Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.384
Filter
1.
Protein Sci ; 33(7): e5080, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38896002

ABSTRACT

The Gag-Pol polyprotein in human immunodeficiency virus type I (HIV-1) encodes enzymes that are essential for virus replication: protease (PR), reverse transcriptase (RT), and integrase (IN). The mature forms of PR, RT and IN are homodimer, heterodimer and tetramer, respectively. The precise mechanism underlying the formation of dimer or tetramer is not yet understood. Here, to gain insight into the dimerization of PR and RT in the precursor, we prepared a model precursor, PR-RT, incorporating an inactivating mutation at the PR active site, D25A, and including two residues in the p6* region, fused to a SUMO-tag, at the N-terminus of the PR region. We also prepared two mutants of PR-RT containing a dimer dissociation mutation either in the PR region, PR(T26A)-RT, or in the RT region, PR-RT(W401A). Size exclusion chromatography showed both monomer and dimer fractions in PR-RT and PR(T26A)-RT, but only monomer in PR-RT(W401A). SEC experiments of PR-RT in the presence of protease inhibitor, darunavir, significantly enhanced the dimerization. Additionally, SEC results suggest an estimated PR-RT dimer dissociation constant that is higher than that of the mature RT heterodimer, p66/p51, but slightly lower than the premature RT homodimer, p66/p66. Reverse transcriptase assays and RT maturation assays were performed as tools to assess the effects of the PR dimer-interface on these functions. Our results consistently indicate that the RT dimer-interface plays a crucial role in the dimerization in PR-RT, whereas the PR dimer-interface has a lesser role.


Subject(s)
HIV Protease , HIV Reverse Transcriptase , HIV-1 , Protein Multimerization , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/genetics , HIV Protease/chemistry , HIV Protease/genetics , HIV Protease/metabolism , HIV-1/enzymology , HIV-1/genetics , HIV-1/chemistry , Humans , Models, Molecular , Dimerization
2.
J Antimicrob Chemother ; 79(7): 1673-1676, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38804140

ABSTRACT

OBJECTIVES: Resistance associated mutations (RAMs) are archived in the HIV reservoir and can re-emerge with an inappropriate ART use limiting treatment options. However, recent studies, using ultra-deep sequencing (UDS), showed a decrease of quasispecies harbouring RAMs, suggesting that recycling some antiretrovirals could be considered. The aim of this study was to characterize, in HIV treated PLWHIV, the M184V mutation decrease kinetics in proviral DNA and associated factors of M184V mutation clearance over time. METHODS: UDS was performed on HIV-DNA from blood cells at different time points to quantify the percentage of M184V positive quasispecies. The sequence reads were analysed with a minimum coverage set at 50 and an ambiguity filter at 5% or 2%. RESULTS: At 2.5 years after the first time point, the M184V lost was observed in 50% of PLWHIV. Moreover, univariate analyses highlight that a higher nadir CD4 count and a lower zenith HIV1 RNA viral load were correlated with a faster clearance of the mutation. In multivariate analysis, a higher zenith was negatively associated with the M184V clearance at the 5% threshold. Interestingly, lamivudine/emtricitabine presence in the ART therapy regiment during the 5 years was not associated with the persistence of the M184V. CONCLUSIONS: Our study provides new information concerning the clearance speed of M184V mutation over time in PLWHIV with fully suppressed viremia, opens the discussion about the duration needed to consider a lamivudine/emtricitabine recycling and reinforces the association of the nadir and zenith values with the M184V mutation clearance.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , HIV-1 , Mutation , Viral Load , Humans , HIV Infections/drug therapy , HIV Infections/virology , Drug Resistance, Viral/genetics , HIV-1/genetics , HIV-1/drug effects , CD4 Lymphocyte Count , Male , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Female , Adult , Middle Aged , Proviruses/genetics , High-Throughput Nucleotide Sequencing , DNA, Viral/genetics , DNA, Viral/blood , HIV Reverse Transcriptase/genetics , Antiretroviral Therapy, Highly Active
3.
J Clin Microbiol ; 62(6): e0013624, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38727213

