Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.657
Filter
1.
Chemosphere ; 364: 143282, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39243902

ABSTRACT

The recovery of gold (Au) from electronic waste (e-waste) has gained significant attention due to its high Au content and economic feasibility compared to natural ores. This study presents a facile, single-step approach to prepare the chitosan-thioglycolic acid composite crosslinked with glutaraldehyde (CS-TGA-GA) and demonstrates its unique capability for precious metal management, which is a less investigated application area for thiolated chitosan materials. The novel cost-effective biosorbent CS-TGA-GA demonstrated a very high adsorption capacity of 1351.9 ± 96 mg/g and selectivity for Au(III) from an acidic e-waste solution at pH 1 and 298 K. The high adsorption capacity and selectivity of the sorbent can be attributed to the abundance of -NH2, -OH, and -SH groups present on its surface. Various characterizations, such as scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffractometry, Fourier-transform infrared spectroscopy, and X-ray photoelectron spectroscopy, as well as sorption experiments, including pH, kinetic, and isotherm studies, were performed. The kinetic data align with a pseudo-second-order model and the isotherm data can be well expressed by the Freundlich model. The CS-TGA-GA composite effectively facilitated the conversion of Au(III) to Au(0), leading to the formation of Au nanoparticles that aggregated in the reaction vessel over time. Subsequently, the Au-loaded CS-TGA-GA underwent an incineration procedure, yielding recovered Au with a purity of 99.6%, as measured by X-ray fluorescence. In addition to its large uptake capacity, acid stability, and recyclability, the prepared sorbent showed a highly selective uptake of Au(III) ions in a solution containing various metal ions leached from waste printed circuit boards. These results highlight the potential of CS-TGA-GA as an adsorbent for the recovery of Au from e-waste leachate, thereby contributing to sustainable resource management.


Subject(s)
Chitosan , Electronic Waste , Glutaral , Gold , Thioglycolates , Water Pollutants, Chemical , Chitosan/chemistry , Gold/chemistry , Adsorption , Glutaral/chemistry , Thioglycolates/chemistry , Water Pollutants, Chemical/chemistry , Kinetics , Hydrogen-Ion Concentration
2.
Biomater Sci ; 12(20): 5349-5360, 2024 Oct 08.
Article in English | MEDLINE | ID: mdl-39248605

ABSTRACT

The current study aimed to develop a reusable antibacterial coating that can be employed for efficient bacterial killing. We synthesized a water-soluble methacrylamide-based copolymer consisting of cationic and hydrophobic groups and coated it onto a glass surface through the formation of semi-interpenetrating polymer networks (semi-IPN) of aminopropyl triethoxysilane and glutaraldehyde. The coated surface was exposed to Gram-negative and Gram-positive bacteria, where the surface exhibited rapid bacterial killing ability within 5-15 min. The substrates displayed a minimal loss of antibacterial activity even after two water rinse cycles. The coatings were able to kill both the bacterial strains even after 5 weeks, suggesting excellent longevity. The surfaces were stable after repeated wiping cycles with 70% IPA using Kim wipes and 5 min sonication in DI water as no bactericidal activity was lost. Thus, a sustainable antibacterial copolymer coating was developed, and it is stable and reusable against bacterial contamination and could be employed as a long-term antibacterial coating.


Subject(s)
Anti-Bacterial Agents , Polymers , Surface Properties , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Polymers/chemistry , Polymers/pharmacology , Coated Materials, Biocompatible/chemistry , Coated Materials, Biocompatible/pharmacology , Silanes/chemistry , Silanes/pharmacology , Acrylamides/chemistry , Acrylamides/pharmacology , Glutaral/chemistry , Hydrophobic and Hydrophilic Interactions , Glass/chemistry , Propylamines
3.
Int J Biol Macromol ; 277(Pt 4): 134563, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39116969

ABSTRACT

Despite the plethora of methods reported for fabricating ultraviolet (UV) shielding films using various UV absorbers to date, it remains a major challenge for the development of novel UV shielding films that simultaneously exhibit excellent transparency. In this work, a novel composite film (GA-x-CMC/PVA/PEI) is fabricated by integrating anionic carboxymethylcellulose (CMC), cationic polyethyleneimine (PEI), and polyvinyl alcohol (PVA) via electrostatic and hydrogen bond interactions and further cross-linking with glutaraldehyde (GA). Herein, PVA expands hydrogen bonding networks, reduces film haze, and enhances its mechanical strength. GA acts as a crosslinker in producing Schiff bases with PEI and acetals with CMC and PVA. The synthesized GA-x-CMC/PVA/PEI composite film possesses a notable amount of unsaturated -CH=N- bonds of Schiff base, resulting from the condensation of PEI and GA, which exhibit superior shielding efficiency against both UV-A and UV-B rays while maintaining exceptional transparency, visibility, and simultaneously enhancing mechanical properties and thermal stability. Notably, increasing the content of PEI leads to almost complete shielding of the entire UV spectrum (<400 nm) due to the increasing of the number of -CH=N- unsaturated bonds. Furthermore, the obtained film without any UV-shielding additives has exceptional mechanical properties, hydrophobicity, and antibacterial properties, rendering it a wide application prospect.


