Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.390
Filter
1.
BMC Med Genomics ; 17(1): 174, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951840

ABSTRACT

BACKGROUND: This study investigates the distribution and characteristics of linezolid and vancomycin susceptibilities among Enterococcus faecalis (E. faecalis) and Enterococcus faecium (E. faecium) and explores the underlying resistance mechanisms. METHODS: A total of 2842 Enterococcus clinical isolates from patients were retrospectively collected, and their clinical data were further analyzed. The minimum inhibitory concentrations (MICs) of vancomycin and linezolid were validated by broth dilution method. The resistance genes optrA, cfr, vanA, vanB and vanM were investigated using polymerase chain reaction (PCR). Housekeeping genes and resistance genes were obtianed through whole-genome sequencing (WGS). RESULTS: Of the 2842 Enterococcus isolates, 88.5% (2516) originated from urine, with E. faecium accounted for 60.1% of these. The vanA gene was identified in 27/28 vancomycin resistant Enterococcus (VRE) isolates, 4 of which carried both vanA and vanM genes. The remaining strain was vanM positive. The optrA gene was identified in all E. faecalis isolates among linezolid resistant Enterococcus (LRE). E. faecium showed a higher multiple antibiotic resistance index (MAR index) compared to E. faecalis. The multi-locus sequence typing (MLST) showed the sequence type of E. faecium mainly belongs to clonal complex (CC) 17, nearly E. faecalis isolates analyzed were differentiated into 7 characteristics of sequence types (STs), among which ST16 of CC16 were the major lineage. CONCLUSION: Urine was the primary source of VRE and LRE isolates in this study. E. faecium showed higher levels of resistance compared to E. faecalis. OptrA gene was detected in 91.6% of LRE, which could explain linezolid resistance, and van genes were detected in all vancomycin resistant Enterococcus strains, while vanA was a key resistance mechanism in VRE identified in this study.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Linezolid/pharmacology , Humans , China/epidemiology , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Male , Middle Aged , Enterococcus faecalis/genetics , Enterococcus faecalis/drug effects , Enterococcus faecalis/isolation & purification , Female , Vancomycin/pharmacology , Anti-Bacterial Agents/pharmacology , Molecular Epidemiology , Adult , Vancomycin Resistance/genetics , Aged , Retrospective Studies , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Young Adult , Enterococcus/genetics , Enterococcus/drug effects , Enterococcus/isolation & purification
2.
Medicina (Kaunas) ; 60(6)2024 May 23.
Article in English | MEDLINE | ID: mdl-38929467

ABSTRACT

Background and Objective: Enterococci are typically found in a healthy human gastrointestinal tract but can cause severe infections in immunocompromised patients. Such infections are treated with antibiotics. This study addresses the rising concern of antimicrobial resistance (AMR) in Enterococci, focusing on the prevalence of vancomycin-resistant enterococcus (VRE) strains. Materials and Methods: The pilot study involved 140 Enterococci isolates collected between 2021 and 2022 from two multidisciplinary hospitals (with and without local therapeutic drug monitoring protocol of vancomycin) in Latvia. Microbiological assays and whole genome sequencing were used. AMR gene prevalence with resistance profiles were determined and the genetic relationship and outbreak evaluation were made by applying core genome multi-locus sequence typing (cgMLST). Results: The acquired genes and mutations were responsible for resistance against 10 antimicrobial classes, including 25.0% of isolates expressing resistance to vancomycin, predominantly of the vanB type. Genetic diversity among E. faecalis and E. faecium isolates was observed and seven potential outbreak clusters were identified, three of them containing sequence types ST6, ST78 and ST80. The prevalence of vancomycin resistance was highest in the hospital without a therapeutic drug-monitoring protocol and in E. faecium. Notably, a case of linezolid resistance due to a mutation was documented. Conclusions: The study illustrates the concerning prevalence of multidrug-resistant Enterococci in Latvian hospitals, showcasing the rather widespread occurrence of vancomycin-resistant strains. This highlights the urgency of implementing efficient infection control mechanisms and the need for continuous VRE surveillance in Latvia to define the scope and pattern of the problem, influencing clinical decision making and planning further preventative measures.


