Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.746
Filter
1.
Cells ; 13(13)2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38994979

ABSTRACT

HIV-associated neurocognitive disorders (HAND) persist under antiretroviral therapy as a complex pathology that has been difficult to study in cellular and animal models. Therefore, we generated an ex vivo human brain slice model of HIV-1 infection from surgically resected adult brain tissue. Brain slice cultures processed for flow cytometry showed >90% viability of dissociated cells within the first three weeks in vitro, with parallel detection of astrocyte, myeloid, and neuronal populations. Neurons within brain slices showed stable dendritic spine density and mature spine morphologies in the first weeks in culture, and they generated detectable activity in multi-electrode arrays. We infected cultured brain slices using patient-matched CD4+ T-cells or monocyte-derived macrophages (MDMs) that were exposed to a GFP-expressing R5-tropic HIV-1 in vitro. Infected slice cultures expressed viral RNA and developed a spreading infection up to 9 days post-infection, which were significantly decreased by antiretrovirals. We also detected infected myeloid cells and astrocytes within slices and observed minimal effect on cellular viability over time. Overall, this human-centered model offers a promising resource to study the cellular mechanisms contributing to HAND (including antiretroviral toxicity, substance use, and aging), infection of resident brain cells, and new neuroprotective therapeutics.


Subject(s)
Brain , HIV Infections , HIV-1 , Humans , Brain/virology , Brain/pathology , HIV-1/physiology , HIV Infections/virology , HIV Infections/pathology , Adult , Neurons/virology , Neurons/metabolism , Macrophages/virology , Macrophages/metabolism , Astrocytes/virology , CD4-Positive T-Lymphocytes/virology , Tissue Culture Techniques
2.
Transl Psychiatry ; 14(1): 233, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38824150

ABSTRACT

People living with HIV and those diagnosed with alcohol use disorders (AUD) relative to healthy individuals commonly have low levels of serum albumin, substantiated as an independent predictor of cardiovascular events. White matter hyperintensities (WMH)-a neuroimaging feature of cerebral small vessel disease-are also related to cardiovascular disease. Despite consensus regarding associations between high levels of urine albumin and WMH prevalence, and low serum albumin levels and impaired cognitive functioning, relations between serum albumin and WMH burdens have rarely been evaluated. Here, a sample including 160 individuals with AUD, 142 living with HIV, and 102 healthy controls was used to test the hypothesis that serum albumin would be inversely related to WMH volumes and directly related to cognitive performance in the two diagnostic groups. Although serum albumin and periventricular WMH volumes showed an inverse relationship in both AUD and HIV groups, this relationship persisted only in the HIV group after consideration of traditional cardiovascular (i.e., age, sex, body mass index (BMI), nicotine use, hypertension, diabetes), study-relevant (i.e., race, socioeconomic status, hepatitis C virus status), and disease-specific (i.e., CD4 nadir, HIV viral load, HIV duration) factors. Further, serum albumin contributed more significantly than periventricular WMH volume to variance in performance on a verbal learning and memory composite score in the HIV group only. Relations in both HIV and AUD groups between albumin and hematological red blood cell markers (e.g., hemoglobin, hematocrit) suggest that in this sample, serum albumin reflects hematological abnormalities. Albumin, a simple serum biomarker available in most clinical settings, may therefore help identify periventricular WMH burden and performance levels in specific cognitive domains in people living with HIV. Whether serum albumin contributes mechanistically to periventricular WMH in HIV will require additional investigation.


Subject(s)
Alcoholism , HIV Infections , Magnetic Resonance Imaging , Serum Albumin , White Matter , Humans , Female , Male , Middle Aged , White Matter/diagnostic imaging , White Matter/pathology , HIV Infections/complications , HIV Infections/pathology , HIV Infections/diagnostic imaging , Serum Albumin/metabolism , Alcoholism/diagnostic imaging , Alcoholism/pathology , Adult , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/blood
3.
Discov Med ; 36(185): 1091-1108, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38926097

ABSTRACT

This review comprehensively explores the dysregulation of Gamma Delta T-cells, CD8+ T Cells, and Natural Killer T Cells in the context of Human Immunodeficiency Virus (HIV) infection and its implications for brain pathology. It encompasses an overview of the HIV disease process, immune cell dysregulation, association with neurological diseases, and the critical role of Glutathione (GSH) in T-cell function. The alterations in Gamma Delta T-cells during chronic infection, the intricate dynamics of Vδ1 and Vδ2 subsets, and the potential of Vγ9Vδ2 T cells in inhibiting HIV replication are discussed. Additionally, the review addresses the exhaustion, impaired cytotoxicity, and premature senescence of CD8+ T cells, as well as the dysregulation of Natural Killer Cells (NKCs) and their impact on overall immune system activity. Furthermore, it examines the role of Gamma Delta (γδ) T-cells in brain injuries, infections, and tumors and highlights the therapeutic implications of elevated GSH levels in promoting a T helper 1 (Th1) immune response. However, HIV-infected patients with decreased GSH exhibit a T helper 2 (Th2) bias, compromising protection against intracellular pathogens. Finally, the review discusses studies in murine models demonstrating the impact of GSH levels on immune responses and underscores the therapeutic potential of targeting GSH to enhance immunity in HIV patients. Overall, this review provides valuable insights into the complex interplay between immune dysregulation, GSH levels, and HIV-associated brain pathology, offering insights into potential therapeutic avenues for mitigating immune compromise and neurological impairments in HIV patients.