Subject(s)
Anti-Bacterial Agents , Carboxymethylcellulose Sodium , Glutaral , Polyethyleneimine , Polyvinyl Alcohol , Ultraviolet Rays , Polyvinyl Alcohol/chemistry , Carboxymethylcellulose Sodium/chemistry , Polyethyleneimine/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Glutaral/chemistry , Cross-Linking Reagents/chemistry , Water/chemistry , Mechanical Phenomena
4.
Lab Chip ; 24(17): 4172-4181, 2024 08 20.
Article in English | MEDLINE | ID: mdl-39099534

ABSTRACT

Effective continuous glucose monitoring solutions require consistent sensor performance over the lifetime of the device, a manageable variance between devices, and the capability of high volume, low cost production. Here we present a novel and microfabrication-compatible method of depositing and stabilizing enzyme layers on top of planar electrodes that can aid in the mass production of sensors while also improving their consistency. This work is focused on the fragile biorecognition layer as that has been a critical difficulty in the development of microfabricated sensors. We test this approach with glucose oxidase (GOx) and evaluate the sensor performance with amperometric measurements of in vitro glucose concentrations. Spincoating was used to deposit a uniform enzyme layer across a wafer, which was subsequently immobilized via glutaraldehyde vapor crosslinking and patterned via liftoff. This yielded an approximately 300 nm thick sensing layer which was applied to arrays of microfabricated platinum electrodes built on blank wafers. Taking advantage of their planar array format, measurements were then performed in high-throughput parallel instrumentation. Due to their thin structure, the coated electrodes exhibited subsecond stabilization times after the bias potential was applied. The deposited enzyme layers were measured to provide a sensitivity of 2.3 ± 0.2 µA mM-1 mm-2 with suitable saturation behavior and minimal performance shift observed over extended use. The same methodology was then demonstrated directly on top of wireless CMOS potentiostats to build a monolithic sensor with similar measured performance. This work demonstrates the effectiveness of the combination of spincoating and vapor stabilization processes for wafer scale enzymatic sensor functionalization and the potential for scalable fabrication of monolithic sensor-on-CMOS devices.


Subject(s)
Biosensing Techniques , Electrodes , Enzymes, Immobilized , Glucose Oxidase , Glucose , Glutaral , Glucose Oxidase/chemistry , Glucose Oxidase/metabolism , Glutaral/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Biosensing Techniques/instrumentation , Glucose/analysis , Glucose/chemistry , Cross-Linking Reagents/chemistry , Volatilization
5.
Biomater Adv ; 165: 214003, 2024 Dec.
Article in English | MEDLINE | ID: mdl-39213958

ABSTRACT

Extracellular matrix sponge plays a positive role in the wound healing process, but requires proper structural strength and biological properties. In order to solve the problem of lyophilized dissolution of placenta-derived sponge, glutaraldehyde was selected for use in the lyophilized crosslinking process to improve the necessary mechanical properties of the placental decellularization matrix sponge. In this work, the effects of three cross-linking methods of glutaraldehyde (Fumigation/Slurry/Soak) on the physical and biological characteristics of lyophilised sponges derived from placental acellular matrix was investigated. The results revealed that the sponges prepared by all three cross-linking methods exhibited excellent blood coagulation ability and stability. The fumigation cross-linked sponges had good mechanical properties of soft and elastic, and safe cytotoxicity, which were more compatible with the requirements of wound dressing. The slurry cross-linking process was uneven due to the stacked matrix materials, resulting in obvious cracks and easy to break when stretching. The soak crosslinking can obtain a higher degree of crosslinking, which leads to the poor antibacterial performance and the harder sponge scaffold with larger elastic modulus and smaller tensile ratio. In general, fumigation cross-linking is more suitable for the preparation of acellular sponge derived from placenta materials which can maintain basic mechanical properties and biological validity.


