Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.947
Filter
1.
NPJ Syst Biol Appl ; 10(1): 107, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39349490

ABSTRACT

Hepatic glucose metabolism serves dual purposes: maintaining glucose homeostasis and converting glucose into energy sources; however, the underlying mechanisms are unclear. We quantitatively measured liver metabolites, gene expression, and phosphorylated insulin signaling molecules in mice orally administered varying doses of glucose, and constructed a transomic network. Rapid phosphorylation of insulin signaling molecules in response to glucose intake was observed, in contrast to the more gradual changes in gene expression. Glycolytic and gluconeogenic metabolites and expression of genes involved in glucose metabolism including glucose-6-phosphate, G6pc, and Pck1, demonstrated high glucose dose sensitivity. Whereas, glucokinase expression and glycogen accumulation showed low glucose dose sensitivity. During the early phase after glucose intake, metabolic flux was geared towards glucose homeostasis regardless of the glucose dose but shifted towards energy conversion during the late phase at higher glucose doses. Our research provides a comprehensive view of time- and dose-dependent selective glucose metabolism.


Subject(s)
Energy Metabolism , Glucose , Homeostasis , Liver , Animals , Liver/metabolism , Glucose/metabolism , Homeostasis/physiology , Mice , Energy Metabolism/physiology , Male , Insulin/metabolism , Gluconeogenesis/physiology , Phosphorylation , Signal Transduction/physiology , Glycolysis/physiology , Glucokinase/metabolism , Glucokinase/genetics , Mice, Inbred C57BL , Glucose-6-Phosphate/metabolism
2.
J Diabetes Res ; 2024: 5497320, 2024.
Article in English | MEDLINE | ID: mdl-39329045

ABSTRACT

Diabetes mellitus is a metabolic disorder. Synthetic antidiabetics are the commonly used treatment options associated with complications. The objective of this study was to explore the antioxidative and antidiabetic potential of Euphorbia helioscopia whole plant ethanolic extract using in vitro and in vivo models. For that purpose, the antioxidative potential was explored by using 2,2-diphenyl-1-picrylhydrazyl analysis. In vitro antidiabetic potential of the extract was evaluated using amylase inhibitory analysis. In vivo antidiabetic activity of the extract was assessed in diabetic rats using streptozotocin/nicotinamide (60 mg/kg/120 mg/kg) as an inducing agent. Metformin was used as standard. The results indicated the presence of significant quantities of phenolic 82.18 ± 1.28 mgg-1 gallic acid equivalent (GAE) and flavonoid 66.55±1.22 mgg-1 quercetin equivalent (QE) contents in the extract. Quantitation of phytoconstituents exhibited the presence of sinapic acid, myricetin, and quercetin using HPLC analysis. The extract inhibited α-amylase by 84.71%, and an antiglycemic potential of 50.34% was assessed in the OGTT assay. Biochemical analysis demonstrated a reduction in urea, creatinine, cholesterol, low-density lipoprotein, and alkaline phosphatase (p < 0.001) as compared to diabetic control rats at the dose of 500 mg/kg. An upregulation in the expressions of glucokinase, glucose transporter 4, peroxisome proliferator-activated receptor γ, and insulin-like growth factor was observed in treated rats in contrast to G6P expression, which was downregulated upon treatment. In conclusion, this study provided evidence of the antioxidative and antidiabetic potential of E. helioscopia whole plant ethanolic extract through in vitro and in vivo analysis and emphasized its promising role as a natural alternative.


Subject(s)
Antioxidants , Blood Glucose , Diabetes Mellitus, Experimental , Euphorbia , Glucokinase , Glucose Transporter Type 4 , Hypoglycemic Agents , Plant Extracts , Animals , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Plant Extracts/pharmacology , Euphorbia/chemistry , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/isolation & purification , Male , Rats , Glucokinase/metabolism , Glucose Transporter Type 4/metabolism , Antioxidants/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Glucose-6-Phosphatase/metabolism , Rats, Wistar , Plant Leaves/chemistry , Streptozocin , Ethanol/chemistry , Flavonoids/pharmacology , Flavonoids/isolation & purification
3.
Pharm Pat Anal ; 13(1-3): 53-71, 2024.
Article in English | MEDLINE | ID: mdl-39316577

ABSTRACT

The glucokinase enzyme (belongs to the hexokinase family) is present in liver cells and ß-cells of the pancreas. Glucokinase acts as a catalyst in the conversion of glucose-6-phosphate from glucose which is rate-limiting step in glucose metabolism. Glucokinase becomes malfunctional or remains inactivated in diabetes. Glucokinase activators are compounds that bind at the allosteric site of the glucokinase enzyme and activate it. This article highlights the patent and recent research papers history with possible SAR from year 2014-2023. The data comprises the discussion of novel chemotypes (GKAs) that are being targeted for drug development and entered into clinical trials. GK activators have attracted massive interest since successful results have been reported from clinical trials data.