Subject(s)
Anti-Bacterial Agents , Humans , Latvia/epidemiology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Pilot Projects , Enterococcus/drug effects , Enterococcus/genetics , Microbial Sensitivity Tests , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/microbiology , Vancomycin-Resistant Enterococci/drug effects , Vancomycin-Resistant Enterococci/isolation & purification , Drug Resistance, Bacterial/genetics , Multilocus Sequence Typing , Whole Genome Sequencing
3.
Expert Opin Pharmacother ; 25(8): 1027-1037, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38863433

ABSTRACT

INTRODUCTION: Infections due to multidrug-resistant organisms (MDRO) are a serious concern for public health with high morbidity and mortality. Though many antibiotics have been introduced to manage these infections, there are remaining concerns regarding the optimal management of Gram-positive MDROs. AREAS COVERED: A literature search on the PubMed/Medline database was conducted. We applied no language and time limits for the search strategy. In this narrative review, we discuss the current options for managing Gram-positive MDROs as well as non-traditional antibacterial agents in development. EXPERT OPINION: Despite their introduction more than 70 years ago, glycopeptides are still the cornerstone in treating Gram-positive infections: all registrative studies of new antibiotics have glycopeptides as control; these studies are designed as not inferior studies, therefore it is almost impossible to give recommendations other than the use of glycopeptides in the treatment of Gram-positive infections. The best evidence on treatments different from glycopeptides comes from post-hoc analysis and meta-analysis. Non-traditional antibacterial agents are being studied to aid in short and effective antibiotic therapies. The use of non-traditional antibacterial agents is not restricted to replacing traditional antibacterial agents with alternative therapies; instead, they should be used in combination with antibiotic therapies.


Subject(s)
Anti-Bacterial Agents , Drug Resistance, Multiple, Bacterial , Glycopeptides , Gram-Positive Bacteria , Gram-Positive Bacterial Infections , Humans , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Glycopeptides/therapeutic use , Gram-Positive Bacteria/drug effects , Drug Development , Animals
4.
Euro Surveill ; 29(23)2024 Jun.
Article in English | MEDLINE | ID: mdl-38847117

ABSTRACT

BackgroundVancomycin-resistant enterococci (VRE) are increasing in Denmark and Europe. Linezolid and vancomycin-resistant enterococci (LVRE) are of concern, as treatment options are limited. Vancomycin-variable enterococci (VVE) harbour the vanA gene complex but are phenotypically vancomycin-susceptible.AimThe aim was to describe clonal shifts for VRE and VVE in Denmark between 2015 and 2022 and to investigate genotypic linezolid resistance among the VRE and VVE.MethodsFrom 2015 to 2022, 4,090 Danish clinical VRE and VVE isolates were whole genome sequenced. We extracted vancomycin resistance genes and sequence types (STs) from the sequencing data and performed core genome multilocus sequence typing (cgMLST) analysis for Enterococcus faecium. All isolates were tested for the presence of mutations or genes encoding linezolid resistance.ResultsIn total 99% of the VRE and VVE isolates were E. faecium. From 2015 through 2019, 91.1% of the VRE and VVE were vanA E. faecium. During 2020, to the number of vanB E. faecium increased to 254 of 509 VRE and VVE isolates. Between 2015 and 2022, seven E. faecium clusters dominated: ST80-CT14 vanA, ST117-CT24 vanA, ST203-CT859 vanA, ST1421-CT1134 vanA (VVE cluster), ST80-CT1064 vanA/vanB, ST117-CT36 vanB and ST80-CT2406 vanB. We detected 35 linezolid vancomycin-resistant E. faecium and eight linezolid-resistant VVEfm.ConclusionFrom 2015 to 2022, the numbers of VRE and VVE increased. The spread of the VVE cluster ST1421-CT1134 vanA E. faecium in Denmark is a concern, especially since VVE diagnostics are challenging. The finding of LVRE, although in small numbers, ia also a concern, as treatment options are limited.


Subject(s)
Anti-Bacterial Agents , Bacterial Proteins , Carbon-Oxygen Ligases , Enterococcus faecium , Gram-Positive Bacterial Infections , Linezolid , Microbial Sensitivity Tests , Multilocus Sequence Typing , Vancomycin Resistance , Vancomycin-Resistant Enterococci , Vancomycin-Resistant Enterococci/genetics , Vancomycin-Resistant Enterococci/isolation & purification , Vancomycin-Resistant Enterococci/drug effects , Enterococcus faecium/genetics , Enterococcus faecium/drug effects , Enterococcus faecium/isolation & purification , Humans , Denmark/epidemiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Bacterial Proteins/genetics , Carbon-Oxygen Ligases/genetics , Linezolid/pharmacology , Vancomycin Resistance/genetics , Whole Genome Sequencing , Vancomycin/pharmacology , Vancomycin/therapeutic use , Genotype
5.
Przegl Epidemiol ; 78(1): 3-15, 2024 Jun 07.
Article in English, Polish | MEDLINE | ID: mdl-38904307