ABSTRACT

HIV genotyping is used to assess HIV susceptibility to antiretroviral drugs. The Applied Biosystems HIV-1 Genotyping Kit with Integrase (AB kit, Thermo Fisher Scientific) detects resistance-associated mutations (RAMs) in HIV protease (PR), reverse transcriptase (RT), and integrase (IN). We compared results from the AB kit with results obtained previously with the ViroSeq HIV-1 Genotyping System. DNA amplicons from the AB kit were also analyzed using next-generation sequencing (NGS). HIV RNA was extracted using the MagNA Pure 24 instrument (Roche Diagnostics; 96 plasma samples, HIV subtype B, viral load range: 530-737,741 copies/mL). FASTA files were generated from AB kit data using Exatype (Hyrax Biosciences). DNA amplicons from the AB kit were also analyzed by NGS using the Nextera XT kit (Illumina). Drug resistance was predicted using the Stanford HIV Drug Resistance Database. The mean genetic distance for sequences from ViroSeq and the AB kit was 0.02% for PR/RT and 0.04% for IN; 103 major RAMs were detected by both methods. Four additional major RAMs were detected by the AB kit only. These four major RAMs were also detected by NGS (detected in 18.1%-38.2% of NGS reads). NGS detected 27 major RAMs that were not detected with either of the Sanger sequencing-based kits. All major RAMs detected with ViroSeq were detected with the AB kit; additional RAMs were detected with the AB kit only. DNA amplicons from the AB kit can be used for NGS for more sensitive detection of RAMs.


Subject(s)
Drug Resistance, Viral , Genotyping Techniques , HIV Infections , HIV Integrase , HIV-1 , High-Throughput Nucleotide Sequencing , HIV-1/genetics , HIV-1/drug effects , HIV-1/enzymology , HIV-1/isolation & purification , HIV-1/classification , Humans , HIV Infections/virology , Genotyping Techniques/methods , Drug Resistance, Viral/genetics , HIV Integrase/genetics , High-Throughput Nucleotide Sequencing/methods , Genotype , Reagent Kits, Diagnostic/standards , RNA, Viral/genetics , Mutation , HIV Reverse Transcriptase/genetics , HIV Protease/genetics
4.
J Gen Virol ; 105(4)2024 Apr.
Article in English | MEDLINE | ID: mdl-38687324

ABSTRACT

HIV-1 matrix protein p17 variants (vp17s), characterized by amino acid insertions at the COOH-terminal region of the viral protein, have been recently identified and studied for their biological activity. Different from their wild-type counterpart (refp17), vp17s display a potent B cell growth and clonogenic activity. Recent data have highlighted the higher prevalence of vp17s in people living with HIV-1 (PLWH) with lymphoma compared with those without lymphoma, suggesting that vp17s may play a key role in lymphomagenesis. Molecular mechanisms involved in vp17 development are still unknown. Here we assessed the efficiency of HIV-1 Reverse Transcriptase (RT) in processing this genomic region and highlighted the existence of hot spots of mutation in Gag, at the end of the matrix protein and close to the matrix-capsid junction. This is possibly due to the presence of inverted repeats and palindromic sequences together with a high content of Adenine in the 322-342 nucleotide portion, which constrain HIV-1 RT to pause on the template. To define the recombinogenic properties of hot spots of mutation in the matrix gene, we developed plasmid vectors expressing Gag and a minimally modified Gag variant, and measured homologous recombination following cell co-nucleofection by next-generation sequencing. Data obtained allowed us to show that a wide range of recombination events occur in concomitance with the identified hot spots of mutation and that imperfect events may account for vp17s generation.