Subject(s)
Cross-Linking Reagents , Glutaral , Placenta , Glutaral/chemistry , Placenta/cytology , Female , Cross-Linking Reagents/chemistry , Pregnancy , Animals , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Humans , Tissue Scaffolds/chemistry , Freeze Drying/methods , Blood Coagulation/drug effects , Tensile Strength , Extracellular Matrix/chemistry , Materials Testing
6.
Dokl Biochem Biophys ; 518(1): 463-474, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39196524

ABSTRACT

The objective of this study was to explore the influence of different factors on the aggregation effect on hemoglobin (Hb) and enzymes during the preparation of Polyhemoglobin-Superoxide dismutase-Catalase-Carbonic anhydrase (PolyHb-SOD-CAT-CA). Several factors including temperatures, pH values, Glutaraldehyde (GDA) amounts and enzymes amounts were investigated systematically to study their effects on the enzymes recoveries and polymerization rates including the Superoxide dismutase (SOD), Catalase (CAT) and Carbonic anhydrase (CA), as well as their effects on the molecular weight distribution of PolyHb-SOD-CAT-CA. Then the oxygen affinity and methemoglobin (MetHb) contents of obtained PolyHb-SOD-CAT-CA were measured to evaluate the effects of enzyme crosslinking on the properties of Polyhemoglobin (PolyHb) moieties in the molecular structure of obtained PolyHb-SOD-CAT-CA conjugate. The results showed that the enzyme recoveries and polymerization rates could be decreased with the temperatures increasing and could be generally kept stable in the physiological pH conditions, but presented only slight changes among the investigated enzyme amounts ranges. Although the GDA concentration increasing could promote the enzyme polymerization rates, the enzyme recoveries decreased in whole. The polymerization rate and molecular size of PolyHb-SOD-CAT-CA conjugate increased with the elevation of temperature and the concentration of GDA. Lastly, the P50 values, Hill coefficients, and MetHb contents of PolyHb-SOD-CAT-CA conjugate with different enzyme crosslinking degrees exhibited no obvious differences with each other. In conclusion, the polymerization reactions between enzymes and Hb molecules could be remarkably affected by temperatures, pH values, and GDA amounts, and the enzyme crosslinking presented no obvious effects on the Hb properties, especially about the oxygen affinity and oxidation degrees.


Subject(s)
Catalase , Hemoglobins , Superoxide Dismutase , Hemoglobins/chemistry , Hemoglobins/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/chemistry , Catalase/chemistry , Catalase/metabolism , Hydrogen-Ion Concentration , Polymerization , Carbonic Anhydrases/metabolism , Carbonic Anhydrases/chemistry , Glutaral/chemistry , Temperature , Humans , Animals
7.
Int J Biol Macromol ; 277(Pt 1): 133801, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39013506

ABSTRACT

The inferior hydrophobicity and mechanical properties of starch-based nanofibrous films significantly restrict their practical application. In view of this, this study prepared octenylsuccinylated starch-pullulan nanofibrous films using electrospinning and glutaraldehyde (GTA) gas-phase crosslinking. After GTA crosslinking, the starch-based nanofibrous films remained white, randomly oriented, smooth, and droplet-free. As the crosslinking time increased from 0 h to 24 h, the mean fibrous diameter augmented from 157.34 nm to 238.66 nm, and the water contact angle rose from 24.30° to 52.49°. Meanwhile, their tensile strength and thermal stability grew, and the mean pore area and elongation at break abated with changes in function groups. The crosslinked starch-based nanofibrous films exhibited an enhanced adsorption capacity for alcohols, ethers, esters, hydrocarbons, and N-compounds of oyster peptides. Correlation analysis shows that the adsorption capacity of the starch-based nanofibrous films was positively correlated with mean fibrous diameter and water contact angle and negatively correlated with mean pore area. These results provide a theoretical basis for the practical application of crosslinked starch-based nanofibrous film materials in deodorization.


Subject(s)
Glutaral , Nanofibers , Starch , Starch/chemistry , Nanofibers/chemistry , Glutaral/chemistry , Adsorption , Peptides/chemistry , Cross-Linking Reagents/chemistry , Animals , Hydrophobic and Hydrophilic Interactions , Tensile Strength
8.
Carbohydr Res ; 543: 109216, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39043084

ABSTRACT

In this study, a series of hydrogels were synthesized from chitosan(s) that was crosslinking with glutaraldehyde at different concentrations. Ascorbic acid in an acidic medium was used to facilitate non-covalent interactions. The chitosan(s) was obtained from shrimp cytoskeleton; while ascorbic acid was extracted from xoconostle juice. The hydrogel reaction was monitored by UV-vis spectroscopy (550 nm) to determine the reaction kinetics and reaction order at 60 °C. The hydrogels structures were characterized by NMR, FT-IR, HR-MS and SEM, while the degree of cross-linking was examined with TGA-DA. The extracellular matrices were obtained as stable hydrogels where reached maximum crosslinking was of 7 %, independent of glutaraldehyde quantity added. The rheological properties showed a behavior of weak gels and a dependence of crosslinking agent concentration on strength at different temperatures. The cytotoxicity assay showed that the gels had no adverse effects on cellular growth for all concentrations of glutaraldehyde.