ABSTRACT

Slackia exigua, originally classified as Eubacterium exiguum, is a Gram-positive, asaccharolytic, rod-shaped anaerobic bacterium. The virulence factors of S. exigua have not been accurately identified. The objective of the study is to evaluate the pathogenic potential of S. exigua by presenting the cases of infections diagnosed at our hospital laboratory. Additionally, we reviewed the literature to summarize the experience with S. exigua infections to clarify, in the light of current knowledge, the clinical picture, diagnostic, and therapeutic issues related to this anaerobic bacterium. We reported eleven severe human infections caused by S. exigua. All patients required hospitalization. Nine of the cases involved chronic infections in the stomatognathic system, in two patients, skin infections were diagnosed. As it is known, S. exigua is a component of the human microbiota; however, it can cause opportunistic infections, particularly in the case of translocation outside its natural habitat. A critical literature analysis revealed that S. exigua can be responsible for bacteremia, meningitis, tissue necrosis, periprosthetic joint infection, and osteomyelitis. Several studies have been published regarding the determination of drug susceptibility of S. exigua. The isolated strains were susceptible to most antibiotics used for the treatment of anaerobic infections. The interpretation of antimicrobial susceptibility testing for some slow-growing in vitro, infrequently causing infections anaerobic bacteria, such as S. exigua, is based on The European Committee on Antimicrobial Susceptibility Testing (EUCAST) additional guidance taking into account the determination of drug susceptibility for groups of microorganisms for which cut-off values have not been developed.


Subject(s)
Anti-Bacterial Agents , Humans , Female , Male , Middle Aged , Adult , Anti-Bacterial Agents/therapeutic use , Aged , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/microbiology , Poland
6.
Int J Nanomedicine ; 19: 5879-5893, 2024.
Article in English | MEDLINE | ID: mdl-38895145

ABSTRACT

Introduction: Persistent endodontic infections (PEIs) mediated by bacterial biofilm mainly cause persistent periapical inflammation, resulting in recurrent periapical abscesses and progressive bone destruction. However, conventional root canal disinfectants are highly damaging to the tooth and periodontal tissue and ineffective in treating persistent root canal infections. Antimicrobial materials that are biocompatible with apical tissues and can eliminate PEIs-associated bacteria are urgently needed. Methods: Here, ε-poly (L-lysine) derived carbon quantum dots (PL-CQDs) are fabricated using pyrolysis to remove PEIs-associated bacterial biofilms. Results: Due to their ultra-small size, high positive charge, and active reactive oxygen species (ROS) generation capacity, PL-CQDs exhibit highly effective antibacterial activity against Enterococcus faecalis (E. faecalis), which is greatly dependent on PL-CQDs concentrations. 100 µg/mL PL-CQDs could kill E. faecalis in 5 min. Importantly, PL-CQDs effectively achieved a reduction of biofilms in the isolated teeth model, disrupting the dense structure of biofilms. PL-CQDs have acceptable cytocompatibility and hemocompatibility in vitro and good biosafety in vivo. Discussion: Thus, PL-CQDs provide a new strategy for treating E. faecalis-associated PEIs.


Subject(s)
Biofilms , Carbon , Enterococcus faecalis , Gram-Positive Bacterial Infections , Polylysine , Quantum Dots , Enterococcus faecalis/drug effects , Enterococcus faecalis/physiology , Quantum Dots/chemistry , Biofilms/drug effects , Polylysine/chemistry , Polylysine/pharmacology , Carbon/chemistry , Carbon/pharmacology , Animals , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Humans , Reactive Oxygen Species/metabolism , Mice
7.
Am J Trop Med Hyg ; 111(1): 129-131, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38834083

ABSTRACT

Leuconostoc species are regarded as important causes for many infections in immunocompromised patients. In this study, we assessed the characteristics of Leuconostoc spp. causing bacteremia in patients at our center. This observational analysis was conducted in the microbiology laboratory of a tertiary care center in northern India from July 2021 to July 2023. Patients in whom blood culture bottles were positive for Leuconostoc lactis were included in the study. Culture isolates were identified by MALDI-ToF MS as L. lactis and tested for antibiotic sensitivity results by Kirby-Bauer disk diffusion method. Demographic and clinical details were collected and analyzed. During the study period, 6,742 blood culture bottles flagged positive. Among these, L. lactis was isolated from 14 (0.21%) patients. The median patient age was 34 years. The male-to-female ratio was 2.5:1. All the patients with L. lactis bacteremia had an underlying condition leading to immunosuppression (e.g., carcinoma and chronic kidney disease). All the patients with L. lactis bacteremia had an intravascular device present at the time of bacteremia. All isolates in the study were sensitive to doxycycline, high level gentamicin, minocycline, ampicillin-sulbactam, and linezolid. Mortality was attributed to bacteremia by L. lactis in five patients. Appropriate and timely identification of the Leuconostoc species is important for the clinician to tailor regimens for the patients.


