ABSTRACT
The unregulated use and improper management of herbicides can cause negative effects on non-target species and promote changes in biological communities. Therefore, the current study is aimed at understanding morphoanatomical responses and effects on seedling development induced by the herbicides glyphosate and saflufenacil in Enterolobium contortisiliquum, a non-target tropical species. The plants were cultivated in a greenhouse and subjected to herbicides at doses of 0, 160, 480, and 1440 g a.e ha-1 for glyphosate, and 0, 25, 50, and 100 g a.i ha-1 for saflufenacil. We conducted visual and morphological assessments over 90 days post-application. Leaf samples were collected 12 days after the application for anatomical analysis, and we also performed a micromorphometric analysis of the leaf tissues. Biomarkers of phytotoxicity were identified in plants exposed to both herbicides, even at the lowest doses, including in leaves without visual symptoms. The main morphological alterations were the decrease in growth, stem diameter, and dry mass. Furthermore, the leaves and stems visually exhibited chlorosis and necrosis. Both herbicides triggered anatomical modifications such as significant changes (p < 0.05) in the thickness of leaf tissues, hypertrophy, cell collapse, and changes in epicuticular waxes. However, the alterations induced by glyphosate were more widespread compared to saflufenacil, encompassing alterations in the root system. We confirmed that the different mechanisms of action of each herbicide and the existence of an underground reserve system in this species are intrinsically linked to the morphological and developmental responses described. Our findings suggest that E. contortisiliquum could be a potential bioindicator species for these herbicides in the environment, even at concentrations lower than those typically recommended for field application.
Subject(s)
Fabaceae , Glycine , Glyphosate , Herbicides , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Fabaceae/drug effects , Trees/drug effects , Plant Leaves/drug effects , Seedlings/drug effects , Seedlings/growth & development , Pyrimidinones , SulfonamidesABSTRACT
Hymenaea stigonocarpa Mart. ex Hayne has leaves with adaxial and abaxial epidermis covered by a very thick cuticle, in addition to anatomical structures involved in reducing the amount of herbicide absorbed by plants. Thus, we tested the hypothesis that H. stigonocarpa is potentially resistant to the herbicide glyphosate, exposing the plants to different doses (0, 96, 240, 480, and 960 g a.e ha-1). We carried out assessments of the symptoms, anatomy, growth and physiology of the plants and found that exposure to glyphosate negatively affected the height and number of leaves of the plants. Leaf fall resulted in a reduction in the photosynthetic capacity of plants, which responded by investing in stem diameter. Despite this, no visual symptoms of glyphosate toxicity were observed at the concentrations evaluated and histochemical tests did not detect signs of oxidative stress in the leaves, nor starch accumulation, indicating that carbohydrate translocation was not impaired. These results confirm our hypothesis of tolerance of H. stigonocarpa to glyphosate. Furthermore, plants exposed to the lowest doses of glyphosate (96 and 240 g ha-1) showed good growth, photosynthesis, transpiration and photochemical potential responses, indicating a hormetic effect in this application range.
Subject(s)
Glycine , Glyphosate , Herbicides , Photosynthesis , Glycine/analogs & derivatives , Glycine/toxicity , Photosynthesis/drug effects , Plant Leaves/drug effects , Plant Leaves/chemistry , Herbicide ResistanceABSTRACT
Phosphonates (PHTs), organic compounds with a stable C-P bond, are widely distributed in nature. Glyphosate (GP), a synthetic PHT, is extensively used in agriculture and has been linked to various human health issues and environmental damage. Given the prevalence of GP, developing cost-effective, on-site methods for GP detection is key for assessing pollution and reducing exposure risks. We adopted Agrobacterium tumefaciens CHLDO, a natural GP degrader, as a host and the source of genetic parts for constructing PHT biosensors. In this bacterial species, the phn gene cluster, encoding the C-P lyase pathway, is regulated by the PhnF transcriptional repressor. We selected the phnG promoter, which displays a dose-dependent response to GP, to build a set of whole-cell biosensors. Through stepwise genetic optimization of the transcriptional cascade, we created a whole-cell biosensor capable of detecting GP in the 0.25-50 µM range in various samples, including soil and water.