Subject(s)
Biocompatible Materials , Chitosan , Hydrogels , Tissue Engineering , Hydrogels/chemistry , Hydrogels/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/chemical synthesis , Biocompatible Materials/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Chitosan/chemical synthesis , Animals , Glutaral/chemistry , Rheology , Cross-Linking Reagents/chemistry
9.
Biomed Phys Eng Express ; 10(5)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38955138

ABSTRACT

This work aims to improve the post stabilty of reusable potassium iodide hydrogel dosimter. A reusable and low-cost radiochromic dosimeter containing a gel matrix of polyvinyl alcohol, potassium iodide dye, froctose as reducing agent and glutaraldehyde as cross-linking agent was developed for dose calibration in radiotherapy. The gel samples were exposed to different absorbed doses using a medical linear acceleration. UV-vis Spectrophotometry was utilized to investigate the changes in optical-properties of irradiated gels with regard to peak wavelength of 353 nm. The stability of the gel (one of the most limitation of using this dosimeter) was improved significantly by the addition of certain concentrations of dimethyl sulfoxide. The two-dimensional optical imaging system of charge-coupled-device (CCD) camera with a uniform RGB light-emitting-diode (LED) array source was used for diffusion coefficient purpose using two dimensional gel template. The value of diffusion coefficient reported is significant and highly reduced compared with other dosimeters reported in the literatures. Moreover, heating the improved gels to certain temperatures results in resetting their optical properties, which makes it possible to reuse for multiple times.


Subject(s)
Feasibility Studies , Polyvinyl Alcohol , Potassium Iodide , Radiation Dosimeters , Polyvinyl Alcohol/chemistry , Potassium Iodide/chemistry , Calibration , Gels/chemistry , Humans , Hydrogels/chemistry , Radiometry/methods , Radiometry/instrumentation , Dimethyl Sulfoxide/chemistry , Glutaral/chemistry , Diffusion , Temperature
10.
Int J Biol Macromol ; 274(Pt 2): 133359, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38914393

ABSTRACT

Heterogeneous biocatalysts were prepared by adsorbing T. lanuginosus lipase (TLL) onto uncalcined (SBAUC-TLL) and calcined (SBAC-TLL) SBA-15, using ammonium fluoride as a pore expander to facilitate TLL immobilization. At an enzyme load of 1 mg/g, high immobilization yields (>90 %) and recovered activities (>80 % for SBAUC-TLL and 70 % for SBAC-TLL) were achieved. When increasing the enzyme load to 5 mg/g, the immobilization yield of SBAUC-TLL was 80 %, and the recovered activity was 50 %, while SBAC-TLL had a yield of 100 % and a recovered activity of 36 %. Crosslinking with glutaraldehyde (GA) was conducted to improve stability (SBAUC-TLL-GA and SBAC-TLL-GA). Although SBAC-TLL-GA lost 25 % of initial activity after GA modifications, it exhibited the highest thermal (t1/2 = 5.7 h at 65 °C), when compared to SBAC-TLL (t1/2 = 12 min) and the soluble enzyme (t1/2 = 36 min), and operational stability (retained 100 % activity after 5 cycles). Both biocatalysts presented high storage stability since they retained 100 % of initial activity for 30 days. These results highlight SBA-15's potential as an enzyme support and the protocol's efficacy in enhancing stability, with implications for industrial applications in the food, chemical, and pharmaceutical sectors.


Subject(s)
Biocatalysis , Enzyme Stability , Enzymes, Immobilized , Lipase , Silicon Dioxide , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Lipase/chemistry , Lipase/metabolism , Silicon Dioxide/chemistry , Porosity , Temperature , Adsorption , Hydrogen-Ion Concentration , Eurotiales/enzymology , Kinetics , Glutaral/chemistry
11.
Molecules ; 29(11)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38893568

