/cytology , Lipopolysaccharides , Nephritis/prevention & control , Analysis of Variance , Blotting, Western , Cell Line , Cell Migration Assays , Cell Survival/drug effects , Cytokines/analysis , Cytokines/drug effects , Enzyme-Linked Immunosorbent Assay , Humans , Kidney Tubules/drug effects , Phosphatidylinositol 3-Kinases/analysis , Phosphatidylinositol 3-Kinases/drug effects , Protective Agents/pharmacology , Proto-Oncogene Proteins c-akt/analysis , Proto-Oncogene Proteins c-akt/drug effects , Reactive Oxygen Species/analysis , Reproducibility of ResultsABSTRACT
Type 2 diabetes mellitus (T2-DM) is a chronic metabolic disorder characterized by high blood glucose levels. T2-DM patients suffer from many complications, such as diabetic fatty liver and diabetic nephropathy. The liver, the pivotal organ involved in both glucose and lipid metabolism, is primarily damaged in T2-DM patients, especially in those with high levels of blood lipid. In this study, the hepatoprotective activity of ginsenoside Rg1 was investigated in a T2-DM rat model. The results revealed a potent hepatoprotective effect of ginsenoside Rg1. This effect was primarily mediated by the antiapoptotic effect, inhibition of JNK activity, and suppression of inflammation after ginsenoside Rg1 treatment. Ginsenoside Rg1 also lowered the blood glucose level and insulin resistance index in T2-DM rats. Moreover, the blood lipid profile (total cholesterol, triglycerides, and low-density lipoprotein cholesterol levels) and liver function (aspartate transaminase and alanine transaminase levels) improved after ginsenoside Rg1 treatment. The aforementioned hepatoprotective effects of ginsenoside Rg1 in the T2-DM rat model suggests its clinical potential as an adjuvant drug for T2-DM therapy, especially for T2-DM patients with fatty liver disease.
Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Ginsenosides/pharmacology , Liver Diseases/drug therapy , Liver Diseases/metabolism , Liver/drug effects , Animals , Apoptosis/drug effects , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin/blood , JNK Mitogen-Activated Protein Kinases/antagonists & inhibitors , JNK Mitogen-Activated Protein Kinases/metabolism , Lipids/blood , Liver/metabolism , Liver/pathology , Liver Diseases/blood , Liver Diseases/pathology , Male , Random Allocation , Rats , Rats, Sprague-DawleyABSTRACT
Background: Ginsenoside is the most important secondary metabolite in ginseng. Natural sources of wild ginseng have been overexploited. Although root culture can reduce the length of the growth cycle of ginseng, the number of species of ginsenosides is reduced and their contents are lower in the adventitious roots of ginseng than in the roots of ginseng cultivated in the field. Results: In this study, 147 strains of ß-glucosidase-producing microorganisms were isolated from soil. Of these, strain K35 showed excellent activity for converting major ginsenosides into rare ginsenosides, and a NCBI BLAST of its 16S rDNA gene sequence showed that it was most closely related to Penicillium sp. (HQ608083.1). Strain K35 was used to ferment the adventitious root extract, and the fermentation products were analyzed by high-performance liquid chromatography. The results showed that the content of the rare ginsenoside CK was 0.253 mg mL-1 under the optimal converting conditions of 9 d of fermentation at pH 7.0 in LL medium, which was significantly higher than that in the adventitious roots of ginseng. Conclusion: These findings may not only solve the problem of low productivity of metabolite in ginseng root culture but may also result in the development of a new valuable method of manufacturing ginsenoside CK.