Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 10.816
Filter
1.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39051661

ABSTRACT

The subgenual anterior cingulate cortex (sgACC) is a critical site for understanding the neural correlates of affect and emotion. While the activity of the sgACC is functionally homogenous, it is comprised of multiple Brodmann Areas (BAs) that possess different cytoarchitectures. In some sgACC BAs, Layer 5 is sublaminated into L5a and L5b which has implications for its projection targets. To understand how the transcriptional profile differs between the BAs, layers, and sublayers of human sgACC, we collected layer strips using laser capture microdissection followed by RNA sequencing. We found no significant differences in transcript expression in these specific cortical layers between BAs within the sgACC. In contrast, we identified striking differences between Layers 3 and 5a or 5b that were concordant across sgACC BAs. We found that sublayers 5a and 5b were transcriptionally similar. Pathway analyses of L3 and L5 revealed overlapping biological processes related to synaptic function. However, L3 was enriched for pathways related to cell-to-cell junction and dendritic spines whereas L5 was enriched for pathways related to brain development and presynaptic function, indicating potential functional differences across layers. Our study provides important insight into normative transcriptional features of the sgACC.


Subject(s)
Gyrus Cinguli , Transcriptome , Humans , Gyrus Cinguli/physiology , Male , Female , Adult , Middle Aged , Aged , Young Adult , Laser Capture Microdissection
2.
CNS Neurosci Ther ; 30(7): e14863, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39036868

ABSTRACT

OBJECTIVE: Childhood sensory abnormalities experience has a crucial influence on the structure and function of the adult brain. The underlying mechanism of neurological function induced by childhood sensory abnormalities experience is still unclear. Our study was to investigate whether the GABAergic neurons in the anterior cingulate cortex (ACC) regulate social disorders caused by childhood sensory abnormalities experience. METHODS: We used two mouse models, complete Freund's adjuvant (CFA) injection mice and bilateral whisker trimming (BWT) mice in childhood. We applied immunofluorescence, chemogenetic and optogenetic to study the mechanism of parvalbumin (PV) neurons and somatostatin (SST) neurons in ACC in regulating social disorders induced by sensory abnormalities in childhood. RESULTS: Inflammatory pain in childhood leads to social preference disorders, while BWT in childhood leads to social novelty disorders in adult mice. Inflammatory pain and BWT in childhood caused an increase in the number of PV and SST neurons, respectively, in adult mice ACC. Inhibiting PV neurons in ACC improved social preference disorders in adult mice that experienced inflammatory pain during childhood. Inhibiting SST neurons in ACC improved social novelty disorders in adult mice that experienced BWT in childhood. CONCLUSIONS: Our study reveals that PV and SST neurons of the ACC may play a critical role in regulating social disorders induced by sensory abnormalities in childhood.


Subject(s)
Gyrus Cinguli , Mice, Inbred C57BL , Parvalbumins , Somatostatin , Animals , Mice , Somatostatin/metabolism , Male , Parvalbumins/metabolism , GABAergic Neurons/physiology , Freund's Adjuvant/toxicity , Vibrissae/physiology , Vibrissae/innervation , Neurons , Social Behavior Disorders/etiology , Mice, Transgenic
3.
Transl Psychiatry ; 14(1): 303, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39043642

ABSTRACT

Poor inhibitory control contributes to deficits in emotion regulation, which are often targeted by treatments for major depressive disorder (MDD), including cognitive behavioral therapy (CBT). Brain regions that contribute to inhibitory control and emotion regulation overlap; thus, inhibitory control might relate to response to CBT. In this study, we examined whether baseline inhibitory control and resting state functional connectivity (rsFC) within overlapping emotion regulation-inhibitory control regions predicted treatment response to internet-based CBT (iCBT). Participants with MDD were randomly assigned to iCBT (N = 30) or a monitored attention control (MAC) condition (N = 30). Elastic net regression was used to predict post-treatment Patient Health Questionnaire-9 (PHQ-9) scores from baseline variables, including demographic variables, PHQ-9 scores, Flanker effects (interference, sequential dependency, post-error slowing), and rsFC between the dorsal anterior cingulate cortex, bilateral anterior insula (AI), and right temporoparietal junction (TPJ). Essential prognostic predictor variables retained in the elastic net regression included treatment group, gender, Flanker interference response time (RT), right AI-TPJ rsFC, and left AI-right AI rsFC. Prescriptive predictor variables retained included interactions between treatment group and baseline PHQ-9 scores, age, gender, Flanker RT, sequential dependency effects on accuracy, post-error accuracy, right AI-TPJ rsFC, and left AI-right AI rsFC. Inhibitory control and rsFC within inhibitory control-emotion regulation regions predicted reduced symptom severity following iCBT, and these effects were stronger in the iCBT group than in the MAC group. These findings contribute to a growing literature indicating that stronger inhibitory control at baseline predicts better outcomes to psychotherapy, including iCBT.