Subject(s)
Brain , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Glutathione , HIV Infections , Humans , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/drug therapy , HIV Infections/virology , Glutathione/metabolism , CD8-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , Brain/immunology , Brain/pathology , Killer Cells, Natural/immunology , Animals
4.
Retrovirology ; 21(1): 11, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38945996

ABSTRACT

BACKGROUND: Since the introduction of combination antiretroviral therapy (cART) the brain has become an important human immunodeficiency virus (HIV) reservoir due to the relatively low penetration of many drugs utilized in cART into the central nervous system (CNS). Given the inherent limitations of directly assessing acute HIV infection in the brains of people living with HIV (PLWH), animal models, such as humanized mouse models, offer the most effective means of studying the effects of different viral strains and their impact on HIV infection in the CNS. To evaluate CNS pathology during HIV-1 infection in the humanized bone marrow/liver/thymus (BLT) mouse model, a histological analysis was conducted on five CNS regions, including the frontal cortex, hippocampus, striatum, cerebellum, and spinal cord, to delineate the neuronal (MAP2ab, NeuN) and neuroinflammatory (GFAP, Iba-1) changes induced by two viral strains after 2 weeks and 8 weeks post-infection. RESULTS: Findings reveal HIV-infected human cells in the brain of HIV-infected BLT mice, demonstrating HIV neuroinvasion. Further, both viral strains, HIV-1JR-CSF and HIV-1CH040, induced neuronal injury and astrogliosis across all CNS regions following HIV infection at both time points, as demonstrated by decreases in MAP2ab and increases in GFAP fluorescence signal, respectively. Importantly, infection with HIV-1JR-CSF had more prominent effects on neuronal health in specific CNS regions compared to HIV-1CH040 infection, with decreasing number of NeuN+ neurons, specifically in the frontal cortex. On the other hand, infection with HIV-1CH040 demonstrated more prominent effects on neuroinflammation, assessed by an increase in GFAP signal and/or an increase in number of Iba-1+ microglia, across CNS regions. CONCLUSION: These findings demonstrate that CNS pathology is widespread during acute HIV infection. However, neuronal loss and the magnitude of neuroinflammation in the CNS is strain dependent indicating that strains of HIV cause differential CNS pathologies.


Subject(s)
Disease Models, Animal , HIV Infections , HIV-1 , Neuroinflammatory Diseases , Neurons , Animals , Mice , HIV Infections/virology , HIV Infections/pathology , HIV Infections/complications , Humans , Neurons/virology , Neurons/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/virology , Brain/pathology , Brain/virology , Glial Fibrillary Acidic Protein/metabolism , Calcium-Binding Proteins/metabolism , Microfilament Proteins/metabolism
5.
Folia Med (Plovdiv) ; 66(2): 282-286, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38690826

ABSTRACT

The diagnosis of intrathoracic non-tuberculous mycobacteriosis (NTM) is challenging. We report a case of a pediatric pulmonary NTM with endobronchial lesion and lymphadenitis in a child with HIV infection diagnosed by bronchoscopic biopsy, EBUS-TBNA and probe-based confocal laser endomicroscopy (pCLE). The pCLE showed a large number of highly fluorescent cells and zones of density and disorganized elastin fibers at alveolar areas. A combination of diagnostic endoscopic procedures is required to establish the diagnosis of NTM.


Subject(s)
Bronchoscopy , Endoscopic Ultrasound-Guided Fine Needle Aspiration , HIV Infections , Microscopy, Confocal , Mycobacterium Infections, Nontuberculous , Humans , Bronchoscopy/methods , Child , Microscopy, Confocal/methods , Mycobacterium Infections, Nontuberculous/diagnosis , Mycobacterium Infections, Nontuberculous/pathology , Male , HIV Infections/complications , HIV Infections/pathology , Biopsy/methods
6.
Int J Mol Sci ; 25(9)2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38731913

ABSTRACT

Despite combined antiretroviral therapy (cART) limiting HIV replication to undetectable levels in the blood, people living with HIV continue to experience HIV-associated neurocognitive disorder (HAND). HAND is associated with neurocognitive impairment, including motor impairment, and memory loss. HIV has been detected in the brain within 8 days of estimated exposure and the mechanisms for this early entry are being actively studied. Once having entered into the central nervous system (CNS), HIV degrades the blood-brain barrier through the production of its gp120 and Tat proteins. These proteins are directly toxic to endothelial cells and neurons, and propagate inflammatory cytokines by the activation of immune cells and dysregulation of tight junction proteins. The BBB breakdown is associated with the progression of neurocognitive disease. One of the main hurdles for treatment for HAND is the latent pool of cells, which are insensitive to cART and prolong inflammation by harboring the provirus in long-lived cells that can reactivate, causing damage. Multiple strategies are being studied to combat the latent pool and HAND; however, clinically, these approaches have been insufficient and require further revisions. The goal of this paper is to aggregate the known mechanisms and challenges associated with HAND.