Subject(s)
HIV Antigens , HIV Reverse Transcriptase , HIV-1 , gag Gene Products, Human Immunodeficiency Virus , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/metabolism , Humans , HIV-1/genetics , HIV Antigens/genetics , HIV Antigens/metabolism , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Mutation , HIV Infections/virology , HIV Infections/genetics , Cell Line
5.
J Virol Methods ; 327: 114939, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604585

ABSTRACT

Despite increasing scale-up of antiretroviral therapy (ART) coverage, challenges related to adherence and HIV drug resistance (HIVDR) remain. The high cost of HIVDR surveillance is a persistent challenge with implementation in resource-constrained settings. Dried blood spot (DBS) specimens have been demonstrated to be a feasible alternative to plasma or serum for HIVDR genotyping and are more suitable for lower resource settings. There is a need for affordable HIVDR genotyping assays which can amplify HIV-1 sequences from DBS specimens, particularly those with low viral loads, at a low cost. Here, we present an in-house assay capable of reliably amplifying HIV-1 protease and partial reverse transcriptase genes from DBS specimens, which covers the complete World Health Organization 2009 list of drug resistance mutations under surveillance. DBS specimens were prepared using whole blood spiked with HIV-1 at concentrations of 10,000, 5000, 1000, and 500 copies/mL (n=30 for each concentration). Specimens were tested in triplicate. A two-step approach was used consisting of cDNA synthesis followed by nested PCR. The limit of detection of the assay was calculated to be approximately 5000 (95% CI: 3200-10,700) copies/mL for the protease gene and 3600 (95% CI: 2200-10,000) copies/mL for reverse transcriptase. The assay was observed to be most sensitive with higher viral load specimens (97.8% [95% CI: 92.2-99.7]) for both protease and reverse transcriptase at 10,000 copies/mL with performance decreasing with the use of specimens with lower viral loads (46.7% [36.1-57.5] and 60.0% [49.1-70.2] at 500 copies/mL for protease and reverse transcriptase, respectively). Ultimately, this assay presents a promising opportunity for use in resource-constrained settings. Future work should involve validation under field conditions including sub-optimal storage conditions and preparation of DBS with fingerprick blood in order to accurately reflect real-world collection scenarios.


Subject(s)
Drug Resistance, Viral , HIV Infections , HIV Protease , HIV Reverse Transcriptase , HIV-1 , Mutation , Humans , HIV-1/genetics , HIV-1/drug effects , HIV-1/isolation & purification , Drug Resistance, Viral/genetics , HIV Infections/virology , HIV Infections/drug therapy , HIV Reverse Transcriptase/genetics , HIV Protease/genetics , Dried Blood Spot Testing/methods , Specimen Handling/methods , Viral Load , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Genotyping Techniques/methods , Genotype , Sensitivity and Specificity
7.
Int J Immunopathol Pharmacol ; 38: 3946320241231465, 2024.
Article in English | MEDLINE | ID: mdl-38296818