Subject(s)
Anti-Bacterial Agents , Bacteremia , Leuconostoc , Tertiary Care Centers , Humans , Bacteremia/microbiology , Bacteremia/epidemiology , Bacteremia/drug therapy , India/epidemiology , Male , Female , Leuconostoc/isolation & purification , Leuconostoc/drug effects , Adult , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Middle Aged , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/mortality , Young Adult , Microbial Sensitivity Tests , Aged
8.
Microb Pathog ; 192: 106689, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38750777

ABSTRACT

Enterococcus faecalis is the primary species detected in cases of secondary persistent infection resulting from root canal therapy failure. Due to the overuse of antibacterial agents, E. faecalis has developed resistance to these drugs, making it challenging to treat clinical diseases caused by E. faecalis infection. Therefore, there is an urgent need to explore new alternative drugs for treating E. faecalis infections. We aimed to clone and express the genes of phage endolysins, purify the recombinant proteins, and analyze their antibacterial activity, lysis profile, and ability to remove biofilm. The crude enzyme of phage endolysin pEF51 (0.715 mg/mL), derived from phage PEf771 infecting E. faecalis, exhibited superior bacterial inhibitory activity and a broader bactericidal spectrum than its parental phage PEf771. Furthermore, pEF51 demonstrated high efficacy in eliminating E. faecalis biofilm. Therapeutic results of the infected Sprague-Dawley (SD) rat model indicated that among 10 SD rats, only one developed a thoracic peritoneal abscess and splenic peritoneal abscess after 72 h of treatment with pEF51. This suggests that pEF51 could provide protection against E. faecalis infection in SD rats. Based on the 16S rDNA metagenomic data of the intestinal microbial community of SD rats, endolysin pEF51 exerted a certain influence on the diversity of intestinal microorganisms at the genus level. Thus, pEF51 may serve as a promising alternative to antibiotics in the management of E. faecalis infection.


Subject(s)
Anti-Bacterial Agents , Bacteriophages , Biofilms , Disease Models, Animal , Endopeptidases , Enterococcus faecalis , Gram-Positive Bacterial Infections , Rats, Sprague-Dawley , Enterococcus faecalis/drug effects , Endopeptidases/pharmacology , Endopeptidases/genetics , Endopeptidases/metabolism , Animals , Biofilms/drug effects , Biofilms/growth & development , Bacteriophages/genetics , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Rats , RNA, Ribosomal, 16S/genetics , Gastrointestinal Microbiome/drug effects , Microbial Sensitivity Tests , Recombinant Proteins/genetics , Recombinant Proteins/pharmacology , Male
9.
Infection ; 52(3): 787-800, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38717734

ABSTRACT

PURPOSE: The principal objective of this project was to review and thoroughly examine the chemical characteristics, pharmacological activity, and quantification methods associated with contezolid. METHODS: The article was based on published and ongoing preclinical and clinical studies on the application of contezolid. These studies included experiments on the physicochemical properties of contezolid, in vitro antimicrobial research, in vivo antimicrobial research, and clinical trials in various phases. There were no date restrictions on these studies. RESULTS: In June 2021, contezolid was approved for treating complicated skin and soft tissue infections. The structural modification of contezolid has resulted in better efficacy compared to linezolid. It inhibits bacterial growth by preventing the production of the functional 70S initiation complex required to translate bacterial proteins. The current evidence has indicated a substantial decline in myelosuppression and monoamine oxidase inhibition without impairing its antibacterial properties. Contezolid was found to have a more significant safety profile and to be metabolised by flavin monooxygenase 5, reducing the risk of harmful effects due to drug-drug interactions. Adjusting doses is unnecessary for patients with mild to moderate renal or hepatic insufficiency. CONCLUSION: As an oral oxazolidinone antimicrobial agent, contezolid is effective against multi-drug resistant Gram-positive bacteria. The introduction of contezolid provided a new clinical option.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacterial Infections , Oxazolidinones , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Oxazolidinones/pharmacology , Oxazolidinones/therapeutic use , Humans , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Soft Tissue Infections/drug therapy , Soft Tissue Infections/microbiology , Animals , Pyridones
10.
J Antimicrob Chemother ; 79(7): 1697-1705, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38814793