[Box: see text].


Subject(s)
Glucokinase , Hypoglycemic Agents , Patents as Topic , Glucokinase/metabolism , Humans , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/therapeutic use , Animals , Enzyme Activators/pharmacology , Enzyme Activators/therapeutic use , Enzyme Activators/chemistry , Diabetes Mellitus/drug therapy , Diabetes Mellitus/metabolism , Structure-Activity Relationship
4.
Cell Mol Biol Lett ; 29(1): 120, 2024 Sep 08.
Article in English | MEDLINE | ID: mdl-39245718

ABSTRACT

Glucokinase (GCK), a key enzyme in glucose metabolism, plays a central role in glucose sensing and insulin secretion in pancreatic ß-cells, as well as glycogen synthesis in the liver. Mutations in the GCK gene have been associated with various monogenic diabetes (MD) disorders, including permanent neonatal diabetes mellitus (PNDM) and maturity-onset diabetes of the young (MODY), highlighting its importance in maintaining glucose homeostasis. Additionally, GCK gain-of-function mutations lead to a rare congenital form of hyperinsulinism known as hyperinsulinemic hypoglycemia (HH), characterized by increased enzymatic activity and increased glucose sensitivity in pancreatic ß-cells. This review offers a comprehensive exploration of the critical role played by the GCK gene in diabetes development, shedding light on its expression patterns, regulatory mechanisms, and diverse forms of associated monogenic disorders. Structural and mechanistic insights into GCK's involvement in glucose metabolism are discussed, emphasizing its significance in insulin secretion and glycogen synthesis. Animal models have provided valuable insights into the physiological consequences of GCK mutations, although challenges remain in accurately recapitulating human disease phenotypes. In addition, the potential of human pluripotent stem cell (hPSC) technology in overcoming current model limitations is discussed, offering a promising avenue for studying GCK-related diseases at the molecular level. Ultimately, a deeper understanding of GCK's multifaceted role in glucose metabolism and its dysregulation in disease states holds implications for developing targeted therapeutic interventions for diabetes and related disorders.


Subject(s)
Glucokinase , Humans , Glucokinase/metabolism , Glucokinase/genetics , Animals , Mutation/genetics , Diabetes Mellitus/genetics , Diabetes Mellitus/metabolism , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Glucose/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology
5.
Microb Pathog ; 195: 106851, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39197693

ABSTRACT

Mutations in glucokinase (GCK) can either enhance or inhibit insulin secretion, leading to different forms of diabetes, including gestational diabetes. While many glucokinase activators (GKAs) have been explored as treatments, their long-term effectiveness has often been unsatisfactory. However, recent interest has surged with the introduction of dorzagliatin and TTP399. This study investigates the efficacy of four previously studied compounds (Swertiamarin, Apigenin, Mangiferin, and Tatanan A) in activating GCK using computational methods. Initial molecular docking revealed binding affinities ranging from -6.7 to -8.6 kcal/mol. The compounds were then evaluated for drug-likeness and pharmacokinetic properties. Re-docking studies were performed for validation. Based on their favorable binding affinities and compliance with Lipinski's rule and ADMET criteria, three compounds (Swertiamarin, Apigenin, and Tatanan A) were selected for molecular dynamics (MD) simulations. MD simulations demonstrated that Swertiamarin showed excellent stability, as indicated by analyses of RMSD, RMSF, radius of gyration (Rg), hydrogen bonding, and principal component analysis (PCA). These results suggest that Swertiamarin holds promise for further investigation in in vivo and clinical settings to evaluate its potential in enhancing GCK activity and treating diabetes. This study assessed the potential of four compounds as GCK activators using molecular docking, pharmacokinetic profiling, and MD simulations. Swertiamarin, in particular, showed significant stability and adherence to drug-likeness criteria, making it a promising candidate for further research in combating diabetes.