ABSTRACT

OBJECTIVES: Antiretroviral therapy (ART) efficacy is jeopardized by the emergence of drug resistance mutations in HIV, compromising treatment effectiveness. This study aims to propose novel analogs of Effavirenz (EFV) as potential direct inhibitors of HIV reverse transcriptase, employing computer-aided drug design methodologies. METHODS: Three key approaches were applied: a mutational profile study, molecular dynamics simulations, and pharmacophore development. The impact of mutations on the stability, flexibility, function, and affinity of target proteins, especially those associated with NRTI, was assessed. Molecular dynamics analysis identified G190E as a mutation significantly altering protein properties, potentially leading to therapeutic failure. Comparative analysis revealed that among six first-line antiretroviral drugs, EFV exhibited notably low affinity with viral reverse transcriptase, further reduced by the G190E mutation. Subsequently, a search for EFV-similar inhibitors yielded 12 promising molecules based on their affinity, forming the basis for generating a pharmacophore model. RESULTS: Mutational analysis pinpointed G190E as a crucial mutation impacting protein properties, potentially undermining therapeutic efficacy. EFV demonstrated diminished affinity with viral reverse transcriptase, exacerbated by the G190E mutation. The search for EFV analogs identified 12 high-affinity molecules, culminating in a pharmacophore model elucidating key structural features crucial for potent inhibition. CONCLUSION: This study underscores the significance of EFV analogs as potential inhibitors of HIV reverse transcriptase. The findings highlight the impact of mutations on drug efficacy, particularly the detrimental effect of G190E. The generated pharmacophore model serves as a pivotal reference for future drug development efforts targeting HIV, providing essential structural insights for the design of potent inhibitors based on EFV analogs identified in vitro.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , Reverse Transcriptase Inhibitors/chemistry , Molecular Dynamics Simulation , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV Reverse Transcriptase/therapeutic use , Pharmacophore , Molecular Docking Simulation , HIV Infections/drug therapy , HIV Infections/genetics , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use
8.
J Infect Dis ; 229(6): 1796-1802, 2024 Jun 14.
Article in English | MEDLINE | ID: mdl-38206187

ABSTRACT

BACKGROUND: Limited data are available regarding the susceptibility of the reverse transcriptase V106 polymorphism to doravirine. METHODS: Doravirine susceptibility was measured in site-directed mutants (SDMs) containing V106I, V106A, V106M, and Y188L mutations in subtype B (NL4-3, HXB2) and CRF02_AG background and in recombinant viruses with RT harboring V106I alone derived from 50 people with HIV. RESULTS: HIV-1 B subtype was detected in 1523 of 2705 cases. Prevalence of V106I was 3.2% in B and 2.5% in non-B subtypes, and was higher in subtype F (8.1%) and D (14.3%). Fold-changes (FC) in susceptibility for SDMs were below doravirine biological cutoff (3.0) for V106I, but not for V106A, V106M, and Y188L. Clinically derived viruses tested included 22 B (median FC, 1.2; interquartile range [IQR], 0.9-1.6) and 28 non-B subtypes (median FC, 1.8; IQR, 0.9-3.0). Nine (18%) viruses showed FC values equal or higher than the doravirine biological FC cutoff. CONCLUSIONS: The prevalence of the HIV-1 RT V106I polymorphism in MeditRes HIV consortium remains low, but significantly more prevalent in subtypes D and F. V106I minimally decreased the susceptibility to doravirine in SDMs and most clinical isolates. Reduced susceptibility seems to occur at increased frequency in subtype F1; however, the clinical impact remains to be investigated. CLINICAL TRIALS REGISTRATION: NCT04894357.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , HIV Reverse Transcriptase , HIV-1 , Pyridones , Triazoles , Humans , HIV-1/genetics , HIV-1/drug effects , HIV-1/classification , HIV-1/enzymology , HIV Reverse Transcriptase/genetics , HIV Infections/virology , HIV Infections/epidemiology , Pyridones/pharmacology , Drug Resistance, Viral/genetics , Anti-HIV Agents/pharmacology , Triazoles/pharmacology , Polymorphism, Genetic , Prevalence , Male , Female , Reverse Transcriptase Inhibitors/pharmacology , Adult , Genotype , Phenotype , Middle Aged
9.
Nucleic Acids Res ; 52(3): 1359-1373, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38015463