Subject(s)
Cognitive Behavioral Therapy , Depressive Disorder, Major , Inhibition, Psychological , Magnetic Resonance Imaging , Humans , Male , Female , Cognitive Behavioral Therapy/methods , Adult , Depressive Disorder, Major/therapy , Depressive Disorder, Major/physiopathology , Middle Aged , Emotional Regulation/physiology , Treatment Outcome , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Young Adult , Internet , Internet-Based Intervention , Insular Cortex/diagnostic imaging , Insular Cortex/physiopathology
4.
Curr Biol ; 34(13): R616-R618, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981423

ABSTRACT

Time is a ubiquitous dimension of behaviour. A new study demonstrates that low-dimensional temporal drift in rodent anterior cingulate ensembles encodes cumulative experience. These data provide fresh insight into how neurons encode extended periods of time to guide high-level behaviours.


Subject(s)
Gyrus Cinguli , Gyrus Cinguli/physiology , Animals , Neurons/physiology , Rats , Behavior, Animal/physiology
5.
Nat Commun ; 15(1): 5528, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39009561

ABSTRACT

The rewards that we get from our choices and actions can have a major influence on our future behavior. Understanding how reward biasing of behavior is implemented in the brain is important for many reasons, including the fact that diminution in reward biasing is a hallmark of clinical depression. We hypothesized that reward biasing is mediated by the anterior cingulate cortex (ACC), a cortical hub region associated with the integration of reward and executive control and with the etiology of depression. To test this hypothesis, we recorded neural activity during a biased judgment task in patients undergoing intracranial monitoring for either epilepsy or major depressive disorder. We found that beta (12-30 Hz) oscillations in the ACC predicted both associated reward and the size of the choice bias, and also tracked reward receipt, thereby predicting bias on future trials. We found reduced magnitude of bias in depressed patients, in whom the beta-specific effects were correspondingly reduced. Our findings suggest that ACC beta oscillations may orchestrate the learning of reward information to guide adaptive choice, and, more broadly, suggest a potential biomarker for anhedonia and point to future development of interventions to enhance reward impact for therapeutic benefit.


Subject(s)
Depressive Disorder, Major , Gyrus Cinguli , Reward , Humans , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/physiopathology , Male , Adult , Female , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/psychology , Choice Behavior/physiology , Middle Aged , Beta Rhythm/physiology , Epilepsy/physiopathology , Young Adult
6.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39042032

ABSTRACT

Delay discounting refers to the tendency of individuals to devalue future rewards as the delay in their receipt increases over time. Previous studies have indicated that future self-continuity correlates with delay discounting rates. However, the neural basis underlying the relationship between future self-continuity and delay discounting is not clear. To address this question, we used voxel-based morphometry and resting-state functional connectivity analyses to investigate the neural basis underlying the association between future self-continuity and delay discounting. Behavioral result showed that future self-continuity was positively associated with delay discounting. Voxel-based morphometry analysis result indicated that gray matter volume in the right dorsal anterior insula was positively correlated with future self-continuity. Resting-state functional connectivity analysis found that functional connectivity between the right dorsal anterior insula and anterior cingulate cortex was positively associated with future self-continuity. Mediation analysis showed that the right dorsal anterior insula-right anterior cingulate cortex functional connectivity partially mediated the relationship between future self-continuity and delay discounting. These results suggested that right dorsal anterior insula-right anterior cingulate cortex functional connectivity could be the neural basis underlying the association between future self-continuity and delay discounting. In summary, the study provided novel insights into how future self-continuity affected delay discounting and offers new explanations from a neural perspective.


