Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 31.168
1.
Anal Chim Acta ; 1312: 342721, 2024 Jul 11.
Article En | MEDLINE | ID: mdl-38834258

This study reports a fast and visual detection method of antidepressant sertraline (SRT) drug by the core-shell AuNPs@CDs as the nanoprobes. The CDs has been eco-friendly synthesized from sweet lemon wastes to directly reduce Au+ to AuNPs without any external photoirradiation process or additional reductants. Optimizing key variables that impact the sensing process has been done using the central composite design (CCD) approach to simulate the assay condition before the analysis. Adding SRT with different concentrations to the nanoprobes under mildly acidic conditions presents an absorbance peak at 560 nm with purple color tonalities that differ from the behavior of alone nanoprobes (530 nm, pink color). The obtained absorption change is linearly proportional to the increase of SRT concentration from 1 µM to 35 µM with a limit of detection (LOD) value of 100 nM. The color changes with a vivid tonality from pink and purple to violet as the colorful fingerprint patterns are readily traceable by the naked eye, allowing the visual assay of SRT. The greenness of the developed approach is well evaluated by some international indexes including the complimentary green analytical procedure (ComplexGAPI) and also, the analytical greenness (AGREE) indexes. The proposed waste-derived nanoprobes based on the eco-friendly procedure not only conduct quantitative and qualitative non-invasive analysis of SRT by the naked eye but also, may widen for other applications in various fields.


Cadmium Compounds , Gold , Metal Nanoparticles , Sertraline , Sulfides , Gold/chemistry , Metal Nanoparticles/chemistry , Sertraline/analysis , Sertraline/chemistry , Sulfides/chemistry , Cadmium Compounds/chemistry , Citrus/chemistry , Colorimetry/methods , Limit of Detection , Antidepressive Agents/analysis
2.
Anal Chim Acta ; 1312: 342780, 2024 Jul 11.
Article En | MEDLINE | ID: mdl-38834272

BACKGROUND: The convenient preparation and application of functionalized organic-inorganic hybrid monolithic materials have obtained substantial interest in the pretreatment of complex samples by solid-phase extraction (SPE). Compared to the in-tube solid-phase microextraction in fused-silica capillaries, micro SPE in plastic pipette tips have fascinating merits for the easily operated enrichment of trace target analytes from biological samples. However, the poor compatibility of organic-inorganic hybrid monoliths with plastics leads to the rare appearance of commercial hybrid monolithic pipette tips (HMPTs). Therefore, how to synthesize the organic-inorganic hybrid monolithic materials with better extraction performance in plastic pipette tips becomes a challenge. RESULTS: We develop a facile and cheap strategy to immobilize organic-inorganic hybrid monoliths in pipette tips. Melamine sponge was employed as the supporting skeleton to in situ assemble amine- and thiol-bifunctionalized hybrid monolithic material via "one pot" in a pipette tip, and gold nanoparticles (GNPs) and thiol-modified aptamer against human α-thrombin were sequentially attached to the hybrid monolith within the HMPTs. The average coverage density of the aptamer with GNPs as an intermediary reached as high as 818.5 pmol µL-1. The enriched thrombin concentration was determined by a sensitive enzymatic chromogenic assay with the limit of detection of 2 nM. The extraction recovery of thrombin at 10 nM in human serum was 86.1 % with a relative standard deviation of 6.1 %. This proposed protocol has been applied to the enrichment and determination of thrombin in real serum sample with strong anti-interference ability, low limit of detection and high recovery. SIGNIFICANCE: The amine- and thiol-bifunctionalized HMPTs prepared with sponge as the skeleton frame provided a novel substrate material to decorate aptamers for efficient enrichment of proteins. This enlightens us that we can take advantage of the tunability of sponge assisted HMPTs to produce and tailor a variety of micro SPE pipette tips for broader applications on the analysis of trace targets in complex biological, clinic and environmental samples.


Aptamers, Nucleotide , Thrombin , Triazines , Triazines/chemistry , Triazines/isolation & purification , Aptamers, Nucleotide/chemistry , Humans , Thrombin/analysis , Thrombin/isolation & purification , Gold/chemistry , Metal Nanoparticles/chemistry , Solid Phase Extraction/methods
3.
Mikrochim Acta ; 191(7): 373, 2024 Jun 06.
Article En | MEDLINE | ID: mdl-38842697