ABSTRACT

BACKGROUND: Daptomycin is widely used in critically ill patients for Gram-positive bacterial infections. Extracorporeal membrane oxygenation (ECMO) is increasingly used in this population and can potentially alter the pharmacokinetic (PK) behaviour of antibiotics. However, the effect of ECMO has not been evaluated in daptomycin. Our study aims to explore the effect of ECMO on daptomycin in critically ill patients through population pharmacokinetic (PopPK) analysis and to determine optimal dosage regimens based on both efficacy and safety considerations. METHODS: A prospective, open-label PK study was carried out in critically ill patients with or without ECMO. The total concentration of daptomycin was determined by UPLC-MS/MS. NONMEM was used for PopPK analysis and Monte Carlo simulations. RESULTS: Two hundred and ninety-three plasma samples were collected from 36 critically ill patients, 24 of whom received ECMO support. A two-compartment model with first-order elimination can best describe the PK of daptomycin. Creatinine clearance (CLCR) significantly affects the clearance of daptomycin while ECMO has no significant effect on the PK parameters. Monte Carlo simulations showed that, when the MICs for bacteria are  ≥1 mg/L, the currently recommended dosage regimen is insufficient for critically ill patients with CLCR > 30 mL/min. Our simulations suggest 10 mg/kg for patients with CLCR between 30 and 90 mL/min, and 12 mg/kg for patients with CLCR higher than 90 mL/min. CONCLUSIONS: This is the first PopPK model of daptomycin in ECMO patients. Optimal dosage regimens considering efficacy, safety, and pathogens were provided for critical patients based on pharmacokinetic-pharmacodynamic analysis.


Subject(s)
Anti-Bacterial Agents , Critical Illness , Daptomycin , Extracorporeal Membrane Oxygenation , Monte Carlo Method , Humans , Daptomycin/pharmacokinetics , Daptomycin/administration & dosage , Anti-Bacterial Agents/pharmacokinetics , Anti-Bacterial Agents/administration & dosage , Male , Female , Middle Aged , Prospective Studies , Adult , Aged , Microbial Sensitivity Tests , Tandem Mass Spectrometry , Gram-Positive Bacterial Infections/drug therapy
12.
FEMS Microbiol Lett ; 3712024 Jan 09.
Article in English | MEDLINE | ID: mdl-38740525

ABSTRACT

Enterococcus raffinosus, named by Collins et al. in 1989, is a cocci-shaped bacterium that typically appears in pairs or short chains. As a Gram-positive and non-motile bacterium, it grows at 10°C-45°C, exhibiting negative peroxidase activity [1]. It is a normal flora in the oropharynx and gastrointestinal tract of domestic cats [2] and can also be isolated from human rectal swabs [3], it belongs to the same genus Enterococcus as Enterococcus faecalis and Enterococcus faecium. Enterococcus faecalis and Enterococcus faecium constitute 90% of clinically isolated strains. However, the incidence of other enterococci, excluding E. faecalis and E. faecium, is on the rise [4]. In this case report, a patient with pediatric urinary tract infections caused by E. raffinosus was presented, and a summary of relevant literature was provided.


Subject(s)
Anti-Bacterial Agents , Enterococcus , Gram-Positive Bacterial Infections , Urinary Tract Infections , Humans , Urinary Tract Infections/microbiology , Urinary Tract Infections/drug therapy , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Enterococcus/drug effects , Enterococcus/isolation & purification , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Male , Remission, Spontaneous , Child
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732016

ABSTRACT

Enterococcus spp. are normal intestinal tract microflorae found in poultry. However, the last decades have shown that several species, e.g., Enterococcus cecorum, have become emerging pathogens in broilers and may cause numerous losses in flocks. In this study, two combinations (H1 and H2) of menthol, 1,8-cineol, linalool, methyl salicylate, γ-terpinene, p-cymene, trans-anethole, terpinen-4-ol and thymol were used in an in vitro model, analyzing its effectiveness against the strains E. cecorum, E. faecalis, E. faecium, E. hirae and E. gallinarum isolated from broiler chickens from industrial farms. To identify the isolated strains classical microbiological methods and VITEK 2 GP cards were used. Moreover for E. cecorum a PCR test was used.. Antibiotic sensitivity (MIC) tests were performed for all the strains. For the composition H1, the effective dilution for E. cecorum and E. hirae strains was 1:512, and for E. faecalis, E. faecium and E. gallinarum, 1:1024. The second mixture (H2) showed very similar results with an effectiveness at 1:512 for E. cecorum and E. hirae and 1:1024 for E. faecalis, E. faecium and E. gallinarum. The presented results suggest that the proposed composition is effective against selected strains of Enterococcus in an in vitro model, and its effect is comparable to classical antibiotics used to treat this pathogen in poultry. This may suggest that this product may also be effective in vivo and provide effective support in the management of enterococcosis in broiler chickens.