Subject(s)
Agrobacterium tumefaciens , Biosensing Techniques , Glycine , Glyphosate , Organophosphonates , Agrobacterium tumefaciens/genetics , Biosensing Techniques/methods , Glycine/analogs & derivatives , Glycine/pharmacology , Glycine/metabolism , Organophosphonates/metabolism , Promoter Regions, Genetic/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Multigene Family , LyasesABSTRACT
As the most abundant pollinator insect in crops, Apis mellifera is a sentinel species of the pollinator communities. In these ecosystems, honey bees of different ages and developmental stages are exposed to diverse agrochemicals. However, most toxicological studies analyse the immediate effects during exposure. Late effects during adulthood after early exposure to pollutants during larval development are poorly studied in bees. The herbicide glyphosate (GLY) is the most applied pesticide worldwide. GLY has been detected in honey and beebread from hives near treated crops. Alterations in growth, morphogenesis or organogenesis during pre-imaginal development could induce late adverse effects after the emergence. Previous studies have demonstrated that GLY alters honey bee development, immediately affecting survival, growth and metabolism, followed by late teratogenic effects. The present study aims to determine the late impact on the behaviour and physiology of adult bees after pre-imaginal exposure to GLY. For that, we reared brood in vitro or in the hive with sub-chronic exposure to the herbicide with the average detected concentration in hives. Then, all newly emerged bees were reared in an incubator until maturity and tested when they became nurse-aged bees. Three behavioural responses were assessed as markers of cognitive and physiological impairment. Our results show i) decreased sensitivity to sucrose regardless of the rearing procedure, ii) increased choice latency and locomotor alterations during chemotaxis and iii) impaired associative learning. These late toxicity signs could indicate adverse effects on task performance and colony efficiency.
Subject(s)
Behavior, Animal , Glycine , Glyphosate , Herbicides , Larva , Animals , Bees/drug effects , Bees/physiology , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Larva/drug effects , Larva/growth & development , Behavior, Animal/drug effectsABSTRACT
The study investigated guanidinoacetic acid (GAA) supplementation with varying dietary digestible arginine (Arg) and glycine+serine (Gly+Ser) concentrations in the starter phase, exploring respective carry-over effects on growth performance, blood chemistry, incidence of pectoral myopathies and proximate composition in broilers. A total of 2,800 one-day-old male broiler chicks were distributed in a central composite design with 2 factors and double experimental mesh, represented by supplementation or omission of 0.6 g per kg of GAA, with a central point represented by 107% of Arg and 147% of Gly+Ser, 4 factorial points (combinations of Arg/Gly+Ser concentrations: 96.4/132.5%; 117.6/132.5%; 96.4/161.5%, and 117.6/132.5%), and 4 axial points (combinations of axial points estimated for Arg and Gly+Ser, with the central points of 92/147%; 122/147%; 107/126.5, and 107/167.5%), totaling 18 treatments, 4 repetitions to factorial and axial points, 24 replicates to the central point, and 25 birds per pen. Feed conversion ratio (FCR) from d 1 to 10 had a linear response (P = 0.009) for the decreasing Arg content and a quadratic response (P = 0.047) for Gly+Ser concentrations. Broilers supplemented GAA had lower FCR compared with nonsupplemented groups from d 1 to 10 (P = 0.048) and d 1 to 42 (P = 0.026). Aspartate aminotransferase (AST) exhibited increasing and decreasing linear effects as a function of Arg (P = 0.008) and Gly+Ser (P = 0.020) concentrations, respectively. Guanidinoacetic acid decreased serum AST (P = 0.028). Guanidinoacetic acid reduced moderate + severe (P = 0.039) and mild (P = 0.015) Wooden Breast scores. The occurrence of normal White Striping increased (P = 0.002), while severe score was reduced (P = 0.029) with GAA supplementation. In conclusion, increased digestible Arg:Lys and 14% and 6% above the recommendations (107% and 147%), respectively, provided improved FCR during the starter phase. Dietary GAA supplementation (0.6 g per kg) improved FCR, reduced severity of breast myopathies and appears to have reduced muscle damage in broilers fed plant-based diets.