Subject(s)
Glucokinase , Molecular Docking Simulation , Molecular Dynamics Simulation , Glucokinase/metabolism , Glucokinase/chemistry , Glucokinase/genetics , Humans , Medicine, Chinese Traditional , Diabetes Mellitus/drug therapy , Hypoglycemic Agents/pharmacology , Hypoglycemic Agents/chemistry , Hydrogen Bonding , Enzyme Activators/pharmacology , Enzyme Activators/chemistry , Computer Simulation , Apigenin/pharmacology , Apigenin/chemistry
6.
BMJ Open Diabetes Res Care ; 12(4)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39214626

ABSTRACT

The prevalence of type 2 diabetes (T2D) is increasing relentlessly all over the world, in parallel with a similar increase in obesity, and is striking ever younger patients. Only a minority of patients with T2D attain glycemic targets, indicating a clear need for novel antidiabetic drugs that not only control glycemia but also halt or slow the progressive loss of ß-cells. Two entirely novel classes of antidiabetic agents-glucokinase activators and imeglimin-have recently been approved and will be the subject of this review.Allosteric activators of glucokinase, an enzyme stimulating insulin secretion in ß-cells and suppressing hepatic glucose production, are oral low-molecular-weight drugs. One of these, dorzagliatin, is approved in China for use in adult patients with T2D, either as monotherapy or as an add-on to metformin. It remains to be seen whether the drug will produce sustained antidiabetic effects over many years and whether the side effects that led to the discontinuation of early drug candidates will limit the usefulness of dorzagliatin.Imeglimin-which shares structural similarities with metformin-targets mitochondrial dysfunction and was approved in Japan against T2D. In preclinical studies, the drug has also shown promising ß-cell protective and preservative effects that may translate into disease-modifying effects.Hopefully, these two newcomers will contribute to filling the great medical need for new treatment modalities, preferably with disease-modifying potential. It remains to be seen where they will fit in contemporary treatment algorithms, which combinations of drugs are effective and which should be avoided. Time will tell to what extent these new antidiabetic agents will add value to the current treatment options against T2D in terms of sustained antidiabetic effect, acceptable safety, utility in combination therapy, and impact on hard end-points such as cardiovascular disease.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Glucokinase/metabolism , Enzyme Activators/therapeutic use , Insulin-Secreting Cells/drug effects , Animals , Triazines
7.
Sci Rep ; 14(1): 20215, 2024 08 30.
Article in English | MEDLINE | ID: mdl-39215018

ABSTRACT

The alarming increase in global rates of metabolic diseases (MetDs) and their association with cancer risk renders them a considerable burden on our society. The interplay of environmental and genetic factors in causing MetDs may be reflected in DNA methylation patterns, particularly at non-canonical (non-B) DNA structures, such as G-quadruplexes (G4s) or R-loops. To gain insight into the mechanisms of MetD progression, we focused on DNA methylation and functional analyses on intragenic regions of two MetD risk genes, the glucokinase (GCK) exon 7 and the transmembrane 6 superfamily 2 (TM6SF2) intron 2-exon 3 boundary, which harbor non-B DNA motifs for G4s and R-loops.Pyrosequencing of 148 blood samples from a nested cohort study revealed significant differential methylation in GCK and TM6SF2 in MetD patients versus healthy controls. Furthermore, these regions harbor hypervariable and differentially methylated CpGs also in hepatocellular carcinoma versus normal tissue samples from The Cancer Genome Atlas (TCGA). Permanganate/S1 nuclease footprinting with direct adapter ligation (PDAL-Seq), native polyacrylamide DNA gel electrophoresis and circular dichroism (CD) spectroscopy revealed the formation of G4 structures in these regions and demonstrated that their topology and stability is affected by DNA methylation. Detailed analyses including histone marks, chromatin conformation capture data, and luciferase reporter assays, highlighted the cell-type specific regulatory function of the target regions. Based on our analyses, we hypothesize that changes in DNA methylation lead to topological changes, especially in GCK exon 7, and cause the activation of alternative regulatory elements or potentially play a role in alternative splicing.Our analyses provide a new view on the mechanisms underlying the progression of MetDs and their link to hepatocellular carcinomas, unveiling non-B DNA structures as important key players already in early disease stages.