Subject(s)
Anti-Bacterial Agents , Chickens , Enterococcus , Microbial Sensitivity Tests , Animals , Chickens/microbiology , Enterococcus/drug effects , Enterococcus/genetics , Enterococcus/isolation & purification , Anti-Bacterial Agents/pharmacology , Poultry Diseases/microbiology , Poultry Diseases/drug therapy , Probiotics/pharmacology , Gram-Positive Bacterial Infections/veterinary , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy
14.
BMC Infect Dis ; 24(1): 425, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649870

ABSTRACT

BACKGROUND: Necrotising fasciitis (NF) is a life-threatening soft-tissue infection that rapidly destroys the epidermis, subcutaneous tissue, and fascia. Despite their low virulence, Lactobacillus spp. can cause NF, and because of its rare incidence, there is limited information about its molecular and clinicopathological characteristics. We report a rare case of NF in a patient with type 2 diabetes mellitus diagnosed on admission and severe obesity due to infection with two types of Lactobacillus spp. that manifested in extensive necrosis. CASE PRESENTATION: A 48-year-old woman was referred to our hospital with a complaint of difficulty walking due to severe bilateral thigh pain. She presented with mild erythema, swelling, and severe skin pain extending from the pubic region to the groin. The patient was morbidly obese, had renal dysfunction, and had diabetes mellitus diagnosed on admission.; her LRINEC (Laboratory Risk Indicator for Necrotising Fasciitis) score was 9, indicating a high risk of NF. An exploratory surgical incision was made, and NF was diagnosed based on fascial necrosis. Emergent surgical debridement was performed, and cultures of the tissue culture and aspirated fluid/pus revealed two types of Lactobacillus spp.: Lactobacillus salivarius and L. iners. The patient was admitted to the intensive care unit (ICU), where antibiotics were administered and respiratory and circulatory management was performed. Diabetic ketoacidosis was detected, which was treated by controlling the blood glucose level stringently via intravenous insulin infusion. The patient underwent a second debridement on day 11 and a skin suture and skin grafting on day 36. The patient progressed well, was transferred from the ICU to the general ward on day 41, and was discharged unassisted on day 73. CONCLUSIONS: Lactobacillus spp. are rarely pathogenic to healthy individuals and can scarcely trigger NF. However, these bacteria can cause rare infections such as NF in immunocompromised individuals, such as those with diabetes and obesity, and an early diagnosis of NF is imperative; surgical intervention may be required for the prevention of extensive necrosis. The LRINEC score may be useful for the early diagnosis of NF, even for less pathogenic bacteria such as Lactobacillus.


Subject(s)
Fasciitis, Necrotizing , Lactobacillus , Humans , Fasciitis, Necrotizing/microbiology , Fasciitis, Necrotizing/pathology , Female , Middle Aged , Lactobacillus/isolation & purification , Diabetes Mellitus, Type 2/complications , Anti-Bacterial Agents/therapeutic use , Debridement , Necrosis/microbiology , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/diagnosis , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/pathology
15.
ACS Infect Dis ; 10(5): 1725-1738, 2024 05 10.
Article in English | MEDLINE | ID: mdl-38602352

ABSTRACT

Host-acting compounds are emerging as potential alternatives to combating antibiotic resistance. Here, we show that bosutinib, an FDA-approved chemotherapeutic for treating chronic myelogenous leukemia, does not possess any antibiotic activity but enhances macrophage responses to bacterial infection. In vitro, bosutinib stimulates murine and human macrophages to kill bacteria more effectively. In a murine wound infection with vancomycin-resistant Enterococcus faecalis, a single intraperitoneal bosutinib injection or multiple topical applications on the wound reduce the bacterial load by approximately 10-fold, which is abolished by macrophage depletion. Mechanistically, bosutinib stimulates macrophage phagocytosis of bacteria by upregulating surface expression of bacterial uptake markers Dectin-1 and CD14 and promoting actin remodeling. Bosutinib also stimulates bacterial killing by elevating the intracellular levels of reactive oxygen species. Moreover, bosutinib drives NF-κB activation, which protects infected macrophages from dying. Other Src kinase inhibitors such as DMAT and tirbanibulin also upregulate expression of bacterial uptake markers in macrophages and enhance intracellular bacterial killing. Finally, cotreatment with bosutinib and mitoxantrone, another chemotherapeutic in clinical use, results in an additive effect on bacterial clearance in vitro and in vivo. These results show that bosutinib stimulates macrophage clearance of bacterial infections through multiple mechanisms and could be used to boost the host innate immunity to combat drug-resistant bacterial infections.


Subject(s)
Aniline Compounds , Anti-Bacterial Agents , Cell Survival , Macrophages , Phagocytosis , Animals , Humans , Mice , Aniline Compounds/pharmacology , Anti-Bacterial Agents/pharmacology , Cell Survival/drug effects , Enterococcus faecalis/drug effects , Gram-Positive Bacterial Infections/drug therapy , Macrophages/drug effects , Mice, Inbred C57BL , NF-kappa B/metabolism , Nitriles/pharmacology , Phagocytosis/drug effects , Quinolines/pharmacology , Reactive Oxygen Species/metabolism
16.
J Pak Med Assoc ; 74(3): 469-475, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38591280