The design of surface plasmon resonance (SPR) sensors has been greatly enhanced in recent years by the advancements in the production and integration of nanostructures, leading to more compact and efficient devices. There have been reports of novel SPR sensors having distinct nanostructures, either as signal amplification tags like gold nanoparticles (AuNPs) or as sensing substrate-like two-dimensional (2D) materials including graphene, transition metal dichalcogenides (TMDCs), MXene, black phosphorus (BP), metal-organic frameworks (MOFs), and antimonene. Such 2D-based SPR biosensors offer advantages over conventional sensors due to significant increases in their sensitivity with a good figure of merit and limit of detection (LOD). Due to their atomically thin structure, improved sensitivity, and sophisticated functionalization capabilities, 2D materials can open up new possibilities in the field of healthcare, particularly in point-of-care diagnostics, environmental and food monitoring, homeland security protection, clinical diagnosis and treatment, and flexible or transient bioelectronics. The present study articulates an in-depth analysis of the most recent developments in 2D material-based SPR sensor technology. Moreover, in-depth research of 2D materials, their integration with optoelectronic technology for a new sensing platform, and the predicted and experimental outcomes of various excitation approaches are highlighted, along with the principles of SPR biosensors. Furthermore, the review projects the potential prospects and future trends of these emerging materials-based SPR biosensors to advance in clinical diagnosis, healthcare biochemical, and biological applications.


Surface Plasmon Resonance , Surface Plasmon Resonance/methods , Biosensing Techniques/methods , Graphite/chemistry , Metal Nanoparticles/chemistry , Gold/chemistry , Humans , Metal-Organic Frameworks/chemistry , Limit of Detection , Nanostructures/chemistry , Phosphorus/chemistry
4.
Sci Rep ; 14(1): 12998, 2024 06 06.
Article En | MEDLINE | ID: mdl-38844535

The challenge of in-situ handling and high-resolution low-dose imaging of intact, sensitive and wet samples in their native state at nanometer scale, including live samples is met by Advanced Environmental Scanning Electron Microscopy (A-ESEM). This new generation of ESEM utilises machine learning-based optimization of thermodynamic conditions with respect to sample specifics to employ a low temperature method and an ionization secondary electron detector with an electrostatic separator. A modified electron microscope was used, equipped with temperature, humidity and gas pressure sensors for in-situ and real-time monitoring of the sample. A transparent ultra-thin film of ionic liquid is used to increase thermal and electrical conductivity of the samples and to minimize sample damage by free radicals. To validate the power of the new method, we analyze condensed mitotic metaphase chromosomes to reveal new structural features of their perichromosomal layer, and the organization of chromatin fibers, not observed before by any microscopic technique. The ability to resolve nano-structural details of chromosomes using A-ESEM is validated by measuring gold nanoparticles with achievable resolution in the lower nanometre units.


Microscopy, Electron, Scanning , Microscopy, Electron, Scanning/methods , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Mitosis , Chromosomes/ultrastructure
5.
Mikrochim Acta ; 191(7): 367, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38832980

An electrochemical aptasensor was used for the fast and sensitive detection of zearalenone (ZEN) based on the combination of Co3O4/MoS2/Au nanocomposites and the hybrid chain reaction (HCR). The glassy carbon electrode was coated with Co3O4/MoS2/Au nanomaterials to immobilize the ZEN-cDNA that had been bound with ZEN-Apt by the principle of base complementary pairing. In the absence of ZEN, the HCR could not be triggered because the ZEN-cDNA could not be exposed. After ZEN was added to the surface of the electrode, a complex structure was produced on the modified electrode by the combination of ZEN and ZEN-Apt. Therefore, the ZEN-cDNA can raise the HCR to produce the long-strand dsDNA structure. Due to the formation of dsDNA, the methylene blue (MB) could be inserted into the superstructure of branched DNA and the peak currents of the MB redox signal dramatically increased. So the concentration of ZEN could be detected by the change of signal intensity. Under optimized conditions, the developed electrochemical biosensing strategy showed an outstanding linear detection range of 1.0×10-10 mol/L to 1.0×10-6 mol/L, a low detection limit (LOD) of 8.5×10-11 mol/L with desirable selectivity and stability. Therefore, the fabricated platform possessed a great application potential in fields of food safety, medical detection, and drug analysis.


Electrochemical Techniques , Food Analysis , Hazard Analysis and Critical Control Points , Nanocomposites , Zearalenone , Zearalenone/analysis , Hazard Analysis and Critical Control Points/methods , Food Analysis/instrumentation , Food Analysis/methods , Nanocomposites/chemistry , Nanocomposites/standards , Electrodes , Gold/chemistry , Sensitivity and Specificity , Reproducibility of Results
6.
Anal Chim Acta ; 1306: 342585, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692786

Herein, we developed a convenient and versatile dual-mode electrochemiluminescence (ECL) and photoelectrochemistry (PEC) sensing radar for the detection of Prostate-specific antigen (PSA), which has important implications for detection of low-abundance disease-associated proteins. Cerium-based metal-organic framework (Ce-MOFs) were firstly modified on the electrode, showing well ECL and PEC property. In particular, a unique multifunctional Au@CdS quantum dots (QDs) probe loaded numerous QDs and antibody was fabricated, not only displaying strong ECL and PEC signals, but also having specific recognition to PSA. After the signal probe was linked to the electrode by immune reaction, much amplified signals of ECL and PEC were generated for double-mode detection of PSA. Therefore, this work proposed a multifunctional Au@CdS QDs signal probe with excellent ECL and PEC performance, and developed an ultrasensitive photoelectric biosensing platform for dual-mode detection, which provides an effective method for health monitoring of cancer patients.