ABSTRACT

We present the synthesis of a cross-linking enzyme aggregate (CLEAS) of a peroxidase from Megathyrsus maximus (Guinea Grass) (GGP). The biocatalyst was produced using 50%v/v ethanol and 0.88%w/v glutaraldehyde for 1 h under stirring. The immobilization yield was 93.74% and the specific activity was 36.75 U mg-1. The biocatalyst surpassed by 61% the free enzyme activity at the optimal pH value (pH 6 for both preparations), becoming this increase in activity almost 10-fold at pH 9. GGP-CLEAS exhibited a higher thermal stability (2-4 folds) and was more stable towards hydrogen peroxide than the free enzyme (2-3 folds). GGP-CLEAS removes over 80% of 0.05 mM indigo carmine at pH 5, in the presence of 0.55 mM H2O2 after 60 min of reaction, a much higher value than when using the free enzyme. The operational stability showed a decrease of enzyme activity (over 60% in 4 cycles), very likely related to suicide inhibition.


Subject(s)
Enzymes, Immobilized , Hydrogen Peroxide , Indigo Carmine , Peroxidase , Indigo Carmine/chemistry , Peroxidase/metabolism , Peroxidase/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Hydrogen-Ion Concentration , Hydrogen Peroxide/chemistry , Enzyme Stability , Cross-Linking Reagents/chemistry , Temperature , Glutaral/chemistry
12.
Z Naturforsch C J Biosci ; 79(5-6): 149-153, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38869146

ABSTRACT

Bio-electrochemical Systems (BES), particularly Microbial Fuel Cells (MFC), have emerged as promising technologies in environmental biotechnology. This study focused on optimizing the anode bacterial culture immobilization process to enhance BES performance. The investigation combines and modifies two key immobilization methods: covalent bonding with glutaraldehyde and inclusion in a chitosan gel in order to meet the criteria and requirements of the bio-anodes in MFC. The performance of MFCs with immobilized and suspended cultures was compared in parallel experiments. Both types showed similar substrate utilization dynamics with slight advantage of the immobilized bio-anode considering the lower concentration of biomass. The immobilized MFC exhibited higher power generation and metabolic activity, as well. Probably, this is due to improved anodic respiration and higher coulombic efficiency of the reactor. Analysis of organic acids content supported this conclusion showing significant inhibition of the fermentation products production in the MFC reactor with immobilized anode culture.


Subject(s)
Bioelectric Energy Sources , Cells, Immobilized , Chitosan , Electrodes , Bioelectric Energy Sources/microbiology , Cells, Immobilized/metabolism , Chitosan/metabolism , Chitosan/chemistry , Fermentation , Bioreactors/microbiology , Biomass , Glutaral/chemistry , Electricity
13.
Food Res Int ; 186: 114161, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729685

ABSTRACT

In this article, the synthesis of antioxidant peptides in the enzymatic hydrolysis of caprine casein was analyzed at three different time points (60 min, 90 min, and 120 min) using immobilized pepsin on activated and modified carbon (AC, ACF, ACG 50, ACG 100). The immobilization assays revealed a reduction in the biocatalysts' activity compared to the free enzyme. Among the modified ones, ACG 50 exhibited greater activity and better efficiency for reuse cycles, with superior values after 60 min and 90 min. Peptide synthesis was observed under all studied conditions. Analyses (DPPH, ß-carotene/linoleic acid, FRAP) confirmed the antioxidant potential of the peptides generated by the immobilized enzyme. However, the immobilized enzyme in ACG 50 and ACG 100, combined with longer hydrolysis times, allowed the formation of peptides with an antioxidant capacity greater than or equivalent to those generated by the free enzyme, despite reduced enzymatic activity.


Subject(s)
Antioxidants , Caseins , Enzymes, Immobilized , Glutaral , Goats , Iridoids , Pepsin A , Peptides , Antioxidants/chemistry , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Caseins/chemistry , Animals , Pepsin A/metabolism , Pepsin A/chemistry , Glutaral/chemistry , Peptides/chemistry , Iridoids/chemistry , Hydrolysis , Charcoal/chemistry
14.
BMC Oral Health ; 24(1): 579, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762747