ABSTRACT

Objectives: To investigate the isolation rates, antimicrobial resistance rates, minimum inhibitory concentration values of antimicrobial agents, and clonal relationships of Enterococcus faecalis and Enterococcus faeciumdue to the relocation of a hospital to a newly constructed building. METHODS: The comparative, prospective study was conducted at adult general intensive care units of the Mus State Hospital, Mus, Turkey, in two phases; before the relocation from January 25 to December 1, 2014, and after the relocation from February 10 to May 24, 2015. Rectal swab samples were collected 72 hours post-hospitalisation. Identification of Enterococcus faecalis and Enterococcus faeciumisolates was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, and antimicrobial resistance with minimum inhibitory concentration values was detected with Vitek 2 system. The clonal relatedness among the strains was investigated by pulsed-field gel electrophoresis. Data was analysed using SPSS 23. RESULTS: Of the 69 patients, 37(53.62%) were related to pre-relocation phase; 20(54.1%) females and 17(45.9%) males with mean age 62.81±21.71 years. There were 32(46.37%) patients in the post-relocation phase; 13(40.6%) females and 19(59.4%) males with mean age 62.69±21.35 years (p>0.05). Of the 84 enterococci strains isolated, 51(60.7%) were Enterococcus faecium; 28(55%) before relocation and 23(45%) after relocation (p=0.77). The remaining 33(39.3%) isolates were Enterococcus faecalis; 16(48.5%) before relocation and 17(51.5%) after relocation (p=0.73). Multiple strains were located in 7(18.9%) patients before relocation and in 7(21.9%) after relocation. In 1(3.1%) patient after relocation, 2(8.7%) Enterococcus faecium isolates with different resistance and pulsed-field gel electrophoresis patterns were detected. There were no significant differences between the isolation and antibiotic resistance rates before and after relocation (p>0.05), and a clonal relation between the isolates was not detected (p>0.05). Decreased minimum inhibitory concentration values were noted for some antibiotics. CONCLUSIONS: Clonal relationship between the isolates and change in the rates of isolation and antimicrobial resistance of Enterococcus faecalis and Enterococcus faecium was not detected due to relocation. Minimum inhibitory concentration values could be used to reveal relocation-related changes in isolates obtained from patients hospitalised in intensive care units.


Subject(s)
Enterococcus faecium , Gram-Positive Bacterial Infections , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Drug Resistance, Bacterial , Enterococcus , Enterococcus faecalis , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/drug therapy , Hospitals , Microbial Sensitivity Tests , Prospective Studies
17.
Am J Health Syst Pharm ; 81(Supplement_2): S40-S48, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38465838

ABSTRACT

PURPOSE: Persons who inject drugs (PWID) are at risk for severe gram-positive infections and may require prolonged hospitalization and intravenous (IV) antibiotic therapy. Dalbavancin (DBV) is a long-acting lipoglycopeptide that may reduce costs and provide effective treatment in this population. METHODS: This was a retrospective review of PWID with severe gram-positive infections. Patients admitted from January 1, 2017, to November 1, 2019 (standard-of-care [SOC] group) and from November 15, 2019, to March 31, 2022 (DBV group) were included. The primary outcome was the total cost to the healthcare system. Secondary outcomes included hospital days saved and treatment failure. RESULTS: A total of 87 patients were included (37 in the DBV group and 50 in the SOC group). Patients were a median of 34 years old and were predominantly Caucasian (82%). Staphylococcus aureus (82%) was the most common organism, and bacteremia (71%) was the most common type of infection. Compared to the SOC group, the DBV group would have had a median of 14 additional days of hospitalization if they had stayed to complete their therapy (P = 0.014). The median total cost to the healthcare system was significantly lower in the DBV group than in the SOC group ($31,698.00 vs $45,093.50; P = 0.035). The rate of treatment failure was similar between the groups (32.4% in the DBV group vs 36% in the SOC group; P = 0.729). CONCLUSION: DBV is a cost-saving alternative to SOC IV antibiotics for severe gram-positive infections in PWID, with similar treatment outcomes. Larger prospective studies, including other patient populations, may demonstrate additional benefit.


Subject(s)
Anti-Bacterial Agents , Gram-Positive Bacterial Infections , Hospitalization , Teicoplanin , Humans , Teicoplanin/analogs & derivatives , Teicoplanin/therapeutic use , Teicoplanin/economics , Teicoplanin/administration & dosage , Retrospective Studies , Anti-Bacterial Agents/economics , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/administration & dosage , Male , Female , Adult , Hospitalization/economics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/economics , Middle Aged , Substance Abuse, Intravenous/complications , Substance Abuse, Intravenous/drug therapy , Length of Stay , Standard of Care , Severity of Illness Index , Young Adult
18.
Clin Microbiol Rev ; 37(2): e0012123, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38466110

ABSTRACT

SUMMARYEnterococci are a diverse group of Gram-positive bacteria that are typically found as commensals in humans, animals, and the environment. Occasionally, they may cause clinically relevant diseases such as endocarditis, septicemia, urinary tract infections, and wound infections. The majority of clinical infections in humans are caused by two species: Enterococcus faecium and Enterococcus faecalis. However, there is an increasing number of clinical infections caused by non-faecium non-faecalis (NFF) enterococci. Although NFF enterococcal species are often overlooked, studies have shown that they may harbor antimicrobial resistance (AMR) genes and virulence factors that are found in E. faecium and E. faecalis. In this review, we present an overview of the NFF enterococci with a particular focus on human clinical manifestations, epidemiology, virulence genes, and AMR genes.