Subject(s)
Blood-Brain Barrier , Humans , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , HIV Infections/complications , HIV Infections/virology , HIV Infections/pathology , HIV Infections/metabolism , AIDS Dementia Complex/metabolism , AIDS Dementia Complex/pathology , HIV-1 , Neurocognitive Disorders/etiology , Neurocognitive Disorders/metabolism , Neurocognitive Disorders/pathology , Animals
7.
Cytometry A ; 105(7): 488-492, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38747672

ABSTRACT

We introduce a 35-marker imaging mass cytometry (IMC) panel for a detailed examination of immune cell populations and HIV RNA in formalin fixed paraffin embedded (FFPE) human intestinal tissue. The panel has broad cell type coverage and particularly excels in delineating subsets of mononuclear phagocytes and T cells. Markers for key tissue structures are included, enabling identification of epithelium, blood vessels, lymphatics, and musculature. The described method for HIV RNA detection can be generalized to other low abundance RNA targets, whether endogenous or pathogen derived. As such, the panel presented here is useful for high parameter spatial mapping of intestinal immune cells and their interactions with pathogens such as HIV.


Subject(s)
HIV Infections , Image Cytometry , Paraffin Embedding , Humans , Paraffin Embedding/methods , Image Cytometry/methods , HIV Infections/immunology , HIV Infections/virology , HIV Infections/diagnosis , HIV Infections/pathology , Biomarkers , Formaldehyde/chemistry , RNA, Viral/genetics , RNA, Viral/analysis , Flow Cytometry/methods , Intestines/virology , Intestines/immunology , Tissue Fixation/methods , HIV-1/immunology , T-Lymphocytes/immunology , T-Lymphocytes/virology
8.
PLoS One ; 19(5): e0300729, 2024.
Article in English | MEDLINE | ID: mdl-38691575

ABSTRACT

Penile squamous cell carcinoma (PSCC) occurs more frequently in some developing countries compared to developed countries. Infection with HIV and/or high-risk human papillomavirus (hrHPV) are risk factors for penile cancer development. The tumor microenvironment of PSCC may predict prognosis and may inform on the best targets for immunotherapy. We evaluated the immune microenvironment of penile tumors histologically, and determined whether and/or how HIV and/or hrHPV infections affect this tumor microenvironment. We conducted a prospective analytical cross-sectional study in which penile cancer tumors from 35 patients presenting at the University Teaching Hospital in Lusaka, Zambia were histologically staged and assessed for presence of tumor infiltrating immune cells and expression of immune checkpoints. Immunohistochemistry was used to evaluate immune checkpoints and infiltrating immune cells, while multiplex real-time polymerase chain reaction was used for hrHPV genotyping. The median age of all participants was 55 years. About 24% had advanced histological stage, 83% were HIV+, and 63% had hrHPV detected in their tumors using multiplex real-time polymerase chain reaction. PDL1 expression was significantly higher in HIV- participants than HIV+ participants (p = 0.02). Tumors with multiple hrHPV infections had a significantly higher number of cells expressing TIM3 than those with one hrHPV (p = 0.04). High grade tumors had a significantly higher infiltrate of FoxP3+ cells (p = 0.02), CD68+ cells (p = 0.01), CD163+ cells (p = 0.01), LAG3+ cells (p = 0.01), PD1+ cells (p = 0.01) and TIM3+ cells (p = 0.03) when compared with low grade tumours. There was significant moderate to strong positive correlation of cells expressing PD1 and LAG3 (⍴ = 0.69; p = 0.0001), PD1 and TIM3 (⍴ = 0.49; p = 0.017) and TIM3 and LAG3 PDL1 (⍴ = 0.61; p = 0.001). In conclusion, the tumor microenvironment of penile squamous cell carcinoma seems to be affected by both HIV and HPV infections. TIM3 appears to be a potential therapeutic target in PSCC patients with hrHPV infections.