Cadmium Compounds , Electrochemical Techniques , Metal-Organic Frameworks , Prostate-Specific Antigen , Quantum Dots , Sulfides , Quantum Dots/chemistry , Cadmium Compounds/chemistry , Sulfides/chemistry , Humans , Prostate-Specific Antigen/analysis , Prostate-Specific Antigen/blood , Metal-Organic Frameworks/chemistry , Gold/chemistry , Cerium/chemistry , Biosensing Techniques , Photochemical Processes , Limit of Detection , Electrodes , Luminescent Measurements
7.
Anal Chim Acta ; 1306: 342617, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692789

BACKGROUND: Alpha-fetoprotein (AFP) is a fetal protein that can indicate congenital anomalies such as Down syndrome and spinal canal blockage when detected at abnormal levels in pregnant women. Current AFP detection methods rely on invasive blood or serum samples, which require sophisticated equipment. From the many solutions proposed, colorimetric paper-based assays excel in point-of-care settings. The concept of paper-based ELISA (p-ELISA) enhances traditional methods, aligning with the ASSURED criteria for diagnostics in resource-limited regions. Despite success in microfluidic paper-based assay devices, laser printing remains underexplored for p-ELISA. Additionally, modifying the paper surface provides an additional layer of sensitivity enhancement. RESULTS: In this study, we developed a novel laser-printed paper-based ELISA (LP-pELISA) for rapid, sensitive, and noninvasive detection of AFP in saliva samples. The LP-pELISA platform was fabricated by printing hydrophobic barriers on filter paper using a laser printer, followed by depositing hydroxyapatite (HAp) as an immobilization material for the antibodies. The colorimetric detection was achieved using AuNPs functionalized with anti-AFP antibodies and silver nitrate enhancement. The LP-pELISA exhibited a linear response for AFP detection in both buffer and saliva samples over a range of 1.0-800 ng mL-1, with a limit of detection (LOD) reaching 1.0 ng mL-1. The assay also demonstrated good selectivity, repeatability, reproducibility, and stability. The LP-pELISA was further validated by testing spiked human saliva samples, showing its potential for point-of-care diagnosis of congenital disabilities. SIGNIFICANCE: The LP-pELISA is a noninvasive platform showcasing simplicity, cost-effectiveness, and user-friendliness, utilizing laser printing, hydroxyapatite modification, and saliva samples to efficiently detect AFP. Beyond its application for AFP, this method's versatility extends to other biomarkers, positioning it as a catalyst for the evolution of paper-based biosensors. The LP-pELISA holds promise as a transformative tool for point-of-care diagnostics, fostering advancements in healthcare with its innovative technology.


Colorimetry , Durapatite , Enzyme-Linked Immunosorbent Assay , Lasers , Paper , Saliva , alpha-Fetoproteins , Humans , Saliva/chemistry , Durapatite/chemistry , alpha-Fetoproteins/analysis , Printing , Gold/chemistry , Limit of Detection , Antibodies, Immobilized/immunology , Antibodies, Immobilized/chemistry
8.
Anal Chim Acta ; 1306: 342613, 2024 Jun 01.
Article En | MEDLINE | ID: mdl-38692794

Glucose detection is of significant importance in providing information to the human health management. However, conventional enzymatic glucose sensors suffer from a limited long-term stability due to the losing activity of the enzymes. In this work, the AuNi bimetallic aerogel with a well-defined nanowire network is synthesized and applied as the sensing nanomaterial in the non-enzymatic glucose detection. The three-dimensional (3D) hierarchical porous structure of the AuNi bimetallic aerogel ensures the high sensitivity of the sensor (40.34 µA mM-1 cm-2). Theoretical investigation unveiled the mechanism of the boosting electrocatalytic activity of the AuNi bimetallic aerogel toward glucose. A better adhesion between the sensing nanomaterial and the screen-printing electrodes (SPEs) is obtained after the introduction of Ni. On the basis of a wide linearity in the range of 0.1-5 mM, an excellent selectivity, an outstanding long-term stability (90 days) as well as the help of the signal processing circuit and an M5stack development board, the as-prepared glucose sensor successfully realizes remote monitoring of the glucose concentration. We speculate that this work is favorable to motivating the technological innovations of the non-enzymatic glucose sensors and intelligent sensing devices.