ABSTRACT

Viral RNA genomes are modified by epitranscriptomic marks, including 2'-O-methylation that is added by cellular or viral methyltransferases. 2'-O-Methylation modulates RNA structure, function and discrimination between self- and non-self-RNA by innate immune sensors such as RIG-I-like receptors. This is illustrated by human immunodeficiency virus type-1 (HIV-1) that decorates its RNA genome through hijacking the cellular FTSJ3 2'-O-methyltransferase, thereby limiting immune sensing and interferon production. However, the impact of such an RNA modification during viral genome replication is poorly understood. Here we show by performing endogenous reverse transcription on methylated or hypomethylated HIV-1 particles, that 2'-O-methylation negatively affects HIV-1 reverse transcriptase activity. Biochemical assays confirm that RNA 2'-O-methylation impedes reverse transcriptase activity, especially at low dNTP concentrations reflecting those in quiescent cells, by reducing nucleotide incorporation efficiency and impairing translocation. Mutagenesis highlights K70 as a critical amino acid for the reverse transcriptase to bypass 2'-O-methylation. Hence, the observed antiviral effect due to viral RNA 2'-O-methylation antagonizes the FTSJ3-mediated proviral effects, suggesting the fine-tuning of RNA methylation during viral replication.


Subject(s)
HIV Reverse Transcriptase , HIV-1 , RNA Processing, Post-Transcriptional , RNA, Viral , Virus Replication , Humans , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HIV-1/metabolism , Methylation , Methyltransferases/genetics , Methyltransferases/metabolism , Nucleotides/metabolism , Reverse Transcription , RNA, Viral/metabolism
10.
J Antimicrob Chemother ; 79(2): 370-374, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38153245

ABSTRACT

BACKGROUND: Islatravir is a new antiretroviral drug that inhibits the reverse transcriptase (RT) of HIV-1 through multiple mechanisms. It is proposed to be used in combination with doravirine, a new NNRTI. M184V/I mutations have been shown to reduce the in vitro antiviral activity of islatravir, but their effect when pre-selected during ART has not been investigated. METHODS: HIV-1 rt sequences were obtained from four individuals of the Garrahan HIV cohort prior to, or during virological failure to ART. HIV-1 infectious molecular clones were constructed on an NL4-3 backbone, and infectious viruses were produced by transfection of 293T cells. Fold-changes in IC50 were calculated for each mutant versus the NL4-3 WT. HIV-1 phenotypic drug resistance was tested in vitro against NRTIs and NNRTIs. RESULTS: In all the cases, M184I/V, either alone or in the presence of other mutations, was associated with reduced susceptibility to islatravir, abacavir and lamivudine. Viruses carrying M184V/I showed variable levels of resistance to islatravir (4.8 to 33.8-fold). The greatest reduction in susceptibility was observed for viruses carrying the mutations M184V + V106I (33.8-fold resistance) or M184V + I142V (25.2-fold resistance). For NNRTIs, the presence of V106I alone did not affect susceptibility to doravirine or etravirine, but showed a modest reduction in susceptibility to efavirenz (6-fold). Susceptibility to doravirine was slightly reduced only for one of the mutants carrying V106I in combination with Y181C and M184V. CONCLUSIONS: Mutations and polymorphisms selected in vivo together with M184V/I depend on the viral genetic context and on ART history, and could affect the efficacy of islatravir once available for use in the clinic.


Subject(s)
Anti-HIV Agents , Deoxyadenosines , HIV Infections , HIV-1 , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV-1/genetics , HIV Infections/drug therapy , Lamivudine/therapeutic use , Mutation , HIV Reverse Transcriptase/genetics , Drug Resistance, Viral/genetics , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use
11.
Viruses ; 15(11)2023 Nov 11.
Article in English | MEDLINE | ID: mdl-38005921

ABSTRACT

Predicting viral drug resistance is a significant medical concern. The importance of this problem stimulates the continuous development of experimental and new computational approaches. The use of computational approaches allows researchers to increase therapy effectiveness and reduce the time and expenses involved when the prescribed antiretroviral therapy is ineffective in the treatment of infection caused by the human immunodeficiency virus type 1 (HIV-1). We propose two machine learning methods and the appropriate models for predicting HIV drug resistance related to amino acid substitutions in HIV targets: (i) k-mers utilizing the random forest and the support vector machine algorithms of the scikit-learn library, and (ii) multi-n-grams using the Bayesian approach implemented in MultiPASSR software. Both multi-n-grams and k-mers were computed based on the amino acid sequences of HIV enzymes: reverse transcriptase and protease. The performance of the models was estimated by five-fold cross-validation. The resulting classification models have a relatively high reliability (minimum accuracy for the drugs is 0.82, maximum: 0.94) and were used to create a web application, HVR (HIV drug Resistance), for the prediction of HIV drug resistance to protease inhibitors and nucleoside and non-nucleoside reverse transcriptase inhibitors based on the analysis of the amino acid sequences of the appropriate HIV proteins from clinical samples.