Subject(s)
Animal Feed , Animal Nutritional Physiological Phenomena , Arginine , Chickens , Diet , Dietary Supplements , Glycine , Serine , Animals , Chickens/physiology , Chickens/growth & development , Glycine/analogs & derivatives , Glycine/administration & dosage , Glycine/pharmacology , Animal Feed/analysis , Arginine/administration & dosage , Arginine/pharmacology , Dietary Supplements/analysis , Diet/veterinary , Male , Animal Nutritional Physiological Phenomena/drug effects , Serine/administration & dosage , Serine/pharmacology , Random Allocation , Pectoralis MusclesABSTRACT
Agrochemicals pose significant threats to the survival of bees, yet the physiological impacts of sublethal doses on stingless bees remain poorly understood. This study investigated the effects of acute oral exposure to three commercial formulations of agrochemicals [CuSO4 (leaf fertilizer), glyphosate (herbicide), and spinosad (bioinsecticide)] on antioxidant enzymes, malondialdehyde content (MDA), nitric oxide (NO) levels, and total hemocyte count (THC) in the stingless bee Partamona helleri. Foragers were exposed to lethal concentrations aimed to kill 5% (LC5) of CuSO4 (120 µg mL-1) or spinosad (0.85 µg mL-1) over a 24-h period. Glyphosate-exposed bees received the recommended label concentration (7400 µg mL-1), as they exhibited 100% survival after exposure. Ingestion of CuSO4 or glyphosate-treated diets by bees was reduced. Levels of NO and catalase (CAT) remained unaffected at 0 h or 24 h post-exposure. Superoxide dismutase (SOD) activity was higher at 0 h compared to 24 h, although insignificantly so when compared to the control. Exposure to CuSO4 reduced glutathione S-transferase (GST) activity at 0 h but increased it after 24 h, for both CuSO4 and glyphosate. MDA levels decreased after 0 h exposure to CuSO4 or spinosad but increased after 24 h exposure to all tested agrochemicals. THC showed no difference among glyphosate or spinosad compared to the control or across time. However, CuSO4 exposure significantly increased THC. These findings shed light on the physiological responses of stingless bees to agrochemicals, crucial for understanding their overall health.
Subject(s)
Agrochemicals , Antioxidants , Hemocytes , Animals , Bees/drug effects , Bees/physiology , Antioxidants/metabolism , Agrochemicals/toxicity , Hemocytes/drug effects , Superoxide Dismutase/metabolism , Glycine/analogs & derivatives , Glycine/toxicity , Catalase/metabolismABSTRACT
Herbicide-resistant Conyza spp. are a threat to many crops. These widespread weeds are closely related species and often cooccur. To characterize the origins of their resistance and the mechanisms underlying their spread, we assessed the genomic variation in glyphosate-resistant Conyza spp. in Brazil. Twenty populations were sampled from soybean fields across four macroregions (MRSs). A genotyping-by-sequencing study resulted in 2,998 single-nucleotide polymorphisms (SNPs) obtained for C. bonariensis (L.) and the closely related C. sumatrensis (Retz) E. Walker. Higher genomic diversity (π) and heterozygosity (HO/HE) and lower inbreeding coefficient (FIS) values were detected in populations of Conyza spp. from MRS 1 (southern) than in those from other MRSs. Strong genomic structure clustered individuals into three groups (FST = 0.22; p value = 0.000) associated with the MRSs. Thus, resistance to glyphosate originated from independent selection in different MRSs across Brazil. Our dataset supports the occurrence of intraspecific gene flow in Brazil and identified individuals of C. bonariensis that did not group within species. These findings suggest that allelic introgressions within and among species have impacted the evolution and spread of resistance to glyphosate in Conyza spp. We discuss how to mitigate new resistance cases, particularly for the released stacked traits herbicide tolerance in soybeans.