Subject(s)
Delay Discounting , Gyrus Cinguli , Insular Cortex , Magnetic Resonance Imaging , Humans , Male , Delay Discounting/physiology , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Female , Young Adult , Insular Cortex/physiology , Insular Cortex/diagnostic imaging , Adult , Neural Pathways/physiology , Neural Pathways/diagnostic imaging , Brain Mapping , Reward
7.
Nat Commun ; 15(1): 6020, 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-39019943

ABSTRACT

Adjusting decision-making under uncertain and dynamic situations is the hallmark of intelligence. It requires a system capable of converting feedback information to renew the internal value. The anterior cingulate cortex (ACC) involves in error and reward events that prompt switching or maintenance of current decision strategies. However, it is unclear whether and how the changes of stimulus-action mapping during behavioral adaptation are encoded, nor how such computation drives decision adaptation. Here, we tracked ACC activity in male mice performing go/no-go auditory discrimination tasks with manipulated stimulus-reward contingencies. Individual ACC neurons integrate the outcome information to the value representation in the next-run trials. Dynamic recruitment of them determines the learning rate of error-guided value iteration and decision adaptation, forming a non-linear feedback-driven updating system to secure the appropriate decision switch. Optogenetically suppressing ACC significantly slowed down feedback-driven decision switching without interfering with the execution of the established strategy.


Subject(s)
Decision Making , Gyrus Cinguli , Neurons , Optogenetics , Reward , Animals , Gyrus Cinguli/physiology , Male , Decision Making/physiology , Mice , Neurons/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology , Acoustic Stimulation
8.
Brain Behav ; 14(7): e3622, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39021241

ABSTRACT

BACKGROUND: Default mode network (DMN) is one of the most recognized resting-state networks in major depressive disorder (MDD). However, the homogeneity of this network in MDD remains incompletely explored. Therefore, this study aims to determine whether there is abnormal network homogeneity (NH) of the DMN in MDD patients. At the same time, correlations between clinical variables and brain functional connectivity are examined. METHODS: We enrolled 42 patients diagnosed with MDD and 42 HCs. A variety of clinical variables were collected, and data analysis was conducted using the NH and independent component analysis methods. RESULTS: The study shows that MDD patients have higher NH values in the left superior medial prefrontal cortex (MPFC) and left posterior cingulate cortex (PCC) compared to HCs. Additionally, there is a positive correlation between NH values of the left superior MPFC and Eysenck Personality Questionnaire values. NH values of the left PCC are positively linked to CHOL levels, LDL levels, and utilization scores. However, these correlations lose significance after the Bonferroni correction. CONCLUSION: Our findings indicate the presence of abnormal DMN homogeneity in MDD, underscoring the significance of DMN in the pathophysiology of MDD. Simultaneously, the study provides preliminary evidence for the correlation between clinical variables and brain functional connectivity.


Subject(s)
Default Mode Network , Depressive Disorder, Major , Magnetic Resonance Imaging , Personality , Prefrontal Cortex , Humans , Depressive Disorder, Major/physiopathology , Depressive Disorder, Major/diagnostic imaging , Depressive Disorder, Major/blood , Male , Female , Adult , Default Mode Network/physiopathology , Default Mode Network/diagnostic imaging , Personality/physiology , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/metabolism , Middle Aged , Nerve Net/physiopathology , Nerve Net/diagnostic imaging , Lipids/blood , Connectome , Young Adult
9.
Nat Commun ; 15(1): 5772, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38982042

ABSTRACT

It is well established that the medial prefrontal cortex (mPFC) exerts top-down control of many behaviors, but little is known regarding how cross-talk between distinct areas of the mPFC influences top-down signaling. We performed virus-mediated tracing and functional studies in male mice, homing in on GABAergic projections whose axons are located mainly in layer 1 and that connect two areas of the mPFC, namely the prelimbic area (PrL) with the cingulate area 1 and 2 (Cg1/2). We revealed the identity of the targeted neurons that comprise two distinct types of layer 1 GABAergic interneurons, namely single-bouquet cells (SBCs) and neurogliaform cells (NGFs), and propose that this connectivity links GABAergic projection neurons with cortical canonical circuits. In vitro electrophysiological and in vivo calcium imaging studies support the notion that the GABAergic projection neurons from the PrL to the Cg1/2 exert a crucial role in regulating the activity in the target area by disinhibiting layer 5 output neurons. Finally, we demonstrated that recruitment of these projections affects impulsivity and mechanical responsiveness, behaviors which are known to be modulated by Cg1/2 activity.