Subject(s)
Anti-HIV Agents , HIV Infections , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , Bayes Theorem , Amino Acid Substitution , Reproducibility of Results , HIV Reverse Transcriptase/genetics , Reverse Transcriptase Inhibitors/pharmacology , HIV Infections/drug therapy , Drug Resistance, Viral/genetics , HIV Protease/genetics
12.
AIDS Rev ; 26(3): 136-144, 2023.
Article in English | MEDLINE | ID: mdl-37879631

ABSTRACT

HIV is a global deliberating infectious disease. Of note, more than 36 million people living with HIV (PLHIV) with approximately newly diagnosed 1.5 million cases annually. M184V is a single base mutation in the highly conserved YMDD domain of reverse transcriptase (RT). It is one of the most encountered resistances associated with mutations to nucleoside RT inhibitors. There were continuous efforts to evaluate the impact of M184V mutation on the treatment outcomes in PLHIV. Therefore, the present systematic review was executed to reveal the virological failure, virological suppression, and resistance to antiretroviral therapy (ART) regimens in PLHIV with the M184V mutation. All clinical studies comparing the treatment outcomes among PLHIV harboring or not harboring M184V mutation were appropriate for systematic review and meta-analysis. The present systematic review included six articles, encompassing 4760 PLHIV. Of them, 1222 (25.67%) patients had M184V mutation, while 3538 (74.32%) PLHIV did not. The meta-analysis showed that patients with M184V mutation were 1.87 times more liable to virological failure (risk ratio [RR] 1.87; 95% 1.09, 3.20; p = 0.02). Furthermore, pooling the data from two studies revealed a significantly higher risk of viral blips (RR 2.26; 95% 1.47, 3.46; p = 0.0002). Concerning discontinuation of ART, there was no statistical difference between patients with and without M184V mutation (RR: 0.99; 95% 0.78, 1.25; p = 0.90). The present study revealed the negative impact of the M184V mutation on treatment outcomes in PLHIV. This included a higher risk of virological failure and viral blips, relative to patients without the mutation. Such patients may benefit from more aggressive and combined therapy for better disease management.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , HIV Infections/drug therapy , Reverse Transcriptase Inhibitors/therapeutic use , HIV-1/genetics , Treatment Outcome , Mutation , Drug Resistance, Viral/genetics , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/therapeutic use
13.
J Gen Virol ; 104(10)2023 10.
Article in English | MEDLINE | ID: mdl-37801004