Subject(s)
Conyza , Gene Flow , Glycine max , Glyphosate , Herbicide Resistance , Polymorphism, Single Nucleotide , Glycine max/genetics , Glycine max/drug effects , Herbicide Resistance/genetics , Conyza/genetics , Conyza/drug effects , Brazil , Herbicides/pharmacology , Glycine/analogs & derivatives , Glycine/pharmacology , Genomics/methodsABSTRACT
Soil structural degradation and water erosion processes were observed even in no-tillage schemes in the Pampas region. Within these conservation systems, agrochemical application per hectare is one of the highest globally. Thus, this entails a serious risk of water contamination. The objectives of this study were to (1) test the hypothesis that the hydrological dynamics and sediment concentration related to surface runoff were conditioned by soil structure regardless of the presence of maize (Zea mays L.) crop residue and (2) assess the incidence of maize crop residue on glyphosate and aminomethylphosphonic acid (AMPA) concentration in runoff. The soil under study corresponded to Arroyo Dulce Series (Typic Argiudoll silty loam soil). Rain simulations were performed in the laboratory on undisturbed soil samples. Total runoff and infiltration rate were similar between treatments with C(+) and without C(-) maize crop residues (C(+) 1381.40 mL and 14.27 mm h-1, C(-): 1529.70 mL and 21.67 mm h-1). The C(-) treatments showed a higher sediment concentration than C(+) (1.58 and 0.42 g 100 mL-1, respectively). Glyphosate and AMPA average values in runoff were 15.9 and 33.9 µg L-1. High variability of the hydro-physical properties and occurrence of soil structure, particularly platy ones, were detected. The hydrological variables were conditioned mainly by the occurrence of platy structures regardless of crop residue presence. Glyphosate concentration was increased in the first runoff event by the presence of corn residues, while AMPA concentrations were higher in the second runoff event in both residue treatments. In this study, maize residue on the soil surface protected the soil from sediment detachment but did not change runoff or infiltration. Thus, the implementation of agricultural management practices that promote vegetative residue cover has shown positive results to erosion.
Subject(s)
Environmental Monitoring , Glycine , Glyphosate , Herbicides , Rain , Soil , Zea mays , Glycine/analogs & derivatives , Glycine/analysis , Soil/chemistry , Herbicides/analysis , Agriculture , Soil Pollutants/analysis , Isoxazoles/analysis , Water Pollutants, Chemical/analysis , Crops, Agricultural , Water Movements , Tetrazoles/analysisABSTRACT
The herbicide glyphosate (N-(phosphonomethyl)glycine) efficiently eliminates weeds, is frequently present in surface waters, and may damage the health of various non-target organisms. The main objective of this study was to investigate cytotoxic and genotoxic effects in erythrocytes, DNA, and chromosomes of native South American fish Astyanax lacustris exposed to a glyphosate-based commercial herbicide Templo®. The presenty study evaluated the presence of micronuclei (MN), chromosomal aberrations (CA), DNA damage revealed by comet assay, and cellular morphological changes (CMC) as biomarkers. The A. lacustris specimens were exposed to Templo® for 96â¯h at concentrations below the permitted Brazilian legislation for freshwater environments. The glyphosate-based herbicide caused MN formation, an increased incidence of CA, DNA damage, and several types of CMC in all tested concentrations on A. lacustris. Notably, analyses were significant (p<0.05) for all concentrations, except in the frequency mean of MN at 3.7 µg/L. Thus, considering the intensive use of commercial glyphosate formulations in crops, the herbicide Templo® represents a potential risk of genotoxicity and cytotoxicity for aquatic organisms. Therefore, environmental protection agencies must review regulations for glyphosate-based herbicides in freshwater environments.
Subject(s)
Characidae , DNA Damage , Glycine , Glyphosate , Herbicides , Water Pollutants, Chemical , Glycine/analogs & derivatives , Glycine/toxicity , Herbicides/toxicity , Animals , DNA Damage/drug effects , Characidae/genetics , Water Pollutants, Chemical/toxicity , Chromosome Aberrations/chemically induced , Chromosome Aberrations/drug effects , Micronucleus Tests , Comet Assay , BrazilABSTRACT
The variation in light within the environment triggers morphophysiological changes in plants and can lead to distinct responses in sun-exposed or shaded plants to glyphosate. The response of Urochloa genotypes subjected to desiccation with 2160, 1622.4, 1080, 524.4, 273.6, and 0.0 g ha-1 of glyphosate was evaluated in full sun and shade conditions. Cayana grass, mulato II grass, and sabiá grass - hybrids recently launched on the market, in addition to palisade grass and congo grass were evaluated. Under full sun, we achieved control of congo grass using 1080 g ha-1 of glyphosate, while the other grasses required 2160 g ha-1. In the low-light environment, sabiá grass was effectively controlled with 524.4 g ha-1 of glyphosate, but the other grasses needed 273.6 g ha-1. In shading, compared to full sun, the savings with glyphosate were 75 and 76% for the control of congo grass and sabiá grass, respectively, and 87% for palisade grass, mulato II grass and cayana grass. Increasing glyphosate doses leads to a decline in the quantum efficiency of photosystem II and in the electron transport rate, especially in the shade. Urochloa genotypes are more sensitive to glyphosate in the shade, which must be considered when determining the herbicide dose.