Subject(s)
Carcinoma, Hepatocellular , DNA Methylation , G-Quadruplexes , Glucokinase , Liver Neoplasms , Membrane Proteins , Female , Humans , Male , Middle Aged , Carcinoma, Hepatocellular/genetics , CpG Islands/genetics , Glucokinase/genetics , Glucokinase/metabolism , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism
8.
Molecules ; 29(13)2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38998908

ABSTRACT

Cooperation between catabolism and anabolism is crucial for maintaining homeostasis in living cells. The most fundamental systems for catabolism and anabolism are the glycolysis of sugars and the transcription-translation (TX-TL) of DNA, respectively. Despite their importance in living cells, the in vitro reconstitution of their cooperation through purified factors has not been achieved, which hinders the elucidation of the design principle in living cells. Here, we reconstituted glycolysis using sugars and integrated it with the PURE system, a commercial in vitro TX-TL kit composed of purified factors. By optimizing key parameters, such as glucokinase and initial phosphate concentrations, we determined suitable conditions for their cooperation. The optimized system showed protein synthesis at up to 33% of that of the original PURE system. We observed that ATP consumption in upstream glycolysis inhibits TX-TL and that this inhibition can be alleviated by the co-addition of glycolytic intermediates, such as glyceraldehyde 3-phosphate, with glucose. Moreover, the system developed here simultaneously synthesizes a subset of its own enzymes, that is, glycolytic enzymes, in a single test tube, which is a necessary step toward self-replication. As glycolysis and TX-TL provide building blocks for constructing cells, the integrated system can be a fundamental material for reconstituting living cells from purified factors.


Subject(s)
Cell-Free System , Glycolysis , Protein Biosynthesis , Transcription, Genetic , Glucose/metabolism , Adenosine Triphosphate/metabolism , Sugars/metabolism , Glucokinase/metabolism , Glucokinase/genetics
9.
Cardiovasc Diabetol ; 23(1): 228, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951793

ABSTRACT

BACKGROUND: Glucokinase (GK) plays a key role in glucose metabolism. In the liver, GK is regulated by GK regulatory protein (GKRP) with nuclear sequestration at low plasma glucose level. Some GK activators (GKAs) disrupt GK-GKRP interaction which increases hepatic cytoplasmic GK level. Excess hepatic GK activity may exceed the capacity of glycogen synthesis with excess triglyceride formation. It remains uncertain whether hypertriglyceridemia associated with some GKAs in previous clinical trials was due to direct GK activation or impaired GK-GKRP interaction. METHODS: Using publicly available genome-wide association study summary statistics, we selected independent genetic variants of GCKR and GCK associated with fasting plasma glucose (FPG) as instrumental variables, to mimic the effects of impaired GK-GKRP interaction and direct GK activation, respectively. We applied two-sample Mendelian Randomization (MR) framework to assess their causal associations with lipid-related traits, risks of metabolic dysfunction-associated steatotic liver disease (MASLD) and cardiovascular diseases. We verified these findings in one-sample MR analysis using individual-level statistics from the Hong Kong Diabetes Register (HKDR). RESULTS: Genetically-proxied impaired GK-GKRP interaction increased plasma triglycerides, low-density lipoprotein cholesterol and apolipoprotein B levels with increased odds ratio (OR) of 14.6 (95% CI 4.57-46.4) per 1 mmol/L lower FPG for MASLD and OR of 2.92 (95% CI 1.78-4.81) for coronary artery disease (CAD). Genetically-proxied GK activation was associated with decreased risk of CAD (OR 0.69, 95% CI 0.54-0.88) and not with dyslipidemia. One-sample MR validation in HKDR showed consistent results. CONCLUSIONS: Impaired GK-GKRP interaction, rather than direct GK activation, may worsen lipid profiles and increase risks of MASLD and CAD. Development of future GKAs should avoid interfering with GK-GKRP interaction.


Subject(s)
Adaptor Proteins, Signal Transducing , Blood Glucose , Genetic Predisposition to Disease , Genome-Wide Association Study , Glucokinase , Mendelian Randomization Analysis , Humans , Adaptor Proteins, Signal Transducing/genetics , Risk Factors , Risk Assessment , Blood Glucose/metabolism , Glucokinase/genetics , Glucokinase/metabolism , Biomarkers/blood , Lipids/blood , Phenotype , Carrier Proteins/genetics , Carrier Proteins/metabolism , Polymorphism, Single Nucleotide , Time Factors , Dyslipidemias/genetics , Dyslipidemias/blood , Dyslipidemias/diagnosis , Dyslipidemias/epidemiology , Dyslipidemias/enzymology , Fatty Liver/genetics , Fatty Liver/enzymology , Fatty Liver/blood
10.
PLoS One ; 19(6): e0303934, 2024.
Article in English | MEDLINE | ID: mdl-38875221