Subject(s)
GABAergic Neurons , Gyrus Cinguli , Interneurons , Prefrontal Cortex , Animals , Prefrontal Cortex/physiology , Prefrontal Cortex/cytology , Male , Gyrus Cinguli/physiology , Gyrus Cinguli/cytology , GABAergic Neurons/metabolism , GABAergic Neurons/physiology , Mice , Interneurons/physiology , Mice, Inbred C57BL , Nerve Net/physiology , Neural Pathways/physiology
10.
Nat Commun ; 15(1): 5559, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956080

ABSTRACT

Attention supports decision making by selecting the features that are relevant for decisions. Selective enhancement of the relevant features and inhibition of distractors has been proposed as potential neural mechanisms driving this selection process. Yet, how attention operates when relevance cannot be directly determined, and the attention signal needs to be internally constructed is less understood. Here we recorded from populations of neurons in the anterior cingulate cortex (ACC) of mice in an attention-shifting task where relevance of stimulus modalities changed across blocks of trials. In contrast with V1 recordings, decoding of the irrelevant modality gradually declined in ACC after an initial transient. Our analytical proof and a recurrent neural network model of the task revealed mutually inhibiting connections that produced context-gated suppression as observed in mice. Using this RNN model we predicted a correlation between contextual modulation of individual neurons and their stimulus drive, which we confirmed in ACC but not in V1.


Subject(s)
Attention , Decision Making , Gyrus Cinguli , Neurons , Animals , Gyrus Cinguli/physiology , Decision Making/physiology , Attention/physiology , Mice , Neurons/physiology , Neurons/metabolism , Male , Mice, Inbred C57BL , Models, Neurological , Photic Stimulation , Visual Cortex/physiology
11.
Elife ; 132024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037775

ABSTRACT

Learning requires the ability to link actions to outcomes. How motivation facilitates learning is not well understood. We designed a behavioral task in which mice self-initiate trials to learn cue-reward contingencies and found that the anterior cingulate region of the prefrontal cortex (ACC) contains motivation-related signals to maximize rewards. In particular, we found that ACC neural activity was consistently tied to trial initiations where mice seek to leave unrewarded cues to reach reward-associated cues. Notably, this neural signal persisted over consecutive unrewarded cues until reward-associated cues were reached, and was required for learning. To determine how ACC inherits this motivational signal we performed projection-specific photometry recordings from several inputs to ACC during learning. In doing so, we identified a ramp in bulk neural activity in orbitofrontal cortex (OFC)-to-ACC projections as mice received unrewarded cues, which continued ramping across consecutive unrewarded cues, and finally peaked upon reaching a reward-associated cue, thus maintaining an extended motivational state. Cellular resolution imaging of OFC confirmed these neural correlates of motivation, and further delineated separate ensembles of neurons that sequentially tiled the ramp. Together, these results identify a mechanism by which OFC maps out task structure to convey an extended motivational state to ACC to facilitate goal-directed learning.


Achieving goals takes motivation. An individual may have to complete a task many times for a future reward. For example, an animal may have to forage repeatedly to find food, or a person may have to study to get a good grade on a test. How these complex behaviors are encoded in the brain's wiring is not fully understood. Patients with injuries to the frontal cortex of the brain display a lack of motivation to pursue goals. This discovery suggests the frontal cortex plays a vital role in motivation and goal-directed behavior. Animal studies show that part of their brain's frontal cortex, the anterior cingulate cortex (ACC), helps them stay motivated and put extra effort into achieving goals. Yet, scientists wonder how particular actions are associated with specific goals and suspect the orbital frontal cortex (OFC) contains the blueprint to support this association. Regalado et al. show that the OFC and ACC work together during goal-seeking behavior in mice. In the experiments, mice learned to complete a task to achieve a sugar water reward. As the mice were learning, Regalado et al. recorded activity in the ACC and found that the ACC is active during goal-seeking behavior. They also discovered that the activity of neurons in the OFC increased the longer mice went without receiving a reward, up until the reward was achieved, signaling a motivational state. Animals not motivated enough to maximize their rewards did not have an increased OFC activity. The experiments also showed that the motivational signals in the OFC were conveyed to ACC to support goal-directed learning, especially linking actions to positive future outcomes. The experiments help explain how an increase in neuronal activity in the OFC helps to increase motivation and goal-seeking behavior supported by the ACC. More studies will help scientists learn more about these processes and develop drugs or other therapies that can help people who have learning difficulties or struggle with motivation because of an injury or mental illness.