Subject(s)
Glycine , Glyphosate , Herbicides , Poaceae , Glycine/analogs & derivatives , Glycine/pharmacology , Herbicides/pharmacology , Poaceae/drug effects , Poaceae/radiation effects , Poaceae/genetics , Poaceae/metabolism , Light , SunlightABSTRACT
Uncontrolled use of pesticides has caused a dramatic reduction in the number of pollinators, including bees. Studies on the effects of pesticides on bees have reported effects on both metabolic and neurological levels under chronic exposure. In this study, variations in the differential expression of head and thorax-abdomen proteins in Africanized A. mellifera bees treated acutely with sublethal doses of glyphosate and imidacloprid were studied using a proteomic approach. A total of 92 proteins were detected, 49 of which were differentially expressed compared to those in the control group (47 downregulated and 2 upregulated). Protein interaction networks with differential protein expression ratios suggested that acute exposure of A. mellifera to sublethal doses of glyphosate could cause head damage, which is mainly associated with behavior and metabolism. Simultaneously, imidacloprid can cause damage associated with metabolism as well as, neuronal damage, cellular stress, and impairment of the detoxification system. Regarding the thorax-abdomen fractions, glyphosate could lead to cytoskeleton reorganization and a reduction in defense mechanisms, whereas imidacloprid could affect the coordination and impairment of the oxidative stress response.
Subject(s)
Glycine , Glyphosate , Neonicotinoids , Nitro Compounds , Proteome , Animals , Bees/drug effects , Neonicotinoids/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Nitro Compounds/toxicity , Imidazoles/toxicity , Insecticides/toxicityABSTRACT
Microplastics (MPs) and glyphosate-based herbicides (GBH) are among the most common contaminants in aquatic environments. In Brazilian rivers, both contaminants were found in elevated levels, leading to a high probability of their association, which can alter their individual effects and potentially intensify their toxicity. This study evaluated the isolated and combined effects of polyethylene microplastics (PE-MPs) and GBH on Oreochromis niloticus using multi-biomarkers of toxicity. The fish were subjected to a 96-h exposure period, with concentrations set based either isolated, PE-MPs group (5 mg L-1), GBH group (5 mg L-1), or in a group of associated contaminants (GAC), PE-MP + GBH (5 mg L-1 + 5 mg L-1). Toxicity effects were evaluated using biochemical, cytogenetic, hematological, and histopathological biomarkers. We observed change in erythrocyte parameters leading to macrocytic normochromic anemia in GAC. Leukocyte parameters indicate a nonspecific immunosuppression caused by the exposure of associated contaminants, besides the attempts to repair damage caused by PE-MPs. Histopathological markers indicate damage to tissues exposed to contaminants. Besides, there were morphophysiological adjustments on gills, with proliferation and hypertrophy of mitochondria-rich cells on GBH and GAC, besides epithelium ruptures, which were mostly present in the exposed groups. Therefore, this study indicates that PE-MPs and GBHs present toxic effects in O. niloticus with the used concentrations, intensified by the association of contaminants. Thus, multi-biomarkers were useful key to verify toxicity, providing data to the investigation of high levels of contaminant's mixture toxicity present in aquatic environments.
Subject(s)
Biomarkers , Cichlids , Gills , Glycine , Glyphosate , Herbicides , Microplastics , Polyethylene , Water Pollutants, Chemical , Animals , Gills/drug effects , Gills/pathology , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Biomarkers/metabolism , Polyethylene/toxicity , Herbicides/toxicity , BrazilABSTRACT
Glyphosate-based herbicides (GBHs) are considered endocrine disruptors that affect the female reproductive tract of rats and ewe lambs. The present study aimed to investigate the impact of neonatal exposure to a low dose of a GBH on the ovarian follicular reserve of ewe lambs and the response to a gonadotropic stimulus with porcine FSH (pFSH). To this end, ewe lambs were orally exposed to an environmentally relevant GBH dose (1 mg/kg/day) or vehicle (Control) from postnatal day (PND) 1 to PND14, and then some received pFSH (50 mg/day) between PND41 and 43. The ovaries were dissected, and follicular types and gene expression were assessed via RT-PCR. The treatments did not affect the body weight of animals, but pFSH increased ovarian weight, not observed in GBH-exposed lambs. GBH-exposed lambs showed decreased Estrogen receptor-alpha (56%), Progesterone receptor (75%), Activin receptor II (ACVRII) (85%), and Bone morphogenetic protein 15 (BMP15) (88%) mRNA levels. Control lambs treated with pFSH exhibited downregulation of Follistatin (81%), ACVRII (77%), BMP15 (93%), and FSH receptor (FSHr) (72%). GBH-exposed lambs treated with pFSH displayed reduced ACVRII (68%), BMP15 (81%), and FSHr (50%). GBH-exposed lambs also exhibited decreased Anti-Müllerian hormone expression in primordial and antral follicles (27%) and (54%) respectively) and reduced Bone morphogenetic protein 4 (31%) expression in primordial follicles. Results suggest that GBH disrupts key follicular development molecules and interferes with pFSH action in ovarian receptors, decreasing the ovarian reserve. Future studies should explore whether this decreased ovarian reserve impairs adult ovarian function and its response to superovulation stimuli.