ABSTRACT

The nerve growth factor (NGF) participates in cell survival and glucose-stimulated insulin secretion (GSIS) processes in rat adult beta cells. GSIS is a complex process in which metabolic events and ionic channel activity are finely coupled. GLUT2 and glucokinase (GK) play central roles in GSIS by regulating the rate of the glycolytic pathway. The biphasic release of insulin upon glucose stimulation characterizes mature adult beta cells. On the other hand, beta cells obtained from neonatal, suckling, and weaning rats are considered immature because they secrete low levels of insulin and do not increase insulin secretion in response to high glucose. The weaning of rats (at postnatal day 20 in laboratory conditions) involves a dietary transition from maternal milk to standard chow. It is characterized by increased basal plasma glucose levels and insulin levels, which we consider physiological insulin resistance. On the other hand, we have observed that incubating rat beta cells with NGF increases GSIS by increasing calcium currents in neonatal cells. In this work, we studied the effects of NGF on the regulation of cellular distribution and activity of GLUT2 and GK to explore its potential role in the maturation of GSIS in beta cells from P20 rats. Pancreatic islet cells from both adult and P20 rats were isolated and incubated with 5.6 mM or 15.6 mM glucose with and without NGF for 4 hours. Specific immunofluorescence assays were conducted following the incubation period to detect insulin and GLUT2. Additionally, we measured glucose uptake, glucokinase activity, and insulin secretion assays at 5.6 mM or 15.6 mM glucose concentrations. We observed an age-dependent variation in the distribution of GLUT2 in pancreatic beta cells and found that glucose plays a regulatory role in GLUT2 distribution independently of age. Moreover, NGF increases GLUT2 abundance, glucose uptake, and GSIS in P20 beta cells and GK activity in adult beta cells. Our results suggest that besides increasing calcium currents, NGF regulates metabolic components of the GSIS, thereby contributing to the maturation process of pancreatic beta cells.


Subject(s)
Glucokinase , Glucose Transporter Type 2 , Glucose , Insulin-Secreting Cells , Nerve Growth Factor , Animals , Male , Rats , Cells, Cultured , Glucokinase/metabolism , Glucose/metabolism , Glucose Transporter Type 2/metabolism , Insulin/metabolism , Insulin Secretion/drug effects , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/drug effects , Nerve Growth Factor/metabolism , Nerve Growth Factor/pharmacology , Rats, Wistar
11.
Antiviral Res ; 228: 105939, 2024 08.
Article in English | MEDLINE | ID: mdl-38909960

ABSTRACT

Viruses have developed sophisticated strategies to control metabolic activity of infected cells in order to supply replication machinery with energy and metabolites. Dengue virus (DENV), a mosquito-borne flavivirus responsible for dengue fever, is no exception. Previous reports have documented DENV interactions with metabolic pathways and shown in particular that glycolysis is increased in DENV-infected cells. However, underlying molecular mechanisms are still poorly characterized and dependence of DENV on this pathway has not been investigated in details yet. Here, we identified an interaction between the non-structural protein 3 (NS3) of DENV and glucokinase regulator protein (GCKR), a host protein that inhibits the liver-specific hexokinase GCK. NS3 expression was found to increase glucose consumption and lactate secretion in hepatic cell line expressing GCK. Interestingly, we observed that GCKR interaction with GCK decreases DENV replication, indicating the dependence of DENV to GCK activity and supporting the role of NS3 as an inhibitor of GCKR function. Accordingly, in the same cells, DENV replication both induces and depends on glycolysis. By targeting NAD(H) biosynthesis with the antimetabolite 6-Amino-Nicotinamide (6-AN), we decreased cellular glycolytic activity and inhibited DENV replication in hepatic cells. Infection of primary organotypic liver cultures (OLiC) from hamsters was also inhibited by 6-AN. Altogether, our results show that DENV has evolved strategies to control glycolysis in the liver, which could account for hepatic dysfunctions associated to infection. Besides, our findings suggest that lowering intracellular availability of NAD(H) could be a valuable therapeutic strategy to control glycolysis and inhibit DENV replication in the liver.