ABSTRACT

BACKGROUND: Vinyl polyether silicone (VPES) is a novel impression biomaterial made of a combination of vinyl polysiloxane (VPS) and polyether (PE). Thus, it is significant to assess its properties and behaviour under varied disinfectant test conditions. This study aimed to assess the dimensional stability of novel VPES impression material after immersion in standard disinfectants for different time intervals. METHODS: Elastomeric impression material used -medium body regular set (Monophase) [Exa'lence GC America]. A total of 84 Specimens were fabricated using stainless steel die and ring (ADA specification 19). These samples were distributed into a control group (n=12) and a test group (n=72). The test group was divided into 3 groups, based on the type of disinfectant used - Group-A- 2% Glutaraldehyde, Group-B- 0. 5% Sodium hypochlorite and Group-C- 2% Chlorhexidine each test group was further divided into 2 subgroups (n=12/subgroup) based on time intervals for which each sample was immersed in the disinfectants - subgroup-1- 10 mins and Subgroup 2- 30 mins. After the impression material was set, it was removed from the ring and then it was washed in water for 15 seconds. Control group measurements were made immediately on a stereomicroscope and other samples were immersed in the three disinfection solutions for 10 mins and 30 mins to check the dimensional stability by measuring the distance between the lines generated by the stainless steel die on the samples using a stereomicroscope at x40 magnification. RESULTS: The distance measured in the control group was 4397.2078 µm and 4396.1571 µm; for the test group Group-A- 2% Glutaraldehyde was 4396.4075 µm and 4394.5992 µm; Group-B- 0. 5% Sodium hypochlorite was 4394.5453 µm and 4389.4711 µm Group-C- 2% Chlorhexidine was 4395.2953 µm and 4387.1703 µm respectively for 10 mins and 30 mins. Percentage dimensional change was in the range of 0.02 - 0.25 for all the groups for 10 mins and 30 mins. CONCLUSIONS: 2 % Glutaraldehyde is the most suitable disinfectant for VPES elastomeric impression material in terms of dimensional stability and shows minimum dimensional changes as compared to that of 2% Chlorhexidine and 0.5% Sodium hypochlorite.


Subject(s)
Dental Impression Materials , Glutaral , Materials Testing , Polyvinyls , Siloxanes , Dental Impression Materials/chemistry , Polyvinyls/chemistry , Siloxanes/chemistry , Time Factors , Glutaral/chemistry , Dental Disinfectants/chemistry , Sodium Hypochlorite/chemistry , Disinfectants/chemistry , Chlorhexidine/chemistry , Surface Properties , Humans
15.
Int J Biol Macromol ; 270(Pt 1): 132101, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38734354

ABSTRACT

Aspergillus oryzae ß-D-galactosidase (ß-Gal) efficiently hydrolyzes sesaminol triglucoside into sesaminol, which has higher biological activity. However, ß-Gal is difficult to be separate from the reaction mixture and limited by stability. To resolve these problems, ß-Gal was immobilized on amino-functionalized magnetic nanoparticles mesoporous silica pre-activated with glutaraldehyde (Fe3O4@mSiO2-ß-Gal), which was used for the first time to prepare sesaminol. Under the optimal conditions, the immobilization yield and recovered activity of ß-Gal were 57.9 ± 0.3 % and 46.5 ± 0.9 %, and the enzymatic loading was 843 ± 21 Uenzyme/gsupport. The construction of Fe3O4@mSiO2-ß-Gal was confirmed by various characterization methods, and the results indicated it was suitable for heterogeneous enzyme-catalyzed reactions. Fe3O4@mSiO2-ß-Gal was readily separable under magnetic action and displayed improved activity in extreme pH and temperature conditions. After 45 days of storage at 4 °C, the activity of Fe3O4@mSiO2-ß-Gal remained at 92.3 ± 2.8 %, which was 1.29 times than that of free enzyme, and its activity remained above 85 % after 10 cycles. Fe3O4@mSiO2-ß-Gal displayed higher affinity and catalytic efficiency. The half-life was 1.41 longer than free enzymes at 55.0 °C. Fe3O4@mSiO2-ß-Gal was employed as a catalyst to prepare sesaminol, achieving a 96.7 % conversion yield of sesaminol. The excellent stability and catalytic efficiency provide broad benefits and potential for biocatalytic industry applications.


Subject(s)
Aspergillus oryzae , Enzymes, Immobilized , Glutaral , Silicon Dioxide , beta-Galactosidase , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , beta-Galactosidase/chemistry , beta-Galactosidase/metabolism , Aspergillus oryzae/enzymology , Silicon Dioxide/chemistry , Glutaral/chemistry , Dioxoles/chemistry , Dioxoles/pharmacology , Magnetite Nanoparticles/chemistry , Porosity , Temperature , Hydrogen-Ion Concentration , Enzyme Stability , Furans
16.
Food Chem ; 449: 139168, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38574521

ABSTRACT

A robust biocompatible solid-phase microextraction (SPME) fiber, so-called Ti/APTS/GA/CS, was prepared by chemical bonding of cross-linked glutaraldehyde-chitosan to the surface of a titanium wire using APTS. The fiber was applied for sampling of phytohormones in plant tissues, followed by HPLC-UV analysis. The structure and morphology of the fiber coating was investigated by FT-IR, SEM, EDX, XRD, and TGA techniques. A Box-Behnken design was implemented to optimize the experimental variables. The calibration graphs were linear over a wide linear range (0.5-200 µg L-1) with LODs over the range of 0.01-0.06 µg L-1. The intra-day and inter-day precisions were found to be 1.3-6.3% and 4.3-7.3%, respectively. The matrix effect values ranged from 86.5% to 111.7%, indicating that the complex sample matrices had an insignificant effect on the determination of phytohormones. The fiber was successfully employed for the direct-immersion SPME (DI-SPME-HPLC) analysis of the phytohormones in cucumber, tomato, date palm, and calendula samples.