Subject(s)
Glycine , Glyphosate , Herbicides , Ovarian Reserve , Ovary , Animals , Female , Herbicides/toxicity , Sheep/physiology , Glycine/analogs & derivatives , Glycine/toxicity , Ovary/drug effects , Ovarian Reserve/drug effects , Endocrine Disruptors/toxicity , Ovarian Follicle/drug effects , Follicle Stimulating Hormone/bloodABSTRACT
Roundup Transorb® (RDT) is the most popular glyphosate-based herbicide (GHB) used in agriculture, and its impact extends to non-target organisms. The annual killifish Austrolebias charrua is an endangered species endemic to southern South America and inhabits temporary ponds. This study evaluates the effects of RDT concentrations (0.065 and 5 mg/L GAE) on A. charrua exposed for 96 h. Gene expression of cat, sod2, gstα, gclc, and ucp1 was evaluated on the liver and gills. Highlighting that even at low concentrations permitted by Brazilian legislation, the RDT can have adverse effects on A. charrua.
Subject(s)
Antioxidants , Glycine , Glyphosate , Herbicides , Water Pollutants, Chemical , Animals , Water Pollutants, Chemical/toxicity , Herbicides/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Pilot Projects , Fundulidae/genetics , Gene Expression/drug effects , Superoxide Dismutase/metabolism , Liver/metabolism , Liver/drug effects , Brazil , Gills/metabolism , KillifishesABSTRACT
Glyphosate is the most commercialized herbicide in Brazil and worldwide, and this has become a worrying scenario in recent years. In 2015 glyphosate was classified as potentially carcinogenic by the World Health Organization, which opened avenues for numerous debates about its safe use regarding non-target species' health, including humans. This review aimed to observe the impacts of glyphosate and its formulations on the gut microbiota, as well as on the gut microstructure and animal metabolism. A systematic review was conducted based on the PRISMA recommendations, and the search for original articles was performed in Pubmed/Medline, Scopus and Web of Science databases. The risk of bias in the studies was assessed using the SYRCLE strategy. Our findings revealed that glyphosate and its formulations are able to induce intestinal dysbiosis by altering bacterial metabolism, intestinal permeability, and mucus secretion, as well as causing damage to the microvilli and the intestinal lumen. Additionally, immunological, enzymatic and genetic changes were also observed in the animal models. At the metabolic level, damage was observed in lipid and energy metabolism, the circulatory system, cofactor and vitamin metabolism, and replication, repair, and translation processes. In this context, we pointed out that the studies revealed that these alterations, caused by glyphosate-based herbicides, can lead to intestinal and systemic diseases, such as Crohn's disease and Alzheimer's disease.