Subject(s)
Dengue Virus , Dengue , Glucokinase , Glycolysis , NAD , Viral Nonstructural Proteins , Virus Replication , Glycolysis/drug effects , Dengue Virus/drug effects , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , Humans , Virus Replication/drug effects , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Animals , Dengue/drug therapy , Dengue/virology , Dengue/metabolism , NAD/metabolism , NAD/biosynthesis , Cell Line , Adaptor Proteins, Signal Transducing/metabolism , Adaptor Proteins, Signal Transducing/genetics , Glucose/metabolism , Liver/virology , Liver/metabolism , Antiviral Agents/pharmacology , Viral Proteases , Serine Endopeptidases , Nucleoside-Triphosphatase , DEAD-box RNA Helicases
12.
J Diabetes ; 16(6): e13563, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783768

ABSTRACT

Type 2 diabetes mellitus (T2DM) is a complicated disease related to metabolism that results from resistance to insulin and sustained hyperglycemia. Traditional antidiabetic drugs cannot meet the demand of different diabetes patients for reaching the glycemic targets; thus, the identification of new antidiabetic drugs is urgently needed for the treatment of T2DM to enhance glycemic control and the prognosis of patients suffering from T2DM. Recently, glucokinase (GK) has attracted much attention and is considered to be an effective antidiabetic agent. Glucokinase activators (GKA) represented by dorzagliatin could activate GK and mimic its function that triggers a counter-regulatory response to blood glucose changes. Dorzagliatin has shown great potential for glycemic control in diabetic patients in a randomized, double-blind, placebo-controlled Phase 3 trial (SEED study) and had a favorable safety profile and was well tolerated (DAWN study). In the SEED study, dorzagliatin significantly reduced glycosylated hemoglobin (HbA1c) by 1.07% and postprandial blood glucose by 2.83 mol/L, showing the great potential of this drug to control blood glucose in diabetic patients, with good safety and good tolerance. An extension of the SEED study, the DREAM study, confirmed that dorzagliatin monotherapy significantly improved 24-h glucose variability and increased time in range (TIR) to 83.7% over 46 weeks. Finally, the clinical study of dorzagliatin combined with metformin (DAWN study) confirmed that dorzagliatin could significantly reduce HbA1c by 1.02% and postprandial blood glucose by 5.45 mol/L. The current review summarizes the development of GK and GKA, as well as the prospects, trends, applications, and shortcomings of these treatments, especially future directions of clinical studies of dorzagliatin.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Hypoglycemic Agents , Humans , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/blood , Hypoglycemic Agents/therapeutic use , Glucokinase/metabolism , Blood Glucose/drug effects , Blood Glucose/metabolism , Drug Development , Enzyme Activators/therapeutic use , Glycated Hemoglobin/metabolism , Glycated Hemoglobin/analysis
13.
ACS Chem Neurosci ; 15(11): 2350-2358, 2024 06 05.
Article in English | MEDLINE | ID: mdl-38757688

ABSTRACT

Growth hormone-releasing hormone (Ghrh) neurons in the dorsomedial ventromedial hypothalamic nucleus (VMNdm) express the metabolic transcription factor steroidogenic factor-1 and hypoglycemia-sensitive neurochemicals of diverse chemical structures, transmission modes, and temporal signaling profiles. Ghrh imposes neuromodulatory control of coexpressed transmitters. Multiple metabolic sensory mechanisms are employed in the brain, including screening of the critical nutrient glucose or the energy currency ATP. Here, combinatory laser-catapult-microdissection/single-cell multiplex qPCR tools were used to investigate whether these neurons possess molecular machinery for monitoring cellular metabolic status and if these biomarkers exhibit sex-specific sensitivity to insulin-induced hypoglycemia. Data show that hypoglycemia up- (male) or downregulated (female) Ghrh neuron glucokinase (Gck) mRNA; Ghrh gene silencing decreased baseline and hypoglycemic patterns of Gck gene expression in each sex. Ghrh neuron glucokinase regulatory protein (Gckr) transcript levels were respectively diminished or augmented in hypoglycemic male vs female rats; this mRNA profile was decreased by Ghrh siRNA in both sexes. Gene transcripts encoding catalytic alpha subunits of the energy monitor 5-AMP-activated protein kinase (AMPK), i.e., Prkaa1 and 2, were increased by hypoglycemia in males, yet only the former mRNA was hypoglycemia-sensitive in females. Ghrh siRNA downregulated baseline and hypoglycemia-associated Prkaa subunit mRNAs in males but elicited divergent changes in Prkaa2 transcripts in eu- vs hypoglycemic females. Results provide unique evidence that VMNdm Ghrh neurons express the characterized metabolic sensor biomarkers glucokinase and AMPK and that the corresponding gene profiles exhibit distinctive sex-dimorphic transcriptional responses to hypoglycemia. Data further document Ghrh neuromodulation of baseline and hypoglycemic transcription patterns of these metabolic gene profiles.