Subject(s)
Gram-Positive Bacterial Infections , Virulence Factors , Humans , Gram-Positive Bacterial Infections/microbiology , Gram-Positive Bacterial Infections/drug therapy , Virulence Factors/genetics , Animals , Drug Resistance, Bacterial , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Enterococcus/pathogenicity , Enterococcus/drug effects , Enterococcus/genetics , Virulence
19.
Clin Transplant ; 38(3): e15285, 2024 03.
Article in English | MEDLINE | ID: mdl-38516923

ABSTRACT

Bloodstream infections (BSIs) account for 18% of bacterial infections in the first year after solid organ transplantation (SOT). Enterococcus accounts for up to 20% of BSIs in this population, with vancomycin-resistant enterococcus (VRE) posing a particular risk. This is a retrospective, case-control study of adult liver and kidney transplant recipients between 01/01/2016 and 06/30/2021 that characterizes the epidemiology and outcomes of enterococcal BSIs in liver and kidney transplantations at a single institution. Subjects with an enterococcal BSI within the first 6 months post-transplant were compared to those with non-enterococcal BSIs in the same period. We identified 26 subjects with enterococcal BSIs and 28 controls with non-enterococcal BSIs (n = 54; 10.3%). Cases were mostly liver transplant recipients (n = 20; 77%) with a median MELD at transplant of 33 (range 14-43); controls included 14 KT recipients (50%). Groups differed significantly (all p < .05) by factors including perioperative transfusion requirements, need for reoperation, and number of interventions post-transplant. Cases had a median time of 25.5 days to infection and controls 100.5 days (p < .0001). There were no differences in 1-year mortality between the groups. Enterococcus faecium was the predominant species of Enterococcus (n = 23; 88.5%), with a majority (91.3%) of the isolates being VRE. In our liver and kidney transplants, enterococcal BSIs occurred early among liver transplant recipients. The high incidence of VRE among E. faecium isolates in this population warrants further investigation into the optimal approach to empiric antimicrobials for bacteremia in the early post-transplant period.


Subject(s)
Bacteremia , Gram-Positive Bacterial Infections , Kidney Transplantation , Vancomycin-Resistant Enterococci , Adult , Humans , Anti-Bacterial Agents/therapeutic use , Kidney Transplantation/adverse effects , Retrospective Studies , Case-Control Studies , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/epidemiology , Gram-Positive Bacterial Infections/etiology , Bacteremia/etiology , Bacteremia/microbiology , Liver , Risk Factors
20.
BMC Microbiol ; 24(1): 103, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38539119

ABSTRACT

Vancomycin-resistant enterococci (VRE) are major opportunistic pathogens and the causative agents of serious diseases, such as urinary tract infections and endocarditis. VRE strains mainly include species of Enterococcus faecium and E. faecalis which can colonise the gastrointestinal tract (GIT) of patients and, following growth and persistence in the gut, can transfer to blood resulting in systemic dissemination in the body. Advancements in genomics have revealed that hospital-associated VRE strains are characterised by increased numbers of mobile genetic elements, higher numbers of antibiotic resistance genes and often lack active CRISPR-Cas systems. Additionally, comparative genomics have increased our understanding of dissemination routes among patients and healthcare workers. Since the efficiency of currently available antibiotics is rapidly declining, new measures to control infection and dissemination of these persistent pathogens are urgently needed. These approaches include combinatory administration of antibiotics, strengthening colonisation resistance of the gut microbiota to reduce VRE proliferation through commensals or probiotic bacteria, or switching to non-antibiotic bacterial killers, such as bacteriophages or bacteriocins. In this review, we discuss the current knowledge of the genomics of VRE isolates and state-of-the-art therapeutic advances against VRE infections.


Subject(s)
Enterococcus faecium , Gastrointestinal Microbiome , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Vancomycin-Resistant Enterococci/genetics , Enterococcus faecium/genetics , Gastrointestinal Microbiome/genetics , Genomics , Gram-Positive Bacterial Infections/drug therapy , Gram-Positive Bacterial Infections/microbiology , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...