Subject(s)
Carcinoma, Squamous Cell , HIV Infections , Papillomavirus Infections , Penile Neoplasms , Tumor Microenvironment , Humans , Male , Tumor Microenvironment/immunology , Penile Neoplasms/virology , Penile Neoplasms/pathology , Penile Neoplasms/immunology , Carcinoma, Squamous Cell/virology , Carcinoma, Squamous Cell/immunology , Carcinoma, Squamous Cell/pathology , Middle Aged , HIV Infections/immunology , HIV Infections/complications , HIV Infections/virology , HIV Infections/pathology , Papillomavirus Infections/immunology , Papillomavirus Infections/virology , Papillomavirus Infections/complications , Papillomavirus Infections/pathology , Cross-Sectional Studies , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Aged , Papillomaviridae , Adult , Prospective Studies , Lymphocytes, Tumor-Infiltrating/immunology , Human Papillomavirus Viruses
9.
Methods Mol Biol ; 2807: 261-270, 2024.
Article in English | MEDLINE | ID: mdl-38743234

ABSTRACT

The development of 3D-organoid models has revolutionized the way diseases are studied. Recently, our brain organoid model has been shown to recapitulate in in vitro the human brain cytoarchitecture originally encountered in HIV-1 neuropathogenesis, allowing downstream applications. Infected monocytes, macrophages, and microglia are critically important immune cells for infection and dissemination of HIV-1 throughout brain during acute and chronic phase of the disease. Once in the brain parenchyma, long-lived infected monocytes/macrophages along with resident microglia contribute to the establishment of CNS latency in people with HIV (PWH). Hence, it is important to better understand how HIV-1 enters and establishes infection and latency in CNS to further develop cure strategies. Here we detailed an accessible protocol to incorporate monocytes (infected and/or labeled) as a model of transmigration of peripheral monocytes into brain organoids that can be applied to characterize HIV-1 neuroinvasion and virus dissemination.


Subject(s)
Brain , HIV Infections , HIV-1 , Monocytes , Organoids , Organoids/virology , Organoids/pathology , Humans , HIV-1/physiology , HIV-1/pathogenicity , Monocytes/virology , Monocytes/immunology , HIV Infections/virology , HIV Infections/immunology , HIV Infections/pathology , Brain/virology , Brain/pathology , Brain/immunology , Microglia/virology , Microglia/immunology , Microglia/pathology , Macrophages/virology , Macrophages/immunology , Virus Latency
10.
J Cell Physiol ; 239(6): e31270, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38651687

ABSTRACT

Atherosclerosis remains a leading cause of cardiovascular disease (CVD) globally, with the complex interplay of inflammation and lipid metabolism at its core. Recent evidence suggests a role of B cells in the pathogenesis of atherosclerosis; however, this relationship remains poorly understood, particularly in the context of HIV. We review the multifaceted functions of B cells in atherosclerosis, with a specific focus on HIV. Unique to atherosclerosis is the pivotal role of natural antibodies, particularly those targeting oxidized epitopes abundant in modified lipoproteins and cellular debris. B cells can exert control over cellular immune responses within atherosclerotic arteries through antigen presentation, chemokine production, cytokine production, and cell-cell interactions, actively participating in local and systemic immune responses. We explore how HIV, characterized by chronic immune activation and dysregulation, influences B cells in the context of atherosclerosis, potentially exacerbating CVD risk in persons with HIV. By examining the proatherogenic and antiatherogenic properties of B cells, we aim to deepen our understanding of how B cells influence atherosclerotic plaque development, especially within the framework of HIV. This research provides a foundation for novel B cell-targeted interventions, with the potential to mitigate inflammation-driven cardiovascular events, offering new perspectives on CVD risk management in PLWH.


Subject(s)
Atherosclerosis , B-Lymphocytes , HIV Infections , Animals , Humans , Atherosclerosis/immunology , Atherosclerosis/pathology , Atherosclerosis/virology , B-Lymphocytes/immunology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Inflammation/immunology , Inflammation/pathology , Plaque, Atherosclerotic/immunology , Plaque, Atherosclerotic/pathology , Cell Differentiation
11.
J Neuroinflammation ; 21(1): 107, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659061

ABSTRACT

Neuroinflammation and synaptodendritic damage represent the pathological hallmarks of HIV-1 associated cognitive disorders (HAND). The post-synaptic protein neurogranin (Nrgn) is significantly reduced in the frontal cortex of postmortem brains from people with HIV (PWH) and it is associated with inflammatory factors released by infected microglia/macrophages. However, the mechanism involved in synaptic loss have yet to be elucidated. In this study, we characterized a newly identified long non-coding RNA (lncRNA) transcript (RP11-677M14.2), which is antisense to the NRGN locus and is highly expressed in the frontal cortex of HIV-1 individuals. Further analysis indicates an inverse correlation between the expression of RP11-677M14.2 RNA and Nrgn mRNA. Additionally, the Nrgn-lncRNA axis is dysregulated in neurons exposed to HIV-1 infected microglia conditioned medium enriched with IL-1ß. Moreover, in vitro overexpression of this lncRNA impacts Nrgn expression at both mRNA and protein levels. Finally, we modeled the Nrgn-lncRNA dysregulation within an HIV-1-induced inflammatory environment using brain organoids, thereby corroborating our in vivo and in vitro findings. Together, our study implicates a plausible role for lncRNA RP11-677M14.2 in modulating Nrgn expression that might serve as the mechanistic link between Nrgn loss and cognitive dysfunction in HAND, thus shedding new light on the mechanisms underlying synaptodendritic damage.