Biosensing Techniques , Electrochemical Techniques , Gels , Glucose , Gold , Nickel , Biosensing Techniques/methods , Nickel/chemistry , Gels/chemistry , Gold/chemistry , Glucose/analysis , Electrodes , Nanowires/chemistry , Humans , Limit of Detection
9.
Artif Cells Nanomed Biotechnol ; 52(1): 270-277, 2024 Dec.
Article En | MEDLINE | ID: mdl-38696132

Spherical gold/polyacrylic acid (Au/PAA) polymer-inorganic Janus nanoparticles (JNPs) with simultaneous therapeutic and targeting functions were fabricated. The obtained Au/PAA JNPs were further selectively functionalized with folic acid (FA) and thiol PEG amine (SH-PEG-NH2) on Au sides to provide superior biocompatibility and active targeting, while the other PAA sides were loaded with 5-aminolevulinic acid (5-ALA) to serve as a photosensitizer (PS) for photodynamic therapeutic (PDT) effects on MCF-7 cancer cells. The PS loading of 5-ALA was found to be 83% with an average hydrodynamic size and z-potential of 146 ± 0.8 nm and -6.40 mV respectively for FA-Au/PAA-ALA JNPs. The in vitro PDT study of the JNPs on MCF-7 breast cancer cells under 636 nm laser irradiation indicated the cell viability of 24.7% ± 0.5 for FA-Au/PAA-ALA JNPs at the IC50 value of 0.125 mM. In this regard, the actively targeted FA-Au/PAA-ALA JNPs treatment holds great potential for tumour therapy with high cancer cell-killing efficacy.


Aminolevulinic Acid , Breast Neoplasms , Gold , Photochemotherapy , Photosensitizing Agents , Humans , MCF-7 Cells , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Aminolevulinic Acid/chemistry , Aminolevulinic Acid/pharmacology , Gold/chemistry , Gold/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Nanoparticles/chemistry , Acrylic Resins/chemistry , Female , Folic Acid/chemistry , Cell Survival/drug effects
10.
Mikrochim Acta ; 191(6): 299, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709371

Gold nanoclusters are a smart platform for sensing potassium ions (K+). They have been synthesized using bovine serum albumin (BSA) and valinomycin (Val) to protect and cap the nanoclusters. The nanoclusters (Val-AuNCs) produced have a red emission at 616 nm under excitation with 470 nm. In the presence of K+, the valinomycin polar groups switch to the molecule's interior by complexing with K+, forming a bracelet structure, and being surrounded by the hydrophobic exterior conformation. This structure allows a proposed fluorometric method for detecting K+ by switching between the Val-AuNCs' hydrophilicity and hydrophobicity, which induces the aggregation of gold nanoclusters. As a result, significant quenching is seen in fluorescence after adding K+. The quenching in fluorescence in the presence of K+ is attributed to the aggregation mechanism. This sensing technique provides a highly precise and selective sensing method for K+ in the range 0.78 to 8 µM with LOD equal to 233 nM. The selectivity of Val-AuNCs toward K+ ions was investigated compared to other ions. Furthermore, the Val-AuNCs have novel possibilities as favorable sensor candidates for various imaging applications. Our detection technique was validated by determining K+ ions in postmortem vitreous humor samples, which yielded promising results.


Fluorescent Dyes , Gold , Metal Nanoparticles , Potassium , Serum Albumin, Bovine , Valinomycin , Gold/chemistry , Valinomycin/chemistry , Potassium/analysis , Potassium/chemistry , Metal Nanoparticles/chemistry , Serum Albumin, Bovine/chemistry , Fluorescent Dyes/chemistry , Spectrometry, Fluorescence/methods , Limit of Detection , Animals , Hydrophobic and Hydrophilic Interactions , Cattle
11.
Mikrochim Acta ; 191(6): 298, 2024 05 06.
Article En | MEDLINE | ID: mdl-38709403

As a real-time fluid biopsy method, the detection of circulating tumor cells (CTCs) provides important information for the early diagnosis, precise treatment, and prognosis of cancer. However, the low density of CTCs in the peripheral blood hampers their capture and detection with high sensitivity and selectivity using currently available methods. Hence, we designed a sandwich-type electrochemical aptasensor that utilizes holothurian-shaped AuPd nanoparticles (AuPd HSs), tetrahedral DNA nanostructures (TDNs), and CuPdPt nanowire networks (NWs) interwoven with a graphdiyne (GDY) sheet for ultrasensitive non-destructive detection of MCF-7 breast cancer cells. CuPdPt NW-GDY effectively enhanced the electron transfer rate and coupled with the loaded TDNs. The TDNs could capture MCF-7 cells with precision and firmness, and the resulting composite complex was combined with AuPd HSs to form a sandwich-type structure. This novel aptasensor showed a linear range between 10 and 106 cells mL-1 and an ultralow detection limit of 7 cells mL-1. The specificity, stability, and repeatability of the measurements were successfully verified. Moreover, we used benzonase nuclease to achieve non-destructive recovery of cells for further clinical studies. According to the results, our aptasensor was more sensitive measuring the number of CTCs than other approaches because of the employment of TDNs, CuPdPt NW-GDY, and AuPd HSs. We designed a reliable sensor system for the detection of CTCs in the peripheral blood, which could serve as a new approach for cancer diagnosis at an early stage.