Subject(s)
Hypoglycemia , Neurons , RNA, Messenger , Sex Characteristics , Ventromedial Hypothalamic Nucleus , Animals , Female , Male , Rats , Dorsomedial Hypothalamic Nucleus/metabolism , Glucokinase/metabolism , Glucokinase/genetics , Growth Hormone-Releasing Hormone/metabolism , Growth Hormone-Releasing Hormone/genetics , Hypoglycemia/metabolism , Neurons/metabolism , Rats, Sprague-Dawley , RNA, Messenger/metabolism , Ventromedial Hypothalamic Nucleus/metabolism
14.
Diabetes Care ; 47(7): 1140-1142, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38691834

ABSTRACT

OBJECTIVE: Metformin, insulin, and insulin secretagogues do not alter HbA1c levels in glucokinase maturity-onset diabetes of the young (GCK-MODY). However, the efficacy of the new hypoglycemic drugs on GCK-MODY remains unclear. RESEARCH DESIGN AND METHODS: We describe a case of GCK-MODY with unchanged blood glucose under different therapies during an 8 years' follow-up. His HbA1c and biochemical indices under different hypoglycemic treatments were recorded. RESULTS: Oral glucose-lowering drugs, including thiazolidinediones, dipeptidyl peptidase 4 inhibitor, α-glucosidase inhibitor, and sodium-glucose cotransporter 2 inhibitor that had not been evaluated previously, did not improve the HbA1c level in this patient. However, the glucokinase activator dorzagliatin effectively and safely lowered his HbA1c level. CONCLUSIONS: Dorzagliatin was effective and safe in this patient with GCK-MODY, providing potential application prospects for precise treatment of GCK-MODY with dorzagliatin.


Subject(s)
Diabetes Mellitus, Type 2 , Hypoglycemic Agents , Humans , Male , Diabetes Mellitus, Type 2/drug therapy , Hypoglycemic Agents/therapeutic use , Blood Glucose/drug effects , Blood Glucose/metabolism , Glycated Hemoglobin/metabolism , Adult , Glucokinase/metabolism , Glycosides
15.
J Diabetes ; 16(5): e13544, 2024 May.
Article in English | MEDLINE | ID: mdl-38664885

ABSTRACT

As a sensor, glucokinase (GK) controls glucose homeostasis, which progressively declines in patients with diabetes. GK maintains the equilibrium of glucose levels and regulates the homeostatic system set points. Endocrine and hepatic cells can both respond to glucose cooperatively when GK is activated. GK has been under study as a therapeutic target for decades due to the possibility that cellular GK expression and function can be recovered, hence restoring glucose homeostasis in patients with type 2 diabetes. Five therapeutic compounds targeting GK are being investigated globally at the moment. They all have distinctive molecular structures and have been clinically shown to have strong antihyperglycemia effects. The mechanics, classification, and clinical development of GK activators are illustrated in this review. With the recent approval and marketing of the first GK activator (GKA), dorzagliatin, GKA's critical role in treating glucose homeostasis disorder and its long-term benefits in diabetes will eventually become clear.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Homeostasis , Humans , Glucokinase/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Enzyme Activators/therapeutic use , Enzyme Activators/pharmacology , Hypoglycemic Agents/therapeutic use , Hypoglycemic Agents/pharmacology , Blood Glucose/metabolism , Animals , Glucose/metabolism
16.
Int J Mol Sci ; 25(8)2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38673904