Subject(s)
HIV-1 , Neurogranin , Neuroinflammatory Diseases , RNA, Long Noncoding , Humans , RNA, Long Noncoding/metabolism , RNA, Long Noncoding/genetics , Neurogranin/metabolism , Neurogranin/genetics , Neuroinflammatory Diseases/metabolism , HIV Infections/metabolism , HIV Infections/genetics , HIV Infections/pathology , Microglia/metabolism , Male , Animals
12.
Cell ; 187(5): 1223-1237.e16, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38428396

ABSTRACT

While CD4+ T cell depletion is key to disease progression in people living with HIV and SIV-infected macaques, the mechanisms underlying this depletion remain incompletely understood, with most cell death involving uninfected cells. In contrast, SIV infection of "natural" hosts such as sooty mangabeys does not cause CD4+ depletion and AIDS despite high-level viremia. Here, we report that the CARD8 inflammasome is activated immediately after HIV entry by the viral protease encapsulated in incoming virions. Sensing of HIV protease activity by CARD8 leads to rapid pyroptosis of quiescent cells without productive infection, while T cell activation abolishes CARD8 function and increases permissiveness to infection. In humanized mice reconstituted with CARD8-deficient cells, CD4+ depletion is delayed despite high viremia. Finally, we discovered loss-of-function mutations in CARD8 from "natural hosts," which may explain the peculiarly non-pathogenic nature of these infections. Our study suggests that CARD8 drives CD4+ T cell depletion during pathogenic HIV/SIV infections.


Subject(s)
HIV Infections , Inflammasomes , Simian Acquired Immunodeficiency Syndrome , Animals , Humans , Mice , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , CD4-Positive T-Lymphocytes/metabolism , Disease Progression , HIV Infections/pathology , Inflammasomes/metabolism , Neoplasm Proteins/metabolism , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Immunodeficiency Virus/physiology , Viremia , HIV/physiology
13.
G Ital Nefrol ; 41(1)2024 Feb 28.
Article in Italian | MEDLINE | ID: mdl-38426680

ABSTRACT

Renal involvement is very common in patients with HIV infection. The phenotype varies from the most frequently "collapsing" variant of focal and segmental glomerulosclerosis (FSGS) to "lupus-like HIV-immune complex kidney disease" (HIVICK). The latter is characterized by a histological picture that recalls lupus nephropathy. Through a clinical case, we underline the importance of urinary sediment analysis in patients with suspected glomerulopathy. Findings such as the characteristic cells that show the typical appearance of Herpes virus (HSV) infection or LE cells have significantly supported the diagnosis of HIVICK. In light of the present observations, we suggest systematically carrying out a cytological examination of the urinary sediment to confirm diagnostic hypotheses of rare pathologies.


Subject(s)
Glomerulosclerosis, Focal Segmental , HIV Infections , Kidney Diseases , Humans , HIV Infections/complications , HIV Infections/pathology , Antigen-Antibody Complex , HIV , Kidney/pathology , Glomerulosclerosis, Focal Segmental/pathology , Kidney Diseases/pathology
14.
J Leukoc Biol ; 116(1): 166-176, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38450750

ABSTRACT

Platelets engage in HIV-1 infection by interacting with immune cells, which has been realized broadly. However, the potential interaction between platelets and CD8+ T cells remains unidentified. Here, treatment-naive individuals with HIV-1, complete immunological responders to antiretroviral therapy, and healthy controls were enrolled. First, we found that treatment-naive individuals with HIV-1 had low platelet numbers and high CD8+ T-cell counts when compared with complete immunological responders to antiretroviral therapy and healthy controls, leading to a low platelet/CD8+ T-cell ratio in peripheral blood, which could effectively differentiate the status of HIV-1 infection. Moreover, cytokines that may have been derived from platelets were higher in the plasma of people with HIV-1 despite viral suppression. Furthermore, we demonstrated that platelet-CD8+ T-cell aggregates were elevated in treatment-naive individuals with HIV-1, which positively correlated with HIV-1 viral load but negatively correlated with CD4+ T-cell count and CD4/CD8 ratio. Finally, we revealed that platelet-CD8+ T-cell aggregates correlate with enhanced activation/exhaustion and pyroptosis/apoptosis compared with free CD8+ T cells. Moreover, platelet-induced caspase 1 activation of CD8+ T cells correlated with IL-1ß and IL-18 plasma levels. In brief, we reveal the importance of platelets in HIV-1 infection, which might secrete more cytokines and mediate CD8+ T-cell phenotypic characteristics by forming platelet-CD8+ T-cell aggregates, which are related to poor prognosis.