Aptamers, Nucleotide , Biosensing Techniques , DNA , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , Neoplastic Cells, Circulating , Palladium , Neoplastic Cells, Circulating/pathology , Humans , MCF-7 Cells , Metal Nanoparticles/chemistry , Electrochemical Techniques/methods , Aptamers, Nucleotide/chemistry , Gold/chemistry , DNA/chemistry , Biosensing Techniques/methods , Palladium/chemistry
12.
Mikrochim Acta ; 191(6): 305, 2024 05 07.
Article En | MEDLINE | ID: mdl-38713444

A multifunctional surface-enhanced Raman scattering (SERS) platform integrating sensitive detection and drug resistance analysis was developed for Gram-positive bacteria. The substrate was based on self-assembled Ti3C2Tx@Au NPs films and capture molecule phytic acid (IP6) to achieve specific capture of Gram-positive bacteria and different bacteria were analyzed by fingerprint signal. It had advantages of good stability and homogeneity (RSD = 8.88%). The detection limit (LOD) was 102 CFU/mL for Staphylococcus aureus and 103 CFU/mL for MRSA, respectively. A sandwich structure was formed on the capture substrate by signal labels prepared by antibiotics (penicillin G and vancomycin) and non-interference SERS probe molecules (4-mercaptobenzonitrile (2223 cm-1) and 2-amino-4-cyanopyridine (2240 cm-1)) to improve sensitivity. The LOD of Au NPs@4-MBN@PG to S. aureus and Au NPs@AMCP@Van to MRSA and S. aureus were all improved to 10 CFU/mL, with a wide dynamic linear range from 108 to 10 CFU/mL (R2 ≥ 0.992). The SERS platform can analyze the drug resistance of drug-resistant bacteria. Au NPs@4-MBN@PG was added to the substrate and captured MRSA to compare the SERS spectra of 4-MBN. The intensity inhomogeneity of 4-MBN at the same concentrations of MRSA and the nonlinearity at the different concentrations of MRSA revealed that MRSA was resistant to PG. Finally, the SERS platform achieved the determination of MRSA in blood. Therefore, this SERS platform has great significance for the determination and analysis of Gram-positive bacteria.


Anti-Bacterial Agents , Gold , Limit of Detection , Metal Nanoparticles , Spectrum Analysis, Raman , Staphylococcus aureus , Titanium , Spectrum Analysis, Raman/methods , Gold/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Titanium/chemistry , Metal Nanoparticles/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/isolation & purification , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/isolation & purification , Vancomycin/pharmacology , Vancomycin/chemistry , Drug Resistance, Bacterial , Microbial Sensitivity Tests , Penicillin G/pharmacology , Penicillin G/chemistry , Gram-Positive Bacteria/drug effects , Gram-Positive Bacteria/isolation & purification
13.
Anal Chim Acta ; 1307: 342631, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719408

BACKGROUND: Simultaneous detection of food contaminants is crucial in addressing the collective health hazards arising from the presence of multiple contaminants. However, traditional multi-competitive surface-enhanced Raman scattering (SERS) aptasensors face difficulties in achieving simultaneous accurate detection of multiple target substances due to the uncontrollable SERS "hot spots". In this study, using chloramphenicol (CAP) and estradiol (E2) as two target substances, we introduced a novel approach that combines machine learning methods with a dual SERS aptasensor, enabling simultaneous high-sensitivity and accurate detection of both target substances. RESULTS: The strategy effectively minimizes the interference from characteristic Raman peaks commonly encountered in traditional multi-competitive SERS aptasensors. For this sensing system, the Au@4-MBA@Ag nanoparticles modified with sulfhydryl (SH)-CAP aptamer and Au@DTNB@Ag NPs modified with sulfhydryl (SH)-E2 aptamer were used as signal probes. Additionally, Fe3O4@Au nanoflowers integrated with SH-CAP aptamer complementary DNA and SH-E2 aptamer complementary DNA were used as capture probes, respectively. When compared to linear regression random forest, and support vector regression (SVR) models, the proposed artificial neural network (ANN) model exhibited superior precision, demonstrating R2 values of 0.963, 0.976, 0.991, and 0.970 for the training set, test set, validation set, and entire dataset, respectively. Validation with ten spectral groups reported an average error of 244 µg L-1. SIGNIFICANCE: The essence of our study lies in its capacity to address a persistent challenge encountered by traditional multiple competitive SERS aptasensors - the interference generated by uncontrollable SERS "hot spots" that hinders simultaneous quantification. The accuracy of the predictive model for simultaneous detection of two target substances was significantly improved using machine learning tools. This innovative technique offers promising avenues for the accurate and high-sensitive simultaneous detection of multiple food and environmental contaminants.