Subject(s)
Learning , Motivation , Prefrontal Cortex , Reward , Animals , Motivation/physiology , Mice , Learning/physiology , Prefrontal Cortex/physiology , Cues , Neurons/physiology , Male , Gyrus Cinguli/physiology , Mice, Inbred C57BL , Behavior, Animal/physiology
12.
Commun Biol ; 7(1): 891, 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39039239

ABSTRACT

Humans and other animals readily transition from externally to internally focused attention, and these transitions are accompanied by activation of the default mode network (DMN). The DMN was considered a cortical network, yet recent evidence suggests subcortical structures are also involved. We investigated the role of ventral pallidum (VP) and mediodorsal thalamus (MD) in DMN regulation in tree shrew, a close relative of primates. Electrophysiology and deep learning-based classification of behavioral states revealed gamma oscillations in VP and MD coordinated with gamma in anterior cingulate (AC) cortex during DMN states. Cross-frequency coupling between gamma and delta oscillations was higher during DMN than other behaviors, underscoring the engagement of MD, VP and AC. Our findings highlight the importance of VP and MD in DMN regulation, extend homologies in DMN regulation among mammals, and underline the importance of thalamus and basal forebrain to the regulation of DMN.


Subject(s)
Basal Forebrain , Default Mode Network , Animals , Default Mode Network/physiology , Basal Forebrain/physiology , Tupaiidae/physiology , Male , Thalamus/physiology , Gyrus Cinguli/physiology , Female , Mediodorsal Thalamic Nucleus/physiology
13.
Sci Rep ; 14(1): 17099, 2024 Jul 24.
Article in English | MEDLINE | ID: mdl-39048626

ABSTRACT

The posterior cingulate cortex (PCC) is a key hub of the default mode network and is known to play an important role in attention. Using ultra-high field 7 Tesla magnetic resonance spectroscopy (MRS) to quantify neurometabolite concentrations, this exploratory study investigated the effect of the concentrations of myo-inositol (Myo-Ins), glutamate (Glu), glutamine (Gln), aspartate or aspartic acid (Asp) and gamma-amino-butyric acid (GABA) in the PCC on attention in forty-six healthy participants. Each participant underwent an MRS scan and cognitive testing, consisting of a trail-making test (TMT A/B) and a test of attentional performance. After a multiple regression analysis and bootstrapping for correction, the findings show that Myo-Ins and Asp significantly influence (p < 0.05) attentional tasks. On one hand, Myo-Ins shows it can improve the completion times of both TMT A and TMT B. On the other hand, an increase in aspartate leads to more mistakes in Go/No-go tasks and shows a trend towards enhancing reaction time in Go/No-go tasks and stability of alertness without signal. No significant (p > 0.05) influence of Glu, Gln and GABA was observed.


Subject(s)
Attention , Gyrus Cinguli , Magnetic Resonance Spectroscopy , Humans , Attention/physiology , Male , Female , Adult , Magnetic Resonance Spectroscopy/methods , Gyrus Cinguli/metabolism , Young Adult , Glutamic Acid/metabolism , Inositol/metabolism , Glutamine/metabolism , Aspartic Acid/metabolism , Aspartic Acid/analogs & derivatives , gamma-Aminobutyric Acid/metabolism , gamma-Aminobutyric Acid/analysis
14.
Aging Clin Exp Res ; 36(1): 154, 2024 Jul 30.
Article in English | MEDLINE | ID: mdl-39078432

ABSTRACT

Mild cognitive impairment (MCI) is recognized as the prodromal phase of dementia, a condition that can be either maintained or reversed through timely medical interventions to prevent cognitive decline. Considerable studies using functional magnetic resonance imaging (fMRI) have indicated that altered activity in the medial prefrontal cortex (mPFC) serves as an indicator of various cognitive stages of aging. However, the impacts of intrinsic functional connectivity in the mPFC as a mediator on cognitive performance in individuals with and without MCI have not been fully understood. In this study, we recruited 42 MCI patients and 57 healthy controls, assessing their cognitive abilities and functional brain connectivity patterns through neuropsychological evaluations and resting-state fMRI, respectively. The MCI patients exhibited poorer performance on multiple neuropsychological tests compared to the healthy controls. At the neural level, functional connectivity between the mPFC and the anterior cingulate cortex (ACC) was significantly weaker in the MCI group and correlated with multiple neuropsychological test scores. The result of the mediation analysis further demonstrated that functional connectivity between the mPFC and ACC notably mediated the relationship between the MCI and semantic fluency performance. These findings suggest that altered mPFC-ACC connectivity may have a plausible causal influence on cognitive decline and provide implications for early identifications of neurodegenerative diseases and precise monitoring of disease progression.


Subject(s)
Cognitive Dysfunction , Gyrus Cinguli , Magnetic Resonance Imaging , Prefrontal Cortex , Humans , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/diagnostic imaging , Prefrontal Cortex/physiopathology , Prefrontal Cortex/diagnostic imaging , Gyrus Cinguli/physiopathology , Gyrus Cinguli/diagnostic imaging , Male , Female , Aged , Magnetic Resonance Imaging/methods , Middle Aged , Neuropsychological Tests , Case-Control Studies
15.
eNeuro ; 11(7)2024 Jul.
Article in English | MEDLINE | ID: mdl-38977304

ABSTRACT

We investigated the neural signatures of expert decision-making in the context of police training in a virtual reality-based shoot/don't shoot scenario. Police officers can use stopping force against a perpetrator, which may require using a firearm and each decision made by an officer to discharge their firearm or not has substantial implications. Therefore, it is important to understand the cognitive and underlying neurophysiological processes that lead to such a decision. We used virtual reality-based simulations to elicit ecologically valid behavior from authorized firearms officers (AFOs) in the UK and matched novices in a shoot/don't shoot task and recorded electroencephalography concurrently. We found that AFOs had consistently faster response times than novices, suggesting our task was sensitive to their expertise. To investigate differences in decision-making processes under varying levels of threat and expertise, we analyzed electrophysiological signals originating from the anterior cingulate cortex. In line with similar response inhibition tasks, we found greater increases in preresponse theta power when participants inhibited the response to shoot when under no threat as compared with shooting. Most importantly, we showed that when preparing against threat, theta power increase was greater for experts than novices, suggesting that differences in performance between experts and novices are due to their greater orientation toward threat. Additionally, shorter beta rebounds suggest that experts were "ready for action" sooner. More generally, we demonstrate that the investigation of expert decision-making should incorporate naturalistic stimuli and an appropriate control group to enhance validity.


Subject(s)
Decision Making , Electroencephalography , Firearms , Police , Virtual Reality , Humans , Decision Making/physiology , Male , Adult , Female , Young Adult , Theta Rhythm/physiology , Reaction Time/physiology , Gyrus Cinguli/physiology
16.
Adv Neurobiol ; 38: 215-234, 2024.
Article in English | MEDLINE | ID: mdl-39008018

ABSTRACT

For individuals to survive and function in society, it is essential that they recognize, interact with, and learn from other conspecifics. Observational fear (OF) is the well-conserved empathic ability of individuals to understand the other's aversive situation. While it is widely known that factors such as prior similar aversive experience and social familiarity with the demonstrator facilitate OF, the neural circuit mechanisms that explicitly regulate experience-dependent OF (Exp OF) were unclear. In this review, we examine the neural circuit mechanisms that regulate OF, with an emphasis on rodent models, and then discuss emerging evidence for the role of fear memory engram cells in the regulation of Exp OF. First, we examine the neural circuit mechanisms that underlie Naive OF, which is when an observer lacks prior experiences relevant to OF. In particular, the anterior cingulate cortex to basolateral amygdala (BLA) neural circuit is essential for Naive OF. Next, we discuss a recent study that developed a behavioral paradigm in mice to examine the neural circuit mechanisms that underlie Exp OF. This study found that fear memory engram cells in the BLA of observers, which form during a prior similar aversive experience with shock, are reactivated by ventral hippocampal neurons in response to shock delivery to the familiar demonstrator to elicit Exp OF. Finally, we discuss the implications of fear memory engram cells in Exp OF and directions of future research that are of both translational and basic interest.


Subject(s)
Fear , Memory , Fear/physiology , Animals , Humans , Memory/physiology , Neurons/metabolism , Mice , Amygdala , Hippocampus , Empathy/physiology , Gyrus Cinguli , Basolateral Nuclear Complex
17.
Cereb Cortex ; 34(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39073381

ABSTRACT

Cognitive impairment affects 29-67% of patients with neuromyelitis optica spectrum disorder. Previous studies have reported glutamate homeostasis disruptions in astrocytes, leading to imbalances in gamma-aminobutyric acid levels. However, the association between these neurotransmitter changes and cognitive deficits remains inadequately elucidated. Point RESolved Spectroscopy and Hadamard Encoding and Reconstruction of MEGA-Edited Spectroscopy techniques were utilized to evaluate gamma-aminobutyric acid, glutamate, glutathione levels, and excitation/inhibition balance in the anterior cingulate cortex, posterior cingulate cortex, and occipital cortex of 39 neuromyelitis optica spectrum disorder patients and 41 healthy controls. Cognitive function was assessed using neurocognitive scales. Results showed decreased gamma-aminobutyric acid levels alongside increased glutamate, glutathione, and excitation/inhibition ratio in the anterior cingulate cortex and posterior cingulate cortex of neuromyelitis optica spectrum disorder patients. Specifically, within the posterior cingulate cortex of neuromyelitis optica spectrum disorder patients, decreased gamma-aminobutyric acid levels and increased excitation/inhibition ratio correlated significantly with anxiety scores, whereas glutathione levels predicted diminished executive function. The results suggest that neuromyelitis optica spectrum disorder patients exhibit dysregulation in the GABAergic and glutamatergic systems in their brains, where the excitation/inhibition imbalance potentially acts as a neuronal metabolic factor contributing to emotional disorders. Additionally, glutathione levels in the posterior cingulate cortex region may serve as predictors of cognitive decline, highlighting the potential benefits of reducing oxidative stress to safeguard cognitive function in neuromyelitis optica spectrum disorder patients.


Subject(s)
Glutamic Acid , Gyrus Cinguli , Magnetic Resonance Spectroscopy , Neuromyelitis Optica , gamma-Aminobutyric Acid , Humans , Gyrus Cinguli/metabolism , Gyrus Cinguli/diagnostic imaging , Female , Adult , Neuromyelitis Optica/metabolism , Neuromyelitis Optica/diagnostic imaging , Male , Glutamic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Middle Aged , gamma-Aminobutyric Acid/metabolism , Glutathione/metabolism , Young Adult , Neurotransmitter Agents/metabolism , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/diagnostic imaging
18.
Mol Brain ; 17(1): 39, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886822

ABSTRACT

Areca nut, the seed of Areca catechu L., is one of the most widely consumed addictive substances in the world after nicotine, ethanol, and caffeine. The major effective constituent of A. catechu, arecoline, has been reported to affect the central nervous system. Less is known if it may affect pain and its related emotional responses. In this study, we found that oral application of arecoline alleviated the inflammatory pain and its induced anxiolytic and anti-depressive-like behavior. Arecoline also increased the mechanical nociceptive threshold and alleviated depression-like behavior in naïve mice. In the anterior cingulate cortex (ACC), which acts as a hinge of nociception and its related anxiety and depression, by using the multi-electrode field potential recording and whole-cell patch-clamp recording, we found that the evoked postsynaptic transmission in the ACC of adult mice has been inhibited by the application of arecoline. The muscarinic receptor is the major receptor of the arecoline in the ACC. Our results suggest that arecoline alleviates pain, anxiety, and depression-like behavior in both physiological and pathological conditions, and this new mechanism may help to treat patients with chronic pain and its related anxiety and disorder in the future.


Subject(s)
Anxiety , Arecoline , Behavior, Animal , Depression , Synaptic Transmission , Animals , Synaptic Transmission/drug effects , Anxiety/drug therapy , Anxiety/physiopathology , Arecoline/pharmacology , Male , Depression/drug therapy , Depression/physiopathology , Behavior, Animal/drug effects , Nociception/drug effects , Mice, Inbred C57BL , Gyrus Cinguli/drug effects , Gyrus Cinguli/physiology , Mice , Cerebral Cortex/drug effects , Cerebral Cortex/physiology
19.
Neuroimage ; 296: 120670, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38848980

ABSTRACT

Humans constantly make predictions and such predictions allow us to prepare for future events. Yet, such benefits may come with drawbacks as premature predictions may potentially bias subsequent judgments. Here we examined how prediction influences our perceptual decisions and subsequent confidence judgments, on scenarios where the predictions were arbitrary and independent of the identity of the upcoming stimuli. We defined them as invalid and non-informative predictions. Behavioral results showed that, such non-informative predictions biased perceptual decisions in favor of the predicted choice, and such prediction-induced perceptual bias further increased the metacognitive efficiency. The functional MRI results showed that activities in the medial prefrontal cortex (mPFC) and subgenual anterior cingulate cortex (sgACC) encoded the response consistency between predictions and perceptual decisions. Activity in mPFC predicted the strength of this congruency bias across individuals. Moreover, the parametric encoding of confidence in putamen was modulated by prediction-choice consistency, such that activity in putamen was negatively correlated with confidence rating after inconsistent responses. These findings suggest that predictions, while made arbitrarily, orchestrate the neural representations of choice and confidence judgment.


Subject(s)
Magnetic Resonance Imaging , Metacognition , Prefrontal Cortex , Humans , Male , Female , Metacognition/physiology , Young Adult , Adult , Prefrontal Cortex/physiology , Prefrontal Cortex/diagnostic imaging , Brain Mapping/methods , Judgment/physiology , Gyrus Cinguli/physiology , Gyrus Cinguli/diagnostic imaging , Choice Behavior/physiology
20.
PeerJ ; 12: e17451, 2024.
Article in English | MEDLINE | ID: mdl-38854799

ABSTRACT

Locomotor adaptation to abrupt and gradual perturbations are likely driven by fundamentally different neural processes. The aim of this study was to quantify brain dynamics associated with gait adaptation to a gradually introduced gait perturbation, which typically results in smaller behavioral errors relative to an abrupt perturbation. Loss of balance during standing and walking elicits transient increases in midfrontal theta oscillations that have been shown to scale with perturbation intensity. We hypothesized there would be no significant change in anterior cingulate theta power (4-7 Hz) with respect to pre-adaptation when a gait perturbation is introduced gradually because the gradual perturbation acceleration and stepping kinematic errors are small relative to an abrupt perturbation. Using mobile electroencephalography (EEG), we measured gait-related spectral changes near the anterior cingulate, posterior cingulate, sensorimotor, and posterior parietal cortices as young, neurotypical adults (n = 30) adapted their gait to an incremental split-belt treadmill perturbation. Most cortical clusters we examined (>70%) did not exhibit changes in electrocortical activity between 2-50 Hz. However, we did observe gait-related theta synchronization near the left anterior cingulate cortex during strides with the largest errors, as measured by step length asymmetry. These results suggest gradual adaptation with small gait asymmetry and perturbation magnitude may not require significant cortical resources beyond normal treadmill walking. Nevertheless, the anterior cingulate may remain actively engaged in error monitoring, transmitting sensory prediction error information via theta oscillations.


Subject(s)
Adaptation, Physiological , Electroencephalography , Gait , Theta Rhythm , Humans , Male , Female , Gait/physiology , Theta Rhythm/physiology , Adaptation, Physiological/physiology , Young Adult , Adult , Electroencephalography/methods , Postural Balance/physiology , Gyrus Cinguli/physiology , Biomechanical Phenomena/physiology , Walking/physiology
SELECTION OF CITATIONS
SEARCH DETAIL