Subject(s)
Blood Platelets , CD8-Positive T-Lymphocytes , Disease Progression , HIV Infections , HIV-1 , Humans , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , HIV Infections/virology , HIV Infections/pathology , HIV-1/immunology , Blood Platelets/immunology , Blood Platelets/pathology , Blood Platelets/metabolism , Male , Adult , Female , Lymphocyte Activation/immunology , Middle Aged , Viral Load , Cytokines/metabolism , Cytokines/blood , Apoptosis , Pyroptosis
15.
Cell Rep ; 43(4): 113994, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38530856

ABSTRACT

Distinct dendritic cell (DC) subsets play important roles in shaping immune responses. Circulating DC precursors (pre-DCs) are more susceptible to HIV infection in vitro, which may explain the inefficiency of immune responses against HIV. However, the interplay between HIV and pre-DC is not defined in vivo. We identify human pre-DC equivalents in the cynomolgus macaque and then analyze their dynamics during simian immunodeficiency virus (SIV) infection to illustrate a sharp decrease of blood pre-DCs in early SIV infection and accumulation in lymph nodes (LNs), where they neglect to upregulate CD83/CD86 or MHC-II. Additionally, SIV infection attenuates the capacity of stimulated LN pre-DCs to produce IL-12p40. Analysis of HIV cohorts provides correlation between costimulatory molecule expression on pre-DCs and T cell activation in spontaneous HIV controllers. These findings pinpoint certain dynamics and functional changes of pre-DCs during SIV infection, providing a deeper understanding of immune dysregulation mechanisms elicited in people living with HIV.


Subject(s)
Dendritic Cells , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Acquired Immunodeficiency Syndrome/blood , Simian Acquired Immunodeficiency Syndrome/pathology , Dendritic Cells/immunology , Simian Immunodeficiency Virus/immunology , Humans , Lymph Nodes/immunology , Lymph Nodes/pathology , HIV Infections/immunology , HIV Infections/virology , HIV Infections/blood , HIV Infections/pathology , Macaca fascicularis , Lymphocyte Activation/immunology
16.
Ann Neurol ; 95(5): 941-950, 2024 May.
Article in English | MEDLINE | ID: mdl-38362961

ABSTRACT

OBJECTIVE: To investigate the relationship between neurocognitive deficits and structural changes on brain magnetic resonance imaging in people living with HIV (PLWH) with good virological control on combination antiretroviral therapy, compared with socioeconomically matched control participants recruited from the same communities. METHODS: Brain magnetic resonance imaging scans, and clinical and neuropsychological data were obtained from virologically controlled PLWH (viral load of <50 c/mL and at least 1 year of combination antiretroviral therapy) and socioeconomically matched control participants. Magnetic resonance imaging was carried out on 3 T scanner with 8-channel head coils and segmented using Classification using Derivative-based Features. Multiple regression analysis was performed to examine the association between brain volume and various clinical and neuropsychiatric parameters adjusting for age, race, and sex. To evaluate longitudinal changes in brain volumes, a random coefficient model was used to evaluate the changes over time (age) adjusting for sex and race. RESULTS: The cross-sectional study included 164 PLWH and 51 controls, and the longitudinal study included 68 PLWH and 20 controls with 2 or more visits (mean 2.2 years, range 0.8-5.1 years). Gray matter (GM) atrophy rate was significantly higher in PLWH compared with control participants, and importantly, the GM and global atrophy was associated with the various neuropsychological domain scores. Higher volume of white matter hyperintensities were associated with increased atherosclerotic cardiovascular disease risk score, and decreased executive functioning and memory domain scores in PLWH. INTERPRETATION: These findings suggest ongoing neurological damage even in virologically controlled participants, with significant implications for clinical management of PLWH. ANN NEUROL 2024;95:941-950.


Subject(s)
Gray Matter , HIV Infections , Neurocognitive Disorders , White Matter , Humans , Cross-Sectional Studies , HIV Infections/complications , HIV Infections/diagnostic imaging , HIV Infections/pathology , HIV Infections/therapy , Neurocognitive Disorders/diagnostic imaging , White Matter/diagnostic imaging , White Matter/pathology , Gray Matter/diagnostic imaging , Gray Matter/pathology , Adult , Middle Aged , Male , Female , Cerebrum/diagnostic imaging , Cerebrum/pathology , Longitudinal Studies
17.
Neurotherapeutics ; 21(2): e00329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38388224

ABSTRACT

Cognitive impairment remains a persistent challenge in people living with HIV (PWLH) despite antiretroviral therapy (ART) due to ART's inability to eliminate brain HIV. HIV-induced cognitive dysfunction results from immune dysregulation, ongoing neuroinflammation, and the continuous virus presence, collectively contributing to cognitive deficits. Therefore, adjunctive therapies are needed to reduce cerebral HIV reservoirs, mitigate neuroinflammation, and impede cognitive dysfunction progression. Our study focused on Honokiol, known for its anti-inflammatory and neuroprotective properties, in an experimental mouse model simulating HIV-induced cognitive dysfunction. Using Honokiol Hexafluoro (HH), a synthetic analogue, we comprehensively evaluated its potential to ameliorate cognitive dysfunction and cerebral pathology in HIV-associated cognitive dysfunction. Our findings showed that HH treatment effectively reversed HIV-induced cognitive dysfunction, concurrently suppressing astrocyte activation, restoring neuronal dendritic arborization, and reducing microglial activation. Furthermore, HH remodeled the metabolic profile of HIV-infected human monocyte-derived macrophages, resulting in decreased activation and the promotion of a quiescent state in vitro.