Aptamers, Nucleotide , Gold , Machine Learning , Metal Nanoparticles , Silver , Spectrum Analysis, Raman , Aptamers, Nucleotide/chemistry , Silver/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Chloramphenicol/analysis , Estradiol/analysis , Biosensing Techniques/methods , Food Contamination/analysis , Limit of Detection
14.
Anal Chim Acta ; 1307: 342630, 2024 Jun 08.
Article En | MEDLINE | ID: mdl-38719407

BACKGROUND: MicroRNAs, as oncogenes or tumor suppressors, enable to up or down-regulate gene expression during tumorigenesis. The detection of miRNAs with high sensitivity is crucial for the early diagnosis of cancer. Inspired by biological ion channels, artificial nanochannels are considered as an excellent biosensing platform with relatively high sensitivity and stability. The current nanochannel biosensors are mainly based on homogeneous membranes, and their monotonous structure and functionality limit its further development. Therefore, it is necessary to develop a heterostructured nanochannel with high ionic current rectification to achieve highly sensitive miRNA detection. RESULTS: In this work, an asymmetric heterostructured nanochannel constructed from dendrimer-gold nanoparticles network and anodic aluminum oxide are designed through an interfacial super-assembly method, which can regulate ion transport and achieve sensitive detection of target miRNA. The symmetry breaking is demonstrated to endow the heterostructured nanochannels with an outstanding ionic current rectification performance. Arising from the change of surface charges in the nanochannels triggered by DNA cascade signal amplification in solution, the proposed heterogeneous nanochannels exhibits excellent DNA-regulated ionic current response. Relying on the nucleic acid's hybridization and configuration transformation, the target miRNA-122 associated with liver cancer can be indirectly quantified with a detection limit of 1 fM and a wide dynamic range from 1 fM to 10 pM. The correlation fitting coefficient R2 of the calibration curve can reach to 0.996. The experimental results show that the method has a good recovery rate (98%-105 %) in synthetic samples. SIGNIFICANCE: This study reveals how the surface charge density of nanochannels regulate the ionic current response in the heterostructured nanochannels. The designed heterogeneous nanochannels not only possess high ionic current rectification property, but also enable to induce superior transport performance by the variation of surface chemistry. The proposed biosensor is promising for applications in early diagnosis of cancers, life science research, and single-entity electrochemical detection.


Aluminum Oxide , Biosensing Techniques , Dendrimers , Gold , MicroRNAs , MicroRNAs/analysis , Gold/chemistry , Dendrimers/chemistry , Aluminum Oxide/chemistry , Humans , Biosensing Techniques/methods , Metal Nanoparticles/chemistry , Limit of Detection , Electrochemical Techniques/methods , Nanostructures/chemistry
15.
Methods Cell Biol ; 187: 57-72, 2024.
Article En | MEDLINE | ID: mdl-38705630

Correlative light and electron microscopy (CLEM) can provide valuable information about a biological sample by giving information on the specific localization of a molecule of interest within an ultrastructural context. In this work, we describe a simple CLEM method to obtain high-resolution images of neurotransmitter receptor distribution in synapses by electron microscopy (EM). We use hippocampal organotypic slices from a previously reported mouse model expressing a modified AMPA receptor (AMPAR) subunit that binds biotin at the surface (Getz et al., 2022). This tag can be recognized by StreptAvidin-Fluoronanogold™ conjugates (SA-FNG), which reach receptors at synapses (synaptic cleft is 50-100nm thick). By using pre-embedding labeling, we found that SA-FNG reliably bind synaptic receptors and penetrate around 10-15µm in depth in live tissue. However, the silver enhancement was only reaching the surface of the slices. We show that permeabilization with triton is highly effective at increasing the in depth-gold amplification and that the membrane integrity is well preserved. Finally, we also apply high-resolution electron tomography, thus providing important information about the 3D organization of surface AMPA receptors in synapses at the nanoscale.


Hippocampus , Receptors, AMPA , Synapses , Animals , Mice , Hippocampus/metabolism , Hippocampus/cytology , Receptors, AMPA/metabolism , Synapses/metabolism , Synapses/ultrastructure , Membrane Proteins/metabolism , Gold/chemistry , Microscopy, Electron/methods , Fluorescent Dyes/chemistry , Fluorescent Dyes/metabolism
16.
Proc Natl Acad Sci U S A ; 121(23): e2403131121, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38805267

The renal elimination pathway is increasingly harnessed to reduce nonspecific accumulation of engineered nanoparticles within the body and expedite their clinical applications. While the size of nanoparticles is recognized as crucial for their passive filtration through the glomerulus due to its limited pore size, the influence of nanoparticle charge on their transport and interactions within the kidneys remains largely elusive. Herein, we report that the proximal tubule and peritubular capillary, rather than the glomerulus, serve as primary charge barriers to the transport of charged nanoparticles within the kidney. Employing a series of ultrasmall, renal-clearable gold nanoparticles (AuNPs) with precisely engineered surface charge characteristics as multimodal imaging agents, we have tracked their distribution and retention across various kidney components following intravenous administration. Our results reveal that retention in the proximal tubules is governed not by the nanoparticle's zeta-potential, but by direct Coulombic interactions between the positively charged surface ligands of the AuNPs and the negatively charged microvilli of proximal tubules. However, further enhancing these interactions leads to increased binding of the positively charged AuNPs to the peritubular capillaries during the initial phase of elimination, subsequently facilitating their slow passage through the glomeruli and interaction with tubular components in a charge-selective manner. By identifying these two critical charge-dependent barriers in the renal transport of nanoparticles, our findings offer a fundamental insight for the design of renal nanomedicines tailored for selective targeting within the kidney, laying down a foundation for developing targeting renal nanomedicines for future kidney disease management in the clinics.


Gold , Metal Nanoparticles , Gold/chemistry , Metal Nanoparticles/chemistry , Animals , Mice , Kidney Tubules, Proximal/metabolism , Renal Elimination , Kidney/metabolism , Male
17.
Mikrochim Acta ; 191(6): 328, 2024 05 14.
Article En | MEDLINE | ID: mdl-38743383

The instant screening of patients with a tendency towards developing Alzheimer's disease (AD) is significant for providing preventive measures and treatment. However, the current imaging-based technology cannot meet the requirements in the early stage. Developing biosensor-based liquid biopsy technology could be overcoming this bottleneck problem. Herein, we developed a simple, low-cost, and sensitive electrochemical aptamer biosensor for detecting phosphorylated tau protein threonine 231 (P-tau231), the earliest and one of the most efficacious abnormally elevated biomarkers of AD. Gold nanoparticles (AuNPs) were electrochemically synthesized on a glassy carbon electrode as the transducer, exhibiting excellent conductivity, and were applied to amplify the electrochemical signal. A nucleic acid aptamer was designed as the receptor to capture the P-tau231 protein, specifically through the formation of an aptamer-antigen complex. The proposed biosensor showed excellent sensitivity in detecting P-tau 231, with a broad linear detection range from 10 to 107 pg/mL and a limit of detection (LOD) of 2.31 pg/mL. The recoveries of the biosensor in human serum ranged from 97.59 to 103.26%, demonstrating that the biosensor could be used in complex practical samples. In addition, the results showed that the developed biosensor has good repeatability, reproducibility, and stability, which provides a novel method for the early screening of AD.


Alzheimer Disease , Aptamers, Nucleotide , Biosensing Techniques , Electrochemical Techniques , Gold , Limit of Detection , Metal Nanoparticles , tau Proteins , Humans , Alzheimer Disease/blood , Alzheimer Disease/diagnosis , Aptamers, Nucleotide/chemistry , tau Proteins/blood , Biosensing Techniques/methods , Electrochemical Techniques/methods , Electrochemical Techniques/instrumentation , Gold/chemistry , Metal Nanoparticles/chemistry , Phosphorylation , Biomarkers/blood
18.
Mikrochim Acta ; 191(6): 330, 2024 05 14.
Article En | MEDLINE | ID: mdl-38744738

In view of a large number of people infected with Helicobacter pylori (H. pylori) with great harm followed, there is an urgent need to develop a non-invasive, easy-to-operate, and rapid detection method, and to identify effective sterilization strategies. In this study, highly specific nanoprobes with nanozyme activity, Ag@Pt nanoparticles (NPs) with the antibody, were utilized as a novel lateral flow immunoassay (LFIA). The optical label (Ag@Pt NPs) was enhanced by the introduction of the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB) and compared with a gold nanoparticles (Au NPs) optical label. Under the optimal condition, Ag@Pt-LFIA and TMB-enhanced Ag@Pt-LFIA for H. pylori were successfully established, two of which were over twofold and 100-fold more sensitive than conventional visual Au NP-based LFIA, respectively. Furthermore, Ag@Pt NPs with the antibody irradiated with NIR laser (808 nm) at a power intensity of 550 mW/cm2 for 5 min exhibited a remarkable antibacterial effect. The nanoprobes could close to bacteria through effective interactions between antibodies and bacteria, thereby benefiting photothermal sterilization. Overall, Ag@Pt NPs provide promising applications in pathogen detection and therapeutic applications.


Alloys , Helicobacter pylori , Metal Nanoparticles , Platinum , Silver , Helicobacter pylori/radiation effects , Helicobacter pylori/drug effects , Silver/chemistry , Metal Nanoparticles/chemistry , Platinum/chemistry , Alloys/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Immunoassay/methods , Benzidines/chemistry , Gold/chemistry , Humans , Sterilization/methods , Limit of Detection
19.
Molecules ; 29(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38731508

This study delves into the physicochemical properties of inorganic hydroxyapatite (HAp) and hybrid hydroxyapatite-chitosan (HAp-CTS) granules, also gold-enriched, which can be used as aggregates in biomicroconcrete-type materials. The impact of granules' surface modifications with citric acid (CA) or polyethylene glycol (PEG) was assessed. Citric acid modification induced increased specific surface area and porosity in inorganic granules, contrasting with reduced parameters in hybrid granules. PEG modification resulted in a slight increase in specific surface area for inorganic granules and a substantial rise for hybrid granules with gold nanoparticles. Varied effects on open porosity were observed based on granule type. Microstructural analysis revealed increased roughness for inorganic granules post CA modification, while hybrid granules exhibited smoother surfaces. Novel biomicroconcretes, based on α-tricalcium phosphate (α-TCP) calcium phosphate cement and developed granules as aggregates within, were evaluated for compressive strength. Compressive strength assessments showcased significant enhancement with PEG modification, emphasizing its positive impact. Citric acid modification demonstrated variable effects, depending on granule composition. The incorporation of gold nanoparticles further enriched the multifaceted approach to enhancing calcium phosphate-based biomaterials for potential biomedical applications. This study demonstrates the pivotal role of surface modifications in tailoring the physicochemical properties of granules, paving the way for advanced biomicroconcretes with improved compressive strength for diverse biomedical applications.


Citric Acid , Durapatite , Polyethylene Glycols , Citric Acid/chemistry , Durapatite/chemistry , Polyethylene Glycols/chemistry , Gold/chemistry , Biocompatible Materials/chemistry , Materials Testing , Chitosan/chemistry , Porosity , Metal Nanoparticles/chemistry , Chemical Phenomena , Compressive Strength , Surface Properties
20.
Int J Nanomedicine ; 19: 4121-4136, 2024.
Article En | MEDLINE | ID: mdl-38736655

Purpose: This study aims to broaden the application of nano-contrast agents (NCAs) within the realm of the musculoskeletal system. It aims to introduce novel methods, strategies, and insights for the clinical management of ischemic muscle disorders, encompassing diagnosis, monitoring, evaluation, and therapeutic intervention. Methods: We developed a composite encapsulation technique employing O-carboxymethyl chitosan (OCMC) and liposome to encapsulate NCA-containing gold nanorods (GNRs) and perfluoropentane (PFP). This nanoscale contrast agent was thoroughly characterized for its basic physicochemical properties and performance. Its capabilities for in vivo and in vitro ultrasound imaging and photothermal imaging were authenticated, alongside a comprehensive biocompatibility assessment to ascertain its effects on microcirculatory perfusion in skeletal muscle using a murine model of hindlimb ischemia, and its potential to augment blood flow and facilitate recovery. Results: The engineered GNR@OCMC-liposome/PFP nanostructure exhibited an average size of 203.18±1.49 nm, characterized by size uniformity, regular morphology, and a good biocompatibility profile. In vitro assessments revealed NCA's potent photothermal response and its transformation into microbubbles (MBs) under near-infrared (NIR) irradiation, thereby enhancing ultrasonographic visibility. Animal studies demonstrated the nanostructure's efficacy in photothermal imaging at ischemic loci in mouse hindlimbs, where NIR irradiation induced rapid temperature increases and significantly increased blood circulation. Conclusion: The dual-modal ultrasound/photothermal NCA, encapsulating GNR and PFP within a composite shell-core architecture, was synthesized successfully. It demonstrated exceptional stability, biocompatibility, and phase transition efficiency. Importantly, it facilitates the encapsulation of PFP, enabling both enhanced ultrasound imaging and photothermal imaging following NIR light exposure. This advancement provides a critical step towards the integrated diagnosis and treatment of ischemic muscle diseases, signifying a pivotal development in nanomedicine for musculoskeletal therapeutics.


Contrast Media , Gold , Ischemia , Muscle, Skeletal , Nanotubes , Ultrasonography , Animals , Gold/chemistry , Nanotubes/chemistry , Contrast Media/chemistry , Contrast Media/pharmacology , Mice , Ischemia/diagnostic imaging , Ischemia/therapy , Muscle, Skeletal/diagnostic imaging , Ultrasonography/methods , Hindlimb/blood supply , Fluorocarbons/chemistry , Fluorocarbons/pharmacology , Liposomes/chemistry , Chitosan/chemistry , Chitosan/pharmacology , Muscular Diseases/diagnostic imaging , Muscular Diseases/therapy , Photothermal Therapy/methods , Disease Models, Animal , Humans , Pentanes
...