Subject(s)
Chitosan , Glutaral , Plant Growth Regulators , Solid Phase Microextraction , Titanium , Chitosan/chemistry , Titanium/chemistry , Glutaral/chemistry , Plant Growth Regulators/chemistry , Plant Growth Regulators/analysis , Biocompatible Materials/chemistry , Cross-Linking Reagents/chemistry
17.
J Biotechnol ; 388: 35-48, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38641136

ABSTRACT

Whey protein isolate (WPI) was incorporated within calcium pectinate (CPT) beads in order to boost their anionic qualities and meliorate their glutaraldehyde (GA)-polyethyleneimine (PEI) grafting process. The Box-Behnken Design (BBD) verified that WPI inclusion significantly raised the GA-PEI-CPT-WPI beads immobilized ß-D-galactosidase (iß-GLD) activity. The BBD also revealed the optimal settings for WPI concentration, PEI pH, PEI concentration, and GA concentration, which were 2.91 %, 10.8, 3.5 %, and 2.24 %, respectively. The GA-PEI-CPT-WPI beads grafting process was scrutinized via FTIR, EDX, and SEM. The optimal GA-PEI-CPT-WPI immobilizers provided fine ß-GLD immobilization efficiencies, which reached up to 65.28 %. The free and GA-PEI-CPT-WPI iß-GLDs pH and temperature profiles were scrutinized. It was also unveiled that the thermal stability of the iß-GLD surpassed that of its free compeer as it provided lesser kd and ΔS values and larger t1/2, D-values, Ed, ΔH, and ΔG values. Furthermore, the iß-GLD provided 92.00±3.39 % activity after 42 storage days, which denoted its fine storage stability. The iß-GLD short duration (15 min) operational stability was also inspected, and 82.70±0.78 % activity was provided during the fifteenth degradation run. Moreover, the iß-GLD long duration (24 h) operational stability was inspected while degrading the lactose of buffered lactose solution (BLS) and cheese whey (CW). It was unveiled that 81.86±0.96 % and 73.58±2.24 % of the initial glucose were detected during the sixth degradation runs, respectively.


Subject(s)
Enzymes, Immobilized , Polyethyleneimine , Thermodynamics , Whey Proteins , Enzymes, Immobilized/chemistry , Enzymes, Immobilized/metabolism , Whey Proteins/chemistry , Kinetics , Polyethyleneimine/chemistry , Hydrogen-Ion Concentration , Pectins/chemistry , Pectins/metabolism , beta-Galactosidase/metabolism , beta-Galactosidase/chemistry , Glutaral/chemistry , Temperature , Enzyme Stability
18.
J Mater Sci Mater Med ; 35(1): 26, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683259

ABSTRACT

OBJECTIVE: Aortic valve neocuspidization (AVNeo) using autologous pericardium is a promising technique. Expected advantages are reduced immune response, appropriate biomechanics and lower treatment expenses. Nevertheless, autologous pericardium can be affected by patient's age and comorbidities. Usually, glutaraldehyde (GA) - fixed bovine pericardium is the basic material for aortic valve prostheses, easy available and carefully pre-examined in a standardized fabrication process. Aim of the study is the verification of autologous pericardial tissue homogeneity by analysing tissue thickness, biomechanics and extracellular matrix (ECM) composition. METHODS: Segments of human GA-fixed pericardium selected by the surgeon based on visual criteria for cusp pre-cut and remaining after surgical AV replacement were investigated in comparison to bovine standard tissue treated equivalently. Pericardium sampling was performed at up to three positions of each sutured cusp for histological or biomechanical analysis, according to tissue availability. RESULTS AND CONCLUSIONS: Human pericardia exhibited a higher heterogeneity in collagen content, density of vessel structures and elastic moduli. Thickness, vessel density and collagen and elastin content differed significantly between the species. In contrast, significant interindividual differences were detected in most properties investigated for human pericardial samples but only for tissue thickness in bovine tissues. Higher heterogeneity of human pericardium, differing vessel and collagen content compared to bovine state-of-the-art material might be detrimental for long term AV functionality or deterioration and have to be intensely investigated in patients follow up after autologous cusp replacement.