Subject(s)
Gastrointestinal Microbiome , Glycine , Glyphosate , Herbicides , Glycine/analogs & derivatives , Glycine/toxicity , Gastrointestinal Microbiome/drug effects , Herbicides/toxicity , Animals , Humans , Bacteria/classification , Bacteria/drug effects , Bacteria/genetics , Bacteria/metabolism , Dysbiosis/chemically induced , Dysbiosis/microbiologyABSTRACT
The growing reliance on pesticides for pest management in agriculture highlights the need for new analytical methods to detect these substances in food and water. Our research introduces a SPRWG-(C18H37) lipopeptide (LP) as a functional analog of acetylcholinesterase (AChE) for glyphosate detection in environmental samples using phosphatidylcholine (PC) monolayers. This LP, containing hydrophilic amino acids linked to an 18-carbon aliphatic chain, alters lipid assembly properties, leading to a more flexible system. Changes included reduced molecular area and peak pressure in Langmuir adsorption isotherms. Small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) analyses provided insights into the LP's structural organization within the membrane and its interaction with glyphosate (PNG). Structural and geometric parameters, as derived from in silico molecular dynamics simulations (MD), substantiated the impact of LP on the monolayer structure and the interaction with PNG. Notably, the presence of the LP and glyphosate increased charge transfer resistance, indicating strong adherence of the monolayer to the indium tin oxide (ITO) surface and effective pesticide interaction. A calibration curve for glyphosate concentration adjustment revealed a detection limit (LOD) of 24 nmol L-1, showcasing the high sensitivity of this electrochemical biosensor. This LOD is significantly lower than that of a similar colorimetric biosensor in aqueous media with a detection limit of approximately 0.3 µmol L-1. Such an improvement in sensitivity likely stems from adding a polar residue to the amino acid chain of the LP.
Subject(s)
1,2-Dipalmitoylphosphatidylcholine , Glycine , Glyphosate , Lipopeptides , Molecular Dynamics Simulation , Glycine/chemistry , Glycine/analogs & derivatives , Glycine/analysis , 1,2-Dipalmitoylphosphatidylcholine/chemistry , Lipopeptides/chemistry , Lipopeptides/analysis , Water/chemistry , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Surface PropertiesABSTRACT
Communities neighboring monoculture plantations are vulnerable to different forms of pollution associated with agro-industrial operations. Herein, we examine the case of El Tiple, a rural Afro descendant community embedded within one of the largest sugarcane plantations in the Americas. We implemented a participatory approach to assess water pollution, exposure via water ingestion, and non-carcinogenic health risks associated with the use of local water sources available to the community. We conducted household surveys to unveil demographic characteristics and family dynamics linked to water consumption. Additionally, we measured water quality parameters and assessed the concentration glyphosate, its major metabolite (aminomethylphosphonic acid) and metals and metalloids. Drinking water El Tiple households is sourced from three primary sources: the local aqueduct system, water delivery trucks, and private deep wells. Tests on water samples from both the local aqueduct and delivery trucks showed no traces of pesticides, metals, or metalloids surpassing regulatory limits set by Colombian or EPA standards. However, we found concentration of contaminants of primary concern, including mercury (up to 0.0052 ppm) and lead (up to 0.0375 ppm) that exceed the permissible regulatory thresholds in water from groundwater wells. Residents of the peripheric subdivisions of El Tiple are four times more reliant on well water extraction than residents of the central area of the town due to lack of access to public drinking water and sanitation infrastructure. Finally, adult women and school-age children have a higher health risk associated with exposure to local pollutants than adult men due to their constant presence in the town. We conclude that expanding the coverage of clean water and sanitation infrastructure to include all households of the community would be the most recommended measure to minimize exposure and risk via ingestion of water pollutants.
Subject(s)
Saccharum , Water Pollutants, Chemical , Colombia , Water Pollutants, Chemical/analysis , Humans , Risk Assessment , Agriculture , Drinking Water/chemistry , Environmental Monitoring , Water Pollution/statistics & numerical data , Water Pollution/analysis , Glycine/analogs & derivatives , Glycine/analysis , Environmental Exposure/statistics & numerical data , Environmental Exposure/analysis , Water Supply , GlyphosateABSTRACT
Pesticide mixtures are frequently utilized in agriculture, yet their cumulative effects on aquatic organisms remain poorly understood. Aquatic animals can be effective bioindicators and invasive bivalves, owing to their widespread distribution, provide an opportunity to assess these impacts. Glyphosate and imidacloprid, among the most prevalent pesticides globally, are frequently detected in freshwater systems in South America. This study aims to understand the cumulative effects of pesticide mixtures on aquatic organisms, using invasive Corbicula largillierti clams from a natural stream in northwestern Argentina. We conducted 48-hour exposure experiments using two concentrations of imidacloprid (20 and 200 µg L-1 a.i), two concentrations of glyphosate (0.3 and 3 mg L-1 a.i), and two combinations of these pesticides (both at low and high concentrations, respectively), simulating the direct contamination of both pesticides based on their agronomic recipe and observed values in Argentine aquatic environments. Clam metabolism was assessed through the examination of multiple oxidative stress parameters and measuring oxygen consumption rate as a proxy for standard metabolic rate (SMR). Our findings revealed that imidacloprid has a more pronounced effect compared to glyphosate. Imidacloprid significantly decreased clam SMR and cellular levels of reduced glutathione (GSH). However, when both pesticides were present, also cellular glycogen and thiobarbituric acid-reactive substances (TBARS) were affected. Proteins and glutathione S-Transferase (GST) activity were unaffected by either pesticide or their mixture at the assayed concentrations, highlighting the need to test several stress parameters to detect toxicological impacts. Our results indicated additive effects of imidacloprid and glyphosate across all measured parameters. The combination of multiple physiological and cytological biomarkers in invasive bivalves offers significant potential to enhance biomonitoring sensitivity and obtain insights into the origins and cellular mechanisms of chemical impacts. These studies can improve pollution regulatory policies and pesticide management.
Subject(s)
Biomarkers , Corbicula , Glycine , Glyphosate , Neonicotinoids , Nitro Compounds , Water Pollutants, Chemical , Neonicotinoids/toxicity , Animals , Nitro Compounds/toxicity , Water Pollutants, Chemical/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Biomarkers/metabolism , Argentina , Corbicula/drug effects , Herbicides/toxicity , Environmental Monitoring , Oxidative Stress/drug effects , Insecticides/toxicityABSTRACT
In Brazil, glyphosate is present in more than 130 commercial formulations, and its toxic effects have already been tested in different species to understand its impact on biota Decapod crustaceans are widely used as experimental models due to their biology, sensitivity to pollutants, ease of collection, and maintenance under laboratory conditions. We evaluated the changes in metabolism (hemolymph) and oxidative balance markers (gill and hepatopancreas) of a crayfish (Parastacus promatensis) after exposure to Roundup® (active ingredient: glyphosate). The crayfish were captured in the Garapiá stream within the Center for Research and Conservation of Nature Pró-Mata, Brazil. We collected adult animals outside (fall) and during (spring) the breeding season. The animals were transported in buckets with cooled and aerated water from the collection site to the aquatic animal maintenance room at the university. After acclimatization, the animals were exposed to different concentrations of glyphosate (0, 65, 260, 520, and 780 µg/L). The results showed a significant variation in the hemolymph glucose, lactate, and protein levels. We observed variations in the tissue antioxidant enzymatic activity after exposure to glyphosate. Finally, the increase in oxidative damage required a high energy demand from the animals to maintain their fitness, which makes them more vulnerable to stress factors added to the habitat.
Subject(s)
Gills , Glycine , Glyphosate , Hemolymph , Hepatopancreas , Oxidative Stress , Water Pollutants, Chemical , Animals , Hemolymph/metabolism , Hemolymph/drug effects , Hepatopancreas/drug effects , Hepatopancreas/metabolism , Water Pollutants, Chemical/toxicity , Glycine/analogs & derivatives , Glycine/toxicity , Oxidative Stress/drug effects , Gills/metabolism , Gills/drug effects , Herbicides/toxicity , Astacoidea/drug effects , Astacoidea/physiology , BrazilABSTRACT
Adverse pregnancy outcomes have been associated with the presence of glyphosate (G) in umbilical cord, serum, and urine samples from pregnant women. Our aim was to study the effect of G on blastocyst implantation using an in vitro mouse model, and the migration and acquisition of endothelial phenotype of the human trophoblastic HTR8/SVneo (H8) cells. In mouse blastocysts, no differences in attachment time and implantation outgrowth area were observed after G exposure. H8 cell migration was stimulated by 0.625 µM G without cytotoxicity. After 6 h, the mRNA expression of vascular endothelial growth factor (VEGF) and C-C motif chemokine ligand 2 (CCL2) was upregulated in H8 cells exposed to 1.25 µM G when compared vehicle-treated cells (p ≤ 0.05). No differences were observed in interleukin 11, VEGF receptor 1, and coagulation factor II thrombin receptor in H8 cells exposed to different concentrations of G for 6 h compared to the vehicle. Interestingly, exposure to G did not alter angiogenesis as measured by a tube formation assay. Taken all together, these results suggest that G exposure may contribute as a risk factor during pregnancy, due to its ability to alter trophoblast migration and gene expression.