ABSTRACT

Chagas disease is one of the world's neglected tropical diseases, caused by the human pathogenic protozoan parasite Trypanosoma cruzi. There is currently a lack of effective and tolerable clinically available therapeutics to treat this life-threatening illness and the discovery of modern alternative options is an urgent matter. T. cruzi glucokinase (TcGlcK) is a potential drug target because its product, d-glucose-6-phosphate, serves as a key metabolite in the pentose phosphate pathway, glycolysis, and gluconeogenesis. In 2019, we identified a novel cluster of TcGlcK inhibitors that also exhibited anti-T. cruzi efficacy called the 3-nitro-2-phenyl-2H-chromene analogues. This was achieved by performing a target-based high-throughput screening (HTS) campaign of 13,040 compounds. The selection criteria were based on first determining which compounds strongly inhibited TcGlcK in a primary screen, followed by establishing on-target confirmed hits from a confirmatory assay. Compounds that exhibited notable in vitro trypanocidal activity over the T. cruzi infective form (trypomastigotes and intracellular amastigotes) co-cultured in NIH-3T3 mammalian host cells, as well as having revealed low NIH-3T3 cytotoxicity, were further considered. Compounds GLK2-003 and GLK2-004 were determined to inhibit TcGlcK quite well with IC50 values of 6.1 µM and 4.8 µM, respectively. Illuminated by these findings, we herein screened a small compound library consisting of thirteen commercially available 3-nitro-2-phenyl-2H-chromene analogues, two of which were GLK2-003 and GLK2-004 (compounds 1 and 9, respectively). Twelve of these compounds had a one-point change from the chemical structure of GLK2-003. The analogues were run through a similar primary screening and confirmatory assay protocol to our previous HTS campaign. Subsequently, three in vitro biological assays were performed where compounds were screened against (a) T. cruzi (Tulahuen strain) infective form co-cultured within NIH-3T3 cells, (b) T. brucei brucei (427 strain) bloodstream form, and (c) NIH-3T3 host cells alone. We report on the TcGlcK inhibitor constant determinations, mode of enzyme inhibition, in vitro antitrypanosomal IC50 determinations, and an assessment of structure-activity relationships. Our results reveal that the 3-nitro-2-phenyl-2H-chromene scaffold holds promise and can be further optimized for both Chagas disease and human African trypanosomiasis early-stage drug discovery research.


Subject(s)
Benzopyrans , Glucokinase , Trypanocidal Agents , Trypanosoma cruzi , Animals , Humans , Mice , Benzopyrans/pharmacology , Benzopyrans/chemistry , Chagas Disease/drug therapy , Chagas Disease/parasitology , Drug Discovery/methods , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Glucokinase/metabolism , Glucokinase/antagonists & inhibitors , High-Throughput Screening Assays , Molecular Docking Simulation , NIH 3T3 Cells , Structure-Activity Relationship , Trypanocidal Agents/pharmacology , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Trypanosoma cruzi/enzymology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology
17.
Genome Biol ; 25(1): 98, 2024 04 16.
Article in English | MEDLINE | ID: mdl-38627865

ABSTRACT

BACKGROUND: Amino acid substitutions can perturb protein activity in multiple ways. Understanding their mechanistic basis may pinpoint how residues contribute to protein function. Here, we characterize the mechanisms underlying variant effects in human glucokinase (GCK) variants, building on our previous comprehensive study on GCK variant activity. RESULTS: Using a yeast growth-based assay, we score the abundance of 95% of GCK missense and nonsense variants. When combining the abundance scores with our previously determined activity scores, we find that 43% of hypoactive variants also decrease cellular protein abundance. The low-abundance variants are enriched in the large domain, while residues in the small domain are tolerant to mutations with respect to abundance. Instead, many variants in the small domain perturb GCK conformational dynamics which are essential for appropriate activity. CONCLUSIONS: In this study, we identify residues important for GCK metabolic stability and conformational dynamics. These residues could be targeted to modulate GCK activity, and thereby affect glucose homeostasis.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Amino Acid Substitution , Diabetes Mellitus, Type 2/genetics , Glucokinase/genetics , Glucokinase/chemistry , Glucokinase/metabolism , Mutation
18.
Bioorg Med Chem ; 103: 117695, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38522346

ABSTRACT

Resveratrol oligomers, ranging from dimers to octamers, are formed through regioselective synthesis involving the phenoxy radical coupling of resveratrol building blocks, exhibiting remarkable therapeutic potential, including antidiabetic properties. In this study, we elucidate the mechanistic insights into the insulin secretion potential of a resveratrol dimer, (-)-Ampelopsin F (AmF), isolated from the acetone extract of Vatica chinensis L. stem bark in Pancreatic Beta-TC-6 cell lines. The AmF (50 µM) treated cells exhibited a 3.5-fold increase in insulin secretion potential as compared to unstimulated cells, which was achieved through the enhancement of mitochondrial membrane hyperpolarization, elevation of intracellular calcium concentration, and upregulation of GLUT2 and glucokinase expression in pancreatic Beta-TC-6 cell lines. Furthermore, AmF effectively inhibited the activity of DPP4, showcasing a 2.5-fold decrease compared to the control and a significant 6.5-fold reduction compared to the positive control. These findings emphasize AmF as a potential lead for the management of diabetes mellitus and point to its possible application in the next therapeutic initiatives.


Subject(s)
Flavonoids , Insulin-Secreting Cells , Insulin Secretion , Insulin-Secreting Cells/metabolism , Insulin/metabolism , Resveratrol , Glucokinase/metabolism , Glucose/metabolism
19.
SELECTION OF CITATIONS
SEARCH DETAIL