Subject(s)
Allyl Compounds , Biphenyl Compounds , HIV Infections , Phenols , Humans , Mice , Animals , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/pathology , Neuroinflammatory Diseases , Mice, SCID , Macrophages
18.
Curr HIV/AIDS Rep ; 21(2): 62-74, 2024 04.
Article in English | MEDLINE | ID: mdl-38411842

ABSTRACT

PURPOSE OF REVIEW: HIV reservoirs are the main barrier to cure. CD4+ T cells have been extensively studied as the primary HIV-1 reservoir. However, there is substantial evidence that HIV-1-infected myeloid cells (monocytes/macrophages) also contribute to viral persistence and pathogenesis. RECENT FINDINGS: Recent studies in animal models and people with HIV-1 demonstrate that myeloid cells are cellular reservoirs of HIV-1. HIV-1 genomes and viral RNA have been reported in circulating monocytes and tissue-resident macrophages from the brain, urethra, gut, liver, and spleen. Importantly, viral outgrowth assays have quantified persistent infectious virus from monocyte-derived macrophages and tissue-resident macrophages. The myeloid cell compartment represents an important target of HIV-1 infection. While myeloid reservoirs may be more difficult to measure than CD4+ T cell reservoirs, they are long-lived, contribute to viral persistence, and, unless specifically targeted, will prevent an HIV-1 cure.


Subject(s)
HIV Infections , HIV Seropositivity , HIV-1 , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Animals , Humans , HIV Infections/pathology , Simian Acquired Immunodeficiency Syndrome/pathology , Macrophages , CD4-Positive T-Lymphocytes , Virus Latency , Viral Load
19.
J Virol ; 98(2): e0165223, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299866

ABSTRACT

CCR5-tropic simian/human immunodeficiency viruses (SHIV) with clade C transmitted/founder envelopes represent a critical tool for the investigation of HIV experimental vaccines and microbicides in nonhuman primates, although many such isolates lead to spontaneous viral control post infection. Here, we generated a high-titer stock of pathogenic SHIV-C109p5 by serial passage in two rhesus macaques (RM) and tested its virulence in aged monkeys. The co-receptor usage was confirmed before infecting five geriatric rhesus macaques (four female and one male). Plasma viral loads were monitored by reverse transcriptase-quantitative PCR (RT-qPCR), cytokines by multiplex analysis, and biomarkers of gastrointestinal damage by enzyme-linked immunosorbent assay. Antibodies and cell-mediated responses were also measured. Viral dissemination into tissues was determined by RNAscope. Intravenous SHIV-C109p5 infection of aged RMs leads to high plasma viremia and rapid disease progression; rapid decrease in CD4+ T cells, CD4+CD8+ T cells, and plasmacytoid dendritic cells; and wasting necessitating euthanasia between 3 and 12 weeks post infection. Virus-specific cellular immune responses were detected only in the two monkeys that survived 4 weeks post infection. These were Gag-specific TNFα+CD8+, MIP1ß+CD4+, Env-specific IFN-γ+CD4+, and CD107a+ T cell responses. Four out of five monkeys had elevated intestinal fatty acid binding protein levels at the viral peak, while regenerating islet-derived protein 3α showed marked increases at later time points in the three animals surviving the longest, suggesting gut antimicrobial peptide production in response to microbial translocation post infection. Plasma levels of monocyte chemoattractant protein-1, interleukin-15, and interleukin-12/23 were also elevated. Viral replication in gut and secondary lymphoid tissues was extensive.IMPORTANCESimian/human immunodeficiency viruses (SHIV) are important reagents to study prevention of virus acquisition in nonhuman primate models of HIV infection, especially those representing transmitted/founder (T/F) viruses. However, many R5-tropic SHIV have limited fitness in vivo leading to many monkeys spontaneously controlling the virus post acute infection. Here, we report the generation of a pathogenic SHIV clade C T/F stock by in vivo passage leading to sustained viral load set points, a necessity to study pathogenicity. Unexpectedly, administration of this SHIV to elderly rhesus macaques led to extensive viral replication and fast disease progression, despite maintenance of a strict R5 tropism. Such age-dependent rapid disease progression had previously been reported for simian immunodeficiency virus but not for R5-tropic SHIV infections.


Subject(s)
HIV Infections , HIV , Simian Acquired Immunodeficiency Syndrome , Simian Immunodeficiency Virus , Virus Replication , Animals , Female , Male , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Aging , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/pathology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/pathology , Chemokine CCL2/immunology , Chemokine CCL2/metabolism , Dendritic Cells/immunology , Dendritic Cells/pathology , Disease Progression , HIV/classification , HIV/growth & development , HIV/pathogenicity , HIV/physiology , HIV Infections/immunology , HIV Infections/pathology , HIV Infections/virology , Interferon-gamma/immunology , Interferon-gamma/metabolism , Interleukins/immunology , Interleukins/metabolism , Intestines/virology , Lymphoid Tissue/virology , Macaca mulatta/immunology , Macaca mulatta/metabolism , Serial Passage , Simian Acquired Immunodeficiency Syndrome/immunology , Simian Acquired Immunodeficiency Syndrome/pathology , Simian Acquired Immunodeficiency Syndrome/virology , Simian Immunodeficiency Virus/classification , Simian Immunodeficiency Virus/growth & development , Simian Immunodeficiency Virus/pathogenicity , Simian Immunodeficiency Virus/physiology , Tumor Necrosis Factor-alpha/immunology , Tumor Necrosis Factor-alpha/metabolism , Viral Load , Viral Tropism , Virulence , Receptors, CCR5/metabolism
20.
J Hepatol ; 80(6): 868-881, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38311121

ABSTRACT

BACKGROUND & AIMS: Persons with chronic HBV infection coinfected with HIV experience accelerated progression of liver fibrosis compared to those with HBV monoinfection. We aimed to determine whether HIV and its proteins promote HBV-induced liver fibrosis in HIV/HBV-coinfected cell culture models through HIF-1α and TGF-ß1 signaling. METHODS: The HBV-positive supernatant, purified HBV viral particles, HIV-positive supernatant, or HIV viral particles were directly incubated with cell lines or primary hepatocytes, hepatic stellate cells, and macrophages in mono or 3D spheroid coculture models. Cells were incubated with recombinant cytokines and HIV proteins including gp120. HBV sub-genomic constructs were transfected into NTCP-HepG2 cells. We also evaluated the effects of inhibitor of HIF-1α and HIV gp120 in a HBV carrier mouse model that was generated via hydrodynamic injection of the pAAV/HBV1.2 plasmid into the tail vein of wild-type C57BL/6 mice. RESULTS: We found that HIV and HIV gp120, through engagement with CCR5 and CXCR4 coreceptors, activate AKT and ERK signaling and subsequently upregulate hypoxia-inducible factor-1α (HIF-1α) to increase HBV-induced transforming growth factor-ß1 (TGF-ß1) and profibrogenic gene expression in hepatocytes and hepatic stellate cells. HIV gp120 exacerbates HBV X protein-mediated HIF-1α expression and liver fibrogenesis, which can be alleviated by inhibiting HIF-1α. Conversely, TGF-ß1 upregulates HIF-1α expression and HBV-induced liver fibrogenesis through the SMAD signaling pathway. HIF-1α small-interfering RNA transfection or the HIF-1α inhibitor (acriflavine) blocked HIV-, HBV-, and TGF-ß1-induced fibrogenesis. CONCLUSIONS: Our findings suggest that HIV coinfection exacerbates HBV-induced liver fibrogenesis through enhancement of the positive feedback between HIF-1α and TGF-ß1 via CCR5/CXCR4. HIF-1α represents a novel target for antifibrotic therapeutic development in HBV/HIV coinfection. IMPACT AND IMPLICATIONS: HIV coinfection accelerates the progression of liver fibrosis compared to HBV monoinfection, even among patients with successful suppression of viral load, and there is no sufficient treatment for this disease process. In this study, we found that HIV viral particles and specifically HIV gp120 promote HBV-induced hepatic fibrogenesis via enhancement of the positive feedback between HIF-1α and TGF-ß1, which can be ameliorated by inhibition of HIF-1α. These findings suggest that targeting the HIF-1α pathway can reduce liver fibrogenesis in patients with HIV and HBV coinfection.


Subject(s)
Coinfection , HIV Infections , Hepatitis B virus , Hypoxia-Inducible Factor 1, alpha Subunit , Liver Cirrhosis , Signal Transduction , Transforming Growth Factor beta1 , Animals , Transforming Growth Factor beta1/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Liver Cirrhosis/metabolism , Liver Cirrhosis/virology , Liver Cirrhosis/pathology , Humans , HIV Infections/complications , HIV Infections/metabolism , HIV Infections/pathology , Hepatitis B virus/genetics , Coinfection/virology , Mice, Inbred C57BL , Hepatitis B, Chronic/complications , Hepatitis B, Chronic/metabolism , Hepatitis B, Chronic/pathology , Hepatitis B, Chronic/virology , HIV Envelope Protein gp120/metabolism , Hepatocytes/metabolism , Hepatocytes/virology , Hepatocytes/pathology , Hepatic Stellate Cells/metabolism , Hepatic Stellate Cells/virology , Disease Models, Animal , Hep G2 Cells , Male
SELECTION OF CITATIONS
SEARCH DETAIL