Subject(s)
Aortic Valve , Bioprosthesis , Heart Valve Prosthesis , Pericardium , Cattle , Humans , Aortic Valve/surgery , Animals , Biomechanical Phenomena , Male , Female , Aged , Extracellular Matrix/chemistry , Middle Aged , Collagen/chemistry , Glutaral/chemistry , Materials Testing , Heart Valve Prosthesis Implantation/methods
19.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 41(2): 368-375, 2024 Apr 25.
Article in Chinese | MEDLINE | ID: mdl-38686419

ABSTRACT

The freeze-drying is a technology that preserves biological samples in a dry state, which is beneficial for storage, transportation, and cost saving. In this study, the bovine pericardium was treated with a freeze-drying protectant composed of polyethylene glycol (PEG) and trehalose (Tre), and then freeze-dried. The results demonstrated that the mechanical properties of the pericardium treated with PEG + 10% w/v Tre were superior to those of the pericardium fixed with glutaraldehyde (GA). The wet state water content of the rehydrated pericardium, determined using the Karl Fischer method, was (74.81 ± 1.44)%, which was comparable to that of the GA-fixed pericardium. The dry state water content was significantly reduced to (8.64 ± 1.52)%, indicating effective dehydration during the freeze-drying process. Differential scanning calorimetry (DSC) testing revealed that the thermal shrinkage temperature of the pericardium was (84.96 ± 0.49) ℃, higher than that of the GA-fixed pericardium (83.14 ± 0.11) ℃, indicating greater thermal stability. Fourier transform infrared spectroscopy (FTIR) results showed no damage to the protein structure during freeze-drying. Hematoxylin and eosin (HE) staining demonstrated that the freeze-drying process reduced pore formation, prevented ice crystal growth, and resulted in a tighter arrangement of tissue fibers. The frozen-dried bovine pericardium was subjected to tests for cell viability and hemolysis rate. The results revealed a cell proliferation rate of (77.87 ± 0.49)%, corresponding to a toxicity grade of 1. Additionally, the hemolysis rate was (0.17 ± 0.02)%, which is below the standard of 5%. These findings indicated that the frozen-dried bovine pericardium exhibited satisfactory performance in terms of cytotoxicity and hemolysis, thus meeting the relevant standards. In summary, the performance of the bovine pericardium treated with PEG + 10% w/v Tre and subjected to freeze-drying could meet the required standards.


Subject(s)
Freeze Drying , Pericardium , Polyethylene Glycols , Trehalose , Animals , Pericardium/chemistry , Trehalose/chemistry , Trehalose/pharmacology , Cattle , Polyethylene Glycols/chemistry , Glutaral/chemistry , Calorimetry, Differential Scanning
20.
Chemphyschem ; 25(14): e202400259, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38662530

ABSTRACT

Crosslinking is usually required to improve the mechanical properties and stability of collagen-based scaffolds. Introducing exogenous crosslinks into collagen may however affect the collagen structure. Since the architecture of collagen is tied to its functionality, it is important to study the effect of crosslinking and to select a crosslinking method that preserves both the collagen structure and mechanical properties. The objective of this study is to compare the effect of various crosslinking methods on the structure and mechanical properties of bioartificial tendon-like materials (collagen multifilament bundles) fabricated by contact drawing. We examine both physical (ultraviolet light, UVC) and chemical (genipin, carbodiimide (EDC), and glutaraldehyde) crosslinking methods. The presence of collagen and the formation of well-ordered collagen structures are confirmed by attenuated total reflectance Fourier-transform infrared spectromicroscopy and wide-angle X-ray scattering for all crosslinking methods. The morphology of the collagen multifilament bundles is similar across crosslinking methods. Swelling of the multifilament bundles is dramatically reduced following crosslinking and varies by crosslinking method, with genipin- and carbodiimide-crosslinked specimens swelling the least. Ultimate tensile strength (UTS) and Young's modulus significantly improve for all crosslinked specimens compared to non-crosslinked specimens. Glutaraldehyde crosslinked collagen multifilament bundles display the highest UTS values ranging from 33.82±0.0 MPa to 45.59±0.76 MPa.


Subject(s)
Collagen , Cross-Linking Reagents , Cross-Linking Reagents/chemistry , Collagen/chemistry , Glutaral/chemistry , Ultraviolet Rays , Carbodiimides/chemistry , Iridoids/chemistry , Animals , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL