Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 845
Filter
1.
Sci Rep ; 14(1): 15166, 2024 07 02.
Article in English | MEDLINE | ID: mdl-38956077

ABSTRACT

The study aimed to investigate molecularly the presence of flea-borne viruses in infested small ruminants with fleas. It was carried out in Egypt's Northern West Coast (NWC) and South Sinai Governorate (SSG). Three specific primers were used targeting genes, ORF103 (for Capripoxvirus and Lumpy skin disease virus), NS3 (for Bluetongue virus), and Rdrp (for Coronavirus), followed by gene sequencing and phylogenetic analyses. The results revealed that 78.94% of sheep and 65.63% of goats were infested in the NWC area, whereas 49.76% of sheep and 77.8% of goats were infested in the SSG region. Sheep were preferable hosts for flea infestations (58.9%) to goats (41.1%) in the two studied areas. Sex and age of the animals had no effects on the infestation rate (p > 0.05). The season and site of infestation on animals were significantly different between the two areas (p < 0.05). Ctenocephalides felis predominated in NWC and Ctenocephalides canis in SSG, and males of both flea species were more prevalent than females. Molecular analysis of flea DNA revealed the presence of Capripoxvirus in all tested samples, while other viral infections were absent. Gene sequencing identified three isolates as sheeppox viruses, and one as goatpox virus. The findings suggest that Capripoxvirus is adapted to fleas and may be transmitted to animals through infestation. This underscores the need for ongoing surveillance of other pathogens in different regions of Egypt.


Subject(s)
Phylogeny , Siphonaptera , Animals , Egypt/epidemiology , Sheep , Siphonaptera/virology , Goats/virology , Capripoxvirus/genetics , Capripoxvirus/isolation & purification , Capripoxvirus/classification , Flea Infestations/epidemiology , Flea Infestations/veterinary , Male , Female , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology
2.
Acta Vet Hung ; 72(2): 133-139, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38900584

ABSTRACT

This study investigated the sero-epidemiology of bluetongue in ruminants in North-Western Pakistan. A total of 3,173 serum samples were collected from small (n = 1,651) and large (n = 1,522) ruminants being reared by farmers in 14 districts. Antibodies to bluetongue virus (BTV) were detected using competitive ELISA. The overall prevalence of BTV antibodies was 65%. A significant association (P < 0.05) between the prevalence of BTV antibodies and the risk factors including sex, species, age, area, husbandry practices and breed was shown by univariate analysis. In multivariate analysis, the seroprevalence was 6.5 (95% CL = 3.7-11.4), 5.9 (95% CL = 3.8-9.4) and 2.4 (95% CL = 1.5-3.7) times higher in buffaloes, cattle and goats than sheep, respectively. The seroprevalence was 1.4 (95% CL = 1.1-1.7) times higher in local breeds than in cross/exotic breeds. The seroprevalence was 1.6 (95% CL = 1.1 to 2.3) times higher in sedentary animals than in nomadic animals. The seroprevalence was significantly associated with age. Further work is required to determine the BTV serotypes prevalent in the study area for effective control of the disease.


Subject(s)
Bluetongue virus , Bluetongue , Goat Diseases , Animals , Pakistan/epidemiology , Seroepidemiologic Studies , Bluetongue/epidemiology , Bluetongue/virology , Bluetongue virus/immunology , Female , Male , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep , Goats , Cattle , Antibodies, Viral/blood , Ruminants/virology , Risk Factors , Cattle Diseases/epidemiology , Cattle Diseases/virology , Animal Husbandry , Sheep Diseases/epidemiology , Sheep Diseases/virology , Prevalence
3.
Vet Med Sci ; 10(4): e1477, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896036

ABSTRACT

Tick-borne encephalitis virus (TBEV) is a significant cause of flaviviral infections affecting the human central nervous system, primarily transmitted through tick bites and the consumption of unpasteurized milk. This study aimed to assess the prevalence of TBEV and identify new natural foci of TBEV in livestock milk. In this cross-sectional study, unpasteurized milk samples were collected from livestock reared on farms and analysed for the presence and subtyping of TBEV using nested reverse transcription-polymerase chain reaction , alongside the detection of anti-TBEV total IgG antibodies using ELISA. The findings revealed that the highest prevalence of TBEV was observed in goat and sheep milk combined, whereas no TBEV was detected in cow milk samples. All identified strains were of the Siberian subtype. Moreover, the highest prevalence of anti-TBEV antibodies was detected in sheep milk. These results uncover new foci of TBEV in Iran, underscoring the importance of thermal processing (pasteurization) of milk prior to consumption to mitigate the risk of TBEV infection.


Subject(s)
Encephalitis Viruses, Tick-Borne , Goats , Milk , Animals , Milk/virology , Encephalitis Viruses, Tick-Borne/isolation & purification , Iran/epidemiology , Sheep , Cross-Sectional Studies , Cattle , Encephalitis, Tick-Borne/veterinary , Encephalitis, Tick-Borne/epidemiology , Encephalitis, Tick-Borne/virology , Sheep Diseases/virology , Sheep Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/epidemiology , Cattle Diseases/virology , Cattle Diseases/epidemiology , Prevalence , Female , Sheep, Domestic
4.
Viruses ; 16(6)2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38932277

ABSTRACT

Here, we report the discovery of two viruses associated with a disease characterized by severe diarrhea on a large-scale goat farm in Jilin province. Electron Microscopy observations revealed two kinds of virus particles with the sizes of 150-210 nm and 20-30 nm, respectively. Detection of 276 fecal specimens from the diseased herds showed the extensive infection of peste des petits ruminants virus (63.77%, 176/276) and caprine enterovirus (76.81%, 212/276), with a co-infection rate of 57.97% (160/276). These results were partially validated with RT-PCR, where all five PPRV-positive and CEV-positive specimens yielded the expected size of fragments, respectively, while no fragments were amplified from PPRV-negative and CEV-negative specimens. Moreover, corresponding PPRV and CEV fragments were amplified in PPRV and CEV double-positive specimens. Histopathological examinations revealed severe microscopic lesions such as degeneration, necrosis, and detachment of epithelial cells in the bronchioles and intestine. An immunohistochemistry assay detected PPRV antigens in bronchioles, cartilage tissue, intestine, and lymph nodes. Simultaneously, caprine enterovirus antigens were detected in lung, kidney, and intestinal tissues from the goats infected by the peste des petits ruminants virus. These results demonstrated the co-infection of peste des petits ruminants virus with caprine enterovirus in goats, revealing the tissue tropism for these two viruses, thus laying a basis for the future diagnosis, prevention, and epidemiological survey for these two virus infections.


Subject(s)
Coinfection , Diarrhea , Enterovirus Infections , Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/virology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/isolation & purification , Peste-des-petits-ruminants virus/genetics , Goat Diseases/virology , Goat Diseases/epidemiology , China/epidemiology , Coinfection/veterinary , Coinfection/virology , Coinfection/epidemiology , Enterovirus Infections/veterinary , Enterovirus Infections/virology , Enterovirus Infections/epidemiology , Diarrhea/virology , Diarrhea/veterinary , Diarrhea/epidemiology , Enterovirus/isolation & purification , Enterovirus/genetics , Enterovirus/classification , Feces/virology , Phylogeny
5.
Appl Microbiol Biotechnol ; 108(1): 327, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38717623

ABSTRACT

Regulatory T cells (Tregs) are a subset of T cells participating in a variety of diseases including mycoplasmal pneumonia, contagious ecthyma, and so on. The role of Tregs in goat contagious ecthyma is not completely understood due to the lack of species-specific antibodies. Here, we developed a combination of CD4 and CD25 fluorescence monoclonal antibodies (mAb) to recognize goat Tregs and assessed its utility in flow cytometry, immunofluorescence staining. Using immunofluorescence staining, we found that the frequency of Treg cells was positively correlated with the viral load during orf virus infection. These antibodies could serve as important tools to monitor Tregs during orf virus infection in goats. KEY POINTS: • A combination of fluorescent mAbs (C11 and D12) was prepared for the detection of goat Tregs. • C11 and D12 are effective in flow cytometry, immunofluorescence staining, and C11 has excellent species specificity. • The frequency of Treg cells was positively correlated with the viral load during orf virus infection.


Subject(s)
Antibodies, Monoclonal , Flow Cytometry , Goats , T-Lymphocytes, Regulatory , Viral Load , Animals , T-Lymphocytes, Regulatory/immunology , Antibodies, Monoclonal/immunology , Ecthyma, Contagious/diagnosis , Ecthyma, Contagious/immunology , Interleukin-2 Receptor alpha Subunit/immunology , Orf virus/immunology , Fluorescent Antibody Technique/methods , CD4 Antigens/immunology , Goat Diseases/immunology , Goat Diseases/virology , Goat Diseases/diagnosis
6.
Vet Ital ; 60(1)2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38757513

ABSTRACT

This study was conducted to estimate the seroprevalence of Peste des petits ruminants virus (PPRV) and to determine the virus distribution in unvaccinated goats in the Pantnagar region of Uttarakhand state, India. A total of 212 serum samples from goats were collected randomly from various villages in three districts (Udhamsingh Nagar, Nainital, and Almora) of Uttarakhand. Serum samples were tested for anti-PPRV antibodies by a commercially available kit. RNA was extracted from the clinical samples and it was subjected to one-step RT-PCR, followed by virus isolation from positive samples. A total of 41 animals from various villages were found to be seropositive with a prevalence rate of 19.33%. PPR outbreaks were also reported from the Tarai region of Uttarakhand, and detection by PCR confirmed PPRV in 8 goats. Two representative swab samples were subjected to virus isolation in Vero cells and both samples showed typical cytopathic effects. The present study shows that PPRV is circulating in the Tarai region of Uttarakhand and mass vaccination for PPR must be followed in this region to increase herd immunity to a protective level. To the best of our knowledge, this is the first investigation of PPRV seroprevalence in unvaccinated goats of Uttarakhand, India.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/prevention & control , Peste-des-Petits-Ruminants/virology , India/epidemiology , Peste-des-petits-ruminants virus/isolation & purification , Peste-des-petits-ruminants virus/immunology , Goat Diseases/epidemiology , Goat Diseases/virology , Goat Diseases/prevention & control , Seroepidemiologic Studies
7.
BMC Vet Res ; 20(1): 225, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38790010

ABSTRACT

BACKGROUND: Peste des Petits Ruminants (PPR) is a world organization for animal health (WOAH) notifiable and economically important transboundary, highly communicable viral disease of small ruminants. PPR virus (PPRV) belongs to the genus Morbillivirus of the family Paramyxoviridae. AIM: The present cross-sectional epidemiological investigation was accomplished to estimate the apparent prevalence and identify the risk factors linked with peste des petits ruminants (PPR) in the previously neglected northern border regions of Pakistan. METHOD: A total of 1300 samples (serum = 328; swabs = 972) from 150 flocks/herds were compiled from sheep (n = 324), goats (n = 328), cattle (n = 324), and buffaloes (n = 324) during 2020-2021 and tested using ELISA for detection of viral antibody in sera or antigen in swabs. RESULTS: An overall apparent prevalence of 38.7% (504 samples) and an estimated true prevalence (calculated by the Rogan and Gladen estimator) of 41.0% (95% CI, 38.0-44 were recorded in the target regions. The highest apparent prevalence of 53.4% (85 samples) and the true prevalence of 57.0%, 95% Confidence Interval (CI) were documented in the Gilgit district and the lowest apparent prevalence of 53 (25.1%) and the true prevalence of 26.0%, 95% Confidence Interval (CI), 19.0-33.0) was reported in the Swat district. A questionnaire was designed to collect data about associated risk factors that were put into a univariable logistic regression to decrease the non-essential assumed risk dynamics with a P-value of 0.25. ArcGIS, 10.8.1 was used to design hotspot maps and MedCalc's online statistical software was used to calculate Odds Ratio (OR). Some of the risk factors significantly different (P < 0.05) in the multivariable logistic regression were flock/herd size, farming methods, nomadic animal movement, and outbreaks of PPR. The odds of large-sized flocks/herds were 1.7 (OR = 1.79; 95% Confidence Interval (CI) = 0.034-91.80%) times more likely to be positive than small-sized. The odds of transhumance and nomadic systems were 1.1 (OR = 1.15; 95% Confidence Interval (CI) = 0.022-58.64%) and 1.0 (OR = 1.02; 95% Confidence Interval (CI) = 0.020-51.97%) times more associated to be positive than sedentary and mixed farming systems, respectively. The odds of nomadic animal movement in the area was 0.7 (OR = 0.57; 95% Confidence Interval (CI) = 0.014-38.06%) times more associated to be positive than in areas where no nomadic movement was observed. In addition, the odds of an outbreak of PPR in the area were 1.0 (OR = 1.00; 95% Confidence Interval (CI) = 0.018-46.73%) times more associated to be positive than in areas where no outbreak of PPR was observed. CONCLUSIONS: It was concluded that many northern regions considered endemic for PPR, large and small ruminants are kept and reared together making numerous chances for virus transmission dynamic, so a big threats of disease spread exist in the region. The results of the present study would contribute to the global goal of controlling and eradicating PPR by 2030.


Subject(s)
Goat Diseases , Goats , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Sheep Diseases , Animals , Pakistan/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/virology , Risk Factors , Prevalence , Sheep , Cross-Sectional Studies , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Peste-des-petits-ruminants virus/isolation & purification , Cattle , Buffaloes/virology , Cattle Diseases/epidemiology , Cattle Diseases/virology , Antibodies, Viral/blood
8.
Am J Vet Res ; 85(6)2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38626798

ABSTRACT

OBJECTIVE: Foot-and-mouth disease (FMD) is a highly contagious disease in ruminants that causes significant economic losses worldwide. However, the prevalence of FMD virus (FMDV) in small ruminants has been overlooked in Pakistan. This study aimed to determine the prevalence of FMD in sheep and goats in the border area between Pakistan and Afghanistan. ANIMALS: 800 sheep and goats belongs to age groups of 6 month to > 2 years. METHODS: A total of 800 serum samples were collected from sheep (n = 424) and goats (n = 376) and subjected to structural protein (SP) and 3ABC non-SP (NSP) ELISAs for the detection of antibodies against SP and NSP of the FMDV. RESULTS: For NSP, 340/800 (42.5%) of samples were positive, while SP analysis revealed that serotype O (44.5%) was the most common in sheep and goats, followed by Asia-1 (42%) and A (32%) serotypes. Sheep (39%; 95% CI, 34 to 44) had a higher (P < .05) prevalence of FMD than goats (46%; 95% CI, 41 to 51). Statistically significant (P < .05) differences in the seroprevalence of FMD-SP and FMD-NSPs were observed between various agencies (areas) of the study area. Risk factors such as age, sex, breed, season, flock size, body condition, animal movement, and production system were significantly (P < .05) associated with FMDV prevalence. CONCLUSIONS: This study showed that FMD is highly prevalent in sheep and goats in the border areas of Pakistan and Afghanistan. Therefore, outbreak investigation teams should be arranged at the border level to develop FMD risk-based surveillance and control plans for small ruminants in order to mitigate infection risks.


Subject(s)
Foot-and-Mouth Disease Virus , Foot-and-Mouth Disease , Goat Diseases , Goats , Sheep Diseases , Animals , Pakistan/epidemiology , Goat Diseases/epidemiology , Goat Diseases/virology , Seroepidemiologic Studies , Sheep , Foot-and-Mouth Disease/epidemiology , Foot-and-Mouth Disease/virology , Afghanistan/epidemiology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Female , Foot-and-Mouth Disease Virus/immunology , Prevalence , Male , Antibodies, Viral/blood , Enzyme-Linked Immunosorbent Assay/veterinary
9.
Virus Genes ; 60(3): 309-313, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38491264

ABSTRACT

Adenoviruses (AdVs) have been detected in a wide variety of animals. To date, eight types of AdVs in sheep and two types in goats have been identified, which belong to two distinct genera, Mastadenovirus and Atadenovirus. Typically, the term pneumo-enteritis is used to describe adenovirus-induced disease in small ruminants, which has been associated with both enteric and respiratory symptoms of varying severity. The aim of this study was to detect and identify AdVs of small ruminants belonging to the genera Mastadenovirus and Atadenovirus. For this purpose, diagnostic samples (47 lung, 27 intestine, and two pooled tissue samples including intestine and lung) from 49 small ruminants (39 sheep and 10 goats) were used. Following the viral DNA extraction, PCR was carried out by using the primers targeting the hexon gene in order to detect both mast- and atadenoviruses. Sequencing the amplified fragments revealed the presence of three types of ovine adenovirus (OAdV): OAdV-3, OAdV-4, and OAdV-8. Specifically, OAdV-3 was detected in two sheep and a goat while OAdV-4 and OAdV-8 were found in only one sheep each. There is still limited data on the interaction between the viruses in different adenovirus genera and the detected disease, as well as the genetic diversity of adenoviruses, especially in small ruminants. In conclusion, the detection of AdVs in lung and intestinal tissues of small ruminants in this study suggests that these viruses may have contributed to the disease and/or predisposed to other agents.


Subject(s)
Adenoviridae Infections , Goat Diseases , Goats , Mastadenovirus , Phylogeny , Sheep Diseases , Animals , Goats/virology , Sheep/virology , Sheep Diseases/virology , Goat Diseases/virology , Adenoviridae Infections/veterinary , Adenoviridae Infections/virology , Mastadenovirus/genetics , Mastadenovirus/isolation & purification , Mastadenovirus/classification , Turkey , DNA, Viral/genetics , Sequence Analysis, DNA , Atadenovirus/genetics , Atadenovirus/isolation & purification , Atadenovirus/classification , Lung/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adenoviridae/classification , Adenoviridae/pathogenicity
10.
J Virol ; 98(4): e0014624, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38440983

ABSTRACT

Peste des petits ruminants is an acute and highly contagious disease caused by the Peste des petits ruminants virus (PPRV). Host proteins play a crucial role in viral replication. However, the effect of fusion (F) protein-interacting partners on PPRV infection is poorly understood. In this study, we found that the expression of goat plasminogen activator urokinase (PLAU) gradually decreased in a time- and dose-dependent manner in PPRV-infected goat alveolar macrophages (GAMs). Goat PLAU was subsequently identified using co-immunoprecipitation and confocal microscopy as an F protein binding partner. The overexpression of goat PLAU inhibited PPRV growth and replication, whereas silencing goat PLAU promoted viral growth and replication. Additionally, we confirmed that goat PLAU interacted with a virus-induced signaling adapter (VISA) to antagonize F-mediated VISA degradation, increasing the production of type I interferon. We also found that goat PLAU reduced the inhibition of PPRV replication in VISA-knockdown GAMs. Our results show that the host protein PLAU inhibits the growth and replication of PPRV by VISA-triggering RIG-I-like receptors and provides insight into the host protein that antagonizes PPRV immunosuppression.IMPORTANCEThe role of host proteins that interact with Peste des petits ruminants virus (PPRV) fusion (F) protein in PPRV replication is poorly understood. This study confirmed that goat plasminogen activator urokinase (PLAU) interacts with the PPRV F protein. We further discovered that goat PLAU inhibited PPRV replication by enhancing virus-induced signaling adapter (VISA) expression and reducing the ability of the F protein to degrade VISA. These findings offer insights into host resistance to viral invasion and suggest new strategies and directions for developing PPR vaccines.


Subject(s)
Goat Diseases , Goats , Host-Pathogen Interactions , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Urokinase-Type Plasminogen Activator , Viral Fusion Proteins , Animals , Adaptor Proteins, Signal Transducing/metabolism , DEAD Box Protein 58/metabolism , Goat Diseases/immunology , Goat Diseases/metabolism , Goat Diseases/virology , Goats/immunology , Goats/virology , Macrophages, Alveolar , Peste-des-Petits-Ruminants/immunology , Peste-des-Petits-Ruminants/metabolism , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/growth & development , Peste-des-petits-ruminants virus/immunology , Peste-des-petits-ruminants virus/metabolism , Protein Binding , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Viral Fusion Proteins/metabolism
11.
Arch Razi Inst ; 78(6): 1771-1778, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38828171

ABSTRACT

Akabane disease is an arthropod-borne viral disease that affects ruminants. This teratogenic pathogen causes severe economic losses in ruminants worldwide and in Iran; however, it has not received enough attention in Fars province, Iran. Therefore, this study aimed to determine the influence of age, gender, climate, farming system, and history of abortions on the seroprevalence of the Akabane disease in sheep and goats in Fars province. In the present study, Fars province was divided into three climates, and three cities were randomly selected from each climatic region. In each city, two epidemiologic units were selected, and all sheep and goats in each unit were sampled. Overall, 540 serum samples (391 sheep and 149 goats) were collected and examined with the commercial ELISA kit. The results showed that 83 out of 540 (15.4%) samples were seropositive and had antibodies against the Akabane virus (AKAV). The effect of gender and age on the rate of the AKAV was not significant. Animals in warm climates were 4.218 times more likely to have antibodies against the AKAV than animals in cold climates. Females were 1.32 times more likely to exhibit seropositivity. The odds of AKAV infection were higher in animals with an abortion history than in healthy animals. The findings of the present study indicated that the prevalence of the AKAV was high in small ruminants in Fars province. Therefore, it is necessary to conduct more studies to control the risk factors involved in the spread of this virus.


Subject(s)
Bunyaviridae Infections , Goat Diseases , Goats , Orthobunyavirus , Sheep Diseases , Animals , Iran/epidemiology , Seroepidemiologic Studies , Goat Diseases/epidemiology , Goat Diseases/virology , Sheep Diseases/epidemiology , Sheep Diseases/virology , Sheep , Risk Factors , Female , Male , Orthobunyavirus/isolation & purification , Bunyaviridae Infections/epidemiology , Bunyaviridae Infections/veterinary , Bunyaviridae Infections/virology , Sheep, Domestic
12.
Vet Ital ; 59(4)2023 Dec 31.
Article in English | MEDLINE | ID: mdl-38756026

ABSTRACT

Fowlpox virus (FPV) infects chickens and turkeys giving rise to pock lesions on various body parts like combs, wattles, legs, shanks, eyes, mouth, etc. The birds, affected with FPV, also show anemia and a ruffled appearance which are clinical symptoms of reticuloendotheliosis. Interestingly, the field strains of FPV are integrated with the provirus of reticuloendotheliosis virus (REV). Due to this integration, the infected birds, upon replication of FPV, give rise to free REV virions, causing severe immunosuppression and anemia. Pox scabs, collected from the infected birds, not only show positive PCR results upon performing FPV-specific 4b core protein gene PCR but also show positive results for the PCR of REV-specific env gene and FPV-REV 5'LTR junction. Homogenized suspension of the pock lesions, upon inoculating to the chorio-allantoic membrane (CAM) of 10-day-old specific pathogen-free embryonated chicken eggs, produces characteristic pock lesions in serial passages. However, the lesions also harbor REV mRNA or free virion, which can be identified by performing REV-specific env gene PCR using REV RNA from FPV-infected CAMs. The study suggests successful replication and availability of REV mRNA and free virion alongside the FPV, although the CAM is an ill-suited medium for any retroviral (like REV) growth and replication.


Subject(s)
Reverse Transcriptase Polymerase Chain Reaction , Animals , Reverse Transcriptase Polymerase Chain Reaction/veterinary , Diarrhea/veterinary , Diarrhea/virology , India , Fowlpox virus/genetics , Fowlpox/virology , Sheep , Goat Diseases/virology , Turkeys/virology , Goats , Chickens/virology , Sheep Diseases/virology , Poultry Diseases/virology
13.
Vet Res ; 53(1): 57, 2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35804440

ABSTRACT

Peste des petits ruminants (PPR) is an acute disease of small ruminants caused by a morbillivirus. Clinical observation of the disease in the field revealed that several species of small ruminants are affected to varying degrees. This difference in disease-related effects could depend either on the host or on the virulence of the virus strain. A previous study highlighted the difference in virulence between two strains of PPRV used to infect Saanen goats. For this breed, PPRV Morocco 2008 strain (MA08) was highly virulent while PPRV Côte d'Ivoire 1989 (IC89) strain induced mild disease. Experimental studies generally based on healthy and young animals do not permit exploration of the natural variability of the host susceptibility to PPRV. Therefore, building on the previous study on Saanen goats, the current study focussed on this breed of goat and used commercially available animals with an unknown history of infection with other pathogens. Results confirmed the previous disease pattern for PPRV IC89 and MA08 strains. Viral RNA detection, macroscopic and histological lesions were stronger for the highly virulent MA08 strain. We show here for the first time that viral RNA can be detected in the tissues of vaccinated animals. Viral RNA was also detected for the first time in serum samples, which is in agreement with the role of circulating immune cells in transporting the virus into host target organs. Thus, this study provides insight into the pathogenesis of strains of different virulence of PPRV and will help to better understand the onset of the disease.


Subject(s)
Goat Diseases , Peste-des-Petits-Ruminants , Peste-des-petits-ruminants virus , Animals , Goat Diseases/virology , Goats , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/pathogenicity , RNA, Viral/genetics , Virulence/genetics
14.
Infect Genet Evol ; 96: 105163, 2021 12.
Article in English | MEDLINE | ID: mdl-34848354

ABSTRACT

An in-depth knowledge of the molecular evolution of the peste des petits ruminants virus (PPRV) is critical for the success of the current global eradication program. For this reason, a molecular evolutionary analysis of PPRVs circulating in Bangladesh over a decade (2008-2020) was performed. The complete genome sequencing of three PPRV isolates from 2008 (BD2), 2015 (BD12) and 2017 (BD17) as well as full length nucleocapsid (N), matrix (M) and fusion (F) gene sequencing of seven more samples from 2015 to 2020 was performed. Phylogenetic analysis classified all ten PPRVs from Bangladesh as members of lineage IV and showed that they were closely related to PPRV strains detected in China and Tibet during 2007-2008, and India during 2014-2018. Time scale Bayesian Maximum Clade Credibility (MCC) phylogenetic analysis of the three complete genomes revealed a mean Time to Most Recent Common Ancestor (TMRCA) of 2000. Comparative deduced amino acid residue analysis at various functional motifs of PPRVs related to virus structure and function, virulence and host adaptation, receptor binding sites and polymerase activity revealed conserved residues among the PPRVs from Bangladesh. In total sixteen epitopes were predicted from four immunogenic proteins i.e. N, M, F and haemagglutinin (H). Interestingly, the predicted epitopes from the N and M proteins shared conserved epitopes with two vaccine strains currently being used, indicating that the strains from Bangladesh could be potentially used as alternative local vaccines.


Subject(s)
Evolution, Molecular , Goat Diseases/virology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , Animals , Bangladesh , Genome, Viral , Goats , Peste-des-petits-ruminants virus/classification , Phylogeny , Whole Genome Sequencing
15.
Viruses ; 13(12)2021 11 23.
Article in English | MEDLINE | ID: mdl-34960606

ABSTRACT

Small ruminant lentiviruses (SRLV) are viruses that retro-transcribe RNA to DNA and show high rates of genetic variability. SRLV affect animals with strains specific for each host species (sheep or goats), resulting in a series of clinical manifestations depending on the virulence of the strain, the host's genetic background and farm production system. The aim of this work was to present an up-to-date overview of the genomic epidemiology and genetic diversity of SRLV in Italy over time (1998-2019). In this study, we investigated 219 SRLV samples collected from 17 different Italian regions in 178 geographically distinct herds by CEREL. Our genetic study was based on partial sequencing of the gag-pol gene (800 bp) and phylogenetic analysis. We identified new subtypes with high heterogeneity, new clusters and recombinant forms. The genetic diversity of Italian SRLV strains may have diagnostic and immunological implications that affect the performance of diagnostic tools. Therefore, it is extremely important to increase the control of genomic variants to improve the control measures.


Subject(s)
Lentivirus Infections , Lentivirus/classification , Ruminants/virology , Animals , Goat Diseases/virology , Goats , Italy/epidemiology , Lentivirus Infections/epidemiology , Lentivirus Infections/veterinary , Lentivirus Infections/virology , Sheep , Sheep Diseases/virology
16.
Viruses ; 13(12)2021 11 26.
Article in English | MEDLINE | ID: mdl-34960642

ABSTRACT

Peste des petits ruminants (PPR) is an acute, contagious viral disease of small ruminants, goats and sheep. The Democratic Republic of the Congo (DRC) was a PPR-free country until 2007, although in 2006, scare alerts were received from the east and the southwest of the country, reporting repeated mortalities, specifically in goats. In 2008, PPR outbreaks were seen in several villages in the west, leading to structured veterinary field operations. Blood, swabs and pathological specimens consisting of tissues from lungs, spleens, lymph nodes, kidneys, livers and hearts were ethically collected from clinically infected and/or dead animals, as appropriate, in 35 districts. Epidemiological information relating to major risk factors and socio-economic impact was progressively collected, revealing the deaths of 744,527 goats, which converted to a trade value of USD 35,674,600. Samples from infected and dead animals were routinely analyzed by the Central Veterinary Laboratory at Kinshasa for diagnosis, and after official declaration of PPR outbreaks by the FAO in July 2012, selected tissue samples were sent to The Pirbright Institute, United Kingdom, for genotyping. As a result of surveys undertaken between 2008 and 2012, PPR virus (PPRV)-specific antibodies were detected in 25 locations out of 33 tested (75.7%); PPRV nucleic acid was detected in 25 locations out of 35 (71.4%); and a typical clinical picture of PPR was observed in 23 locations out of 35 (65.7%). Analysis of the partial and full genome sequences of PPR viruses (PPRVs) obtained from lymphoid tissues of dead goats collected in Tshela in the DRC in 2012 confirmed the circulation of lineage IV PPRV, showing the highest homology (99.6-100%) with the viruses circulating in the neighboring countries of Gabon, in the Aboumi outbreak in 2011, and Nigeria (99.3% homology) in 2013, although recent outbreaks in 2016 and 2018 in the western part of the DRC that borders with East Africa demonstrated circulation of lineage II and lineage III PPRV.


Subject(s)
Disease Outbreaks/veterinary , Genome, Viral/genetics , Goat Diseases/epidemiology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-petits-ruminants virus/isolation & purification , Sheep Diseases/epidemiology , Animals , Democratic Republic of the Congo/epidemiology , Goat Diseases/virology , Goats , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/genetics , Phylogeny , Retrospective Studies , Ruminants , Sheep , Sheep Diseases/virology
17.
BMC Microbiol ; 21(1): 334, 2021 12 07.
Article in English | MEDLINE | ID: mdl-34876012

ABSTRACT

BACKGROUND: Peste des Petits Ruminants (PPR) is an acute or peracute contagious transboundary viral disease that mainly affects caprine and ovine and causes significant economic impact in developing countries. After two PPR virus outbreaks in 2011 and 2014, an investigation, from August 2015 to September 2016, was carried out in Northern Iraq when an increased morbidity and mortality rates were reported in the domestic and captive wild goats. In the present study, ten domestic goat farms and seven captive wild goat herds located in seven geographical areas of Northern Iraq were clinically, pathologically, serologically and genotypically characterized to determine the prevalence and potential cause of PPR virus outbreak. RESULTS: The outbreak occurred with rate of morbidity (26.1%) and mortality (11.1%) in domestic goat farms as compared to captive wild goat herds where relatively high mortality (42.9%) and low morbidity (10.9%) rates were recorded. Based on the clinical symptoms (mucopurulent nasal discharges, ulceration and erosion of oral mucosa, profuse watery diarrhea) and necropsy (hemorrhage and congestion on mucous membranes of the colon and rectum with zebra stripes lesions) results, overall, the serological test findings revealed a high frequency (47.9%) of positive samples for anti-PPRV nucleoprotein antibodies. Furthermore, the nucleoprotein (N) gene was detected in 63.2 and 89.1% of samples using conventional and reverse transcription real-time quantitative PCR assays. A phylogenetic analysis of N gene amino acid sequences clustered with the reference strain revealed lineage IV similar to the strains isolated in 2011 and 2014, respectively. However, two sub-types of lineage IV (I and II), significantly distinct from the previous strains, were also observed. CONCLUSION: The phylogenetic analysis suggests that movements of goats are possible cause and one of the important factors responsible for the spread of virus across the region. The study results would help in improving farm management practices by establishing a PPR virus eradication program using regular monitoring and vaccination program to control and mitigate the risk of re-emergence of PPR virus infection in domestic and captive wild goats in Iraq.


Subject(s)
Goat Diseases/virology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/isolation & purification , Animals , Animals, Domestic , Animals, Zoo , Antibodies, Viral/blood , Genotype , Goat Diseases/epidemiology , Goat Diseases/pathology , Goats , Iraq/epidemiology , Nucleocapsid Proteins/genetics , Nucleocapsid Proteins/immunology , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/pathology , Peste-des-petits-ruminants virus/classification , Peste-des-petits-ruminants virus/genetics , Peste-des-petits-ruminants virus/immunology , Phenotype , Phylogeny
18.
Viruses ; 13(11)2021 10 22.
Article in English | MEDLINE | ID: mdl-34834943

ABSTRACT

Infectious agents including viruses are important abortifacients and can cause fetal abnormalities in livestock animals. Here, samples that had been collected in Israel from aborted or malformed ruminant fetuses between 2015 and 2019 were investigated for the presence of the following viruses: the reoviruses bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV), the flaviviruses bovine viral diarrhea virus (BVDV) and border disease virus (BDV), the peribunyaviruses Shuni virus (SHUV) and Akabane virus (AKAV), bovine herpesvirus type 1 (BoHV-1) and bovine ephemeral fever virus (BEFV). Domestic (cattle, sheep, goat) and wild/zoo ruminants were included in the study. The presence of viral nucleic acid or antigen could be confirmed in 21.8 % of abnormal pregnancies (213 out of 976 investigated cases), with peribunyaviruses, reoviruses and pestiviruses being the most prevalent. At least four different BTV serotypes were involved in abnormal courses of pregnancy in Israel. The subtyping of pestiviruses revealed the presence of two BDV and several distinct BVDV type 1 strains. The peribunyaviruses AKAV and SHUV were identified annually throughout the study period, however, variation in the extent of virus circulation could be observed between the years. In 2018, AKAV even represented the most detected pathogen in cases of small domestic ruminant gestation abnormalities. In conclusion, it was shown that various viruses are involved in abnormal courses of pregnancy in ruminants in Israel.


Subject(s)
Livestock/virology , Pestivirus/isolation & purification , Ruminants/virology , Viruses/classification , Viruses/genetics , Viruses/isolation & purification , Animals , Bluetongue virus , Border disease virus , Cattle , Diarrhea Virus 1, Bovine Viral/genetics , Diarrhea Viruses, Bovine Viral/immunology , Female , Goat Diseases/virology , Goats , Hemorrhagic Disease Virus, Epizootic , Israel , Pestivirus/genetics , Phylogeny , Pregnancy , Sheep , Sheep Diseases/virology
19.
Viruses ; 13(11)2021 10 25.
Article in English | MEDLINE | ID: mdl-34834951

ABSTRACT

Understanding the evolution of viral pathogens is critical to being able to define how viruses emerge within different landscapes. Host susceptibility, which is spread between different species and is a contributing factor to the subsequent epidemiology of a disease, is defined by virus detection and subsequent characterization. Peste des petits ruminants virus is a plague of small ruminant species that is a considerable burden to the development of sustainable agriculture across Africa and much of Asia. The virus has also had a significant impact on populations of endangered species in recent years, highlighting its significance as a pathogen of high concern across different regions of the globe. Here, we have re-evaluated the molecular evolution of this virus using novel genetic data to try and further resolve the molecular epidemiology of this disease. Viral isolates are genetically characterized into four lineages (I-IV), and the historic origin of these lineages is of considerable interest to the molecular evolution of the virus. Our re-evaluation of viral emergence using novel genome sequences has demonstrated that lineages I, II and IV likely originated in West Africa, in Senegal (I) and Nigeria (II and IV). Lineage III sequences predicted emergence in either East Africa (Ethiopia) or in the Arabian Peninsula (Oman and/or the United Arab Emirates), with a paucity of data precluding a more refined interpretation. Continual refinements of evolutionary emergence, following the generation of new data, is key to both understanding viral evolution from a historic perspective and informing on the ongoing genetic emergence of this virus.


Subject(s)
Evolution, Molecular , Genes, Viral , Peste-des-Petits-Ruminants/epidemiology , Peste-des-Petits-Ruminants/virology , Peste-des-petits-ruminants virus/classification , Peste-des-petits-ruminants virus/genetics , Africa, Eastern/epidemiology , Africa, Western/epidemiology , Animals , Asia/epidemiology , Disease Outbreaks , Ethiopia/epidemiology , Genome, Viral , Goat Diseases/virology , Goats/virology , Molecular Epidemiology , Phylogeny , Ruminants/virology , Senegal/epidemiology , Sequence Analysis, DNA , United Arab Emirates/epidemiology , Whole Genome Sequencing
20.
Viruses ; 13(10)2021 10 13.
Article in English | MEDLINE | ID: mdl-34696484

ABSTRACT

Small ruminant lentiviruses (SRLV) are economically important viral pathogens of sheep and goats. SRLV infection may interfere in the innate and adaptive immunity of the host, and genes associated with resistance or susceptibility to infection with SRLV have not been fully recognized. The presence of animals with relatively high and low proviral load suggests that some host factors are involved in the control of virus replication. To better understand the role of the genes involved in the host response to SRLV infection, RNA sequencing (RNA-seq) method was used to compare whole gene expression profiles in goats carrying both a high (HPL) and low (LPL) proviral load of SRLV and uninfected animals. Data enabled the identification of 1130 significant differentially expressed genes (DEGs) between control and LPL groups: 411 between control and HPL groups and 1434 DEGs between HPL and LPL groups. DEGs detected between the control group and groups with a proviral load were found to be significantly enriched in several gene ontology (GO) terms, including an integral component of membrane, extracellular region, response to growth factor, inflammatory and innate immune response, transmembrane signaling receptor activity, myeloid differentiation primary response gene 88 (MyD88)-dependent toll-like receptor signaling pathway as well as regulation of cytokine secretion. Our results also demonstrated significant deregulation of selected pathways in response to viral infection. The presence of SRLV proviral load in blood resulted in the modification of gene expression belonging to the toll-like receptor signaling pathway, the tumor necrosis factor (TNF) signaling pathway, the cytokine-cytokine receptor interaction, the phagosome, the Ras signaling pathway, the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) (PI3K-Akt) signaling pathway and rheumatoid arthritis. It is worth mentioning that the most predominant in all pathways were genes represented by toll-like receptors, tubulins, growth factors as well as interferon gamma receptors. DEGs detected between LPL and HPL groups were found to have significantly enriched regulation of signaling receptor activity, the response to toxic substances, nicotinamide adenine dinucleotide (NADH) dehydrogenase complex assembly, cytokine production, vesicle, and vacuole organization. In turn, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway tool classified DEGs that enrich molecular processes such as B and T-cell receptor signaling pathways, natural killer cell-mediated cytotoxicity, Fc gamma R-mediated phagocytosis, toll-like receptor signaling pathways, TNF, mammalian target of rapamycin (mTOR) signaling and forkhead box O (Foxo) signaling pathways, etc. Our data indicate that changes in SRLV proviral load induced altered expression of genes related to different biological processes such as immune response, inflammation, cell locomotion, and cytokine production. These findings provide significant insights into defense mechanisms against SRLV infection. Furthermore, these data can be useful to develop strategies against SRLV infection by selection of animals with reduced SRLV proviral concentration that may lead to a reduction in the spread of the virus.


Subject(s)
Arthritis-Encephalitis Virus, Caprine/genetics , Goats/virology , Visna-maedi virus/genetics , Adaptive Immunity/genetics , Animals , Gene Expression/genetics , Gene Expression Profiling/methods , Gene Expression Regulation/genetics , Goat Diseases/virology , Goats/genetics , Host Microbial Interactions/genetics , Immunity, Innate/genetics , Lentivirus Infections/veterinary , Lentiviruses, Ovine-Caprine/genetics , Proviruses/genetics , Sequence Analysis, RNA , Transcriptome/genetics , Viral Load/methods , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL
...