ABSTRACT

Human immunodeficiency virus 1 (HIV-1) reverse transcriptase (RT) initiation depends on interaction between viral 5'-leader RNA, RT and host tRNA3Lys. Therefore, we sought to identify co-evolutionary changes between the 5'-leader and RT in viruses developing RT-inhibitor resistance mutations. We sequenced 5'-leader positions 37-356 of paired plasma virus samples from 29 individuals developing the nucleoside RT inhibitor (NRTI)-resistance mutation M184V, 19 developing a non-nucleoside RT inhibitor (NNRTI)-resistance mutation and 32 untreated controls. 5'-Leader variants were defined as positions where ≥20 % of next-generation sequencing (NGS) reads differed from the HXB2 sequence. Emergent mutations were defined as nucleotides undergoing a ≥4-fold change in proportion between baseline and follow-up. Mixtures were defined as positions containing ≥2 nucleotides each present in ≥20 % of NGS reads. Among 80 baseline sequences, 87 positions (27.2 %) contained a variant; 52 contained a mixture. Position 201 was the only position more likely to develop a mutation in the M184V (9/29 vs 0/32; P=0.0006) or NNRTI-resistance (4/19 vs 0/32; P=0.02; Fisher's exact test) groups than the control group. Mixtures at positions 200 and 201 occurred in 45.0 and 28.8 %, respectively, of baseline samples. Because of the high proportion of mixtures at these positions, we analysed 5'-leader mixture frequencies in two additional datasets: five publications reporting 294 dideoxyterminator clonal GenBank sequences from 42 individuals and six National Center for Biotechnology Information (NCBI) BioProjects reporting NGS datasets from 295 individuals. These analyses demonstrated position 200 and 201 mixtures at proportions similar to those in our samples and at frequencies several times higher than at all other 5'-leader positions. Although we did not convincingly document co-evolutionary changes between RT and 5'-leader sequences, we identified a novel phenomenon, wherein positions 200 and 201 immediately downstream of the HIV-1 primer binding site exhibited an extraordinarily high likelihood of containing a nucleotide mixture. Possible explanations for the high mixture rates are that these positions are particularly error-prone or provide a viral fitness advantage.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , HIV-1/genetics , Mutation , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/metabolism , Nucleotides/therapeutic use , Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics
14.
Viruses ; 15(10)2023 09 25.
Article in English | MEDLINE | ID: mdl-37896769

ABSTRACT

AIDS (acquired immunodeficiency syndrome) is a potentially life-threatening infectious disease caused by human immunodeficiency virus (HIV). To date, thousands of people have lost their lives annually due to HIV infection, and it continues to be a big public health issue globally. Since the discovery of the first drug, Zidovudine (AZT), a nucleoside reverse transcriptase inhibitor (NRTI), to date, 30 drugs have been approved by the FDA, primarily targeting reverse transcriptase, integrase, and/or protease enzymes. The majority of these drugs target the catalytic and allosteric sites of the HIV enzyme reverse transcriptase. Compared to the NRTI family of drugs, the diverse chemical class of non-nucleoside reverse transcriptase inhibitors (NNRTIs) has special anti-HIV activity with high specificity and low toxicity. However, current clinical usage of NRTI and NNRTI drugs has limited therapeutic value due to their adverse drug reactions and the emergence of multidrug-resistant (MDR) strains. To overcome drug resistance and efficacy issues, combination therapy is widely prescribed for HIV patients. Combination antiretroviral therapy (cART) includes more than one antiretroviral agent targeting two or more enzymes in the life cycle of the virus. Medicinal chemistry researchers apply different optimization strategies including structure- and fragment-based drug design, prodrug approach, scaffold hopping, molecular/fragment hybridization, bioisosterism, high-throughput screening, covalent-binding, targeting highly hydrophobic channel, targeting dual site, and multi-target-directed ligand to identify and develop novel NNRTIs with high antiviral activity against wild-type (WT) and mutant strains. The formulation experts design various delivery systems with single or combination therapies and long-acting regimens of NNRTIs to improve pharmacokinetic profiles and provide sustained therapeutic effects.


Subject(s)
Acquired Immunodeficiency Syndrome , Anti-HIV Agents , HIV Infections , HIV-1 , Humans , Reverse Transcriptase Inhibitors/pharmacology , Reverse Transcriptase Inhibitors/therapeutic use , HIV Infections/drug therapy , Acquired Immunodeficiency Syndrome/drug therapy , Zidovudine/therapeutic use , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/chemistry , Anti-HIV Agents/adverse effects
15.
J Mol Biol ; 435(18): 168219, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536391

ABSTRACT

Coupled with PCR, reverse transcriptases (RTs) have been widely used for RNA detection and gene expression analysis. Increased thermostability and nucleic acid binding affinity are desirable RT properties to improve yields and sensitivity of these applications. The effects of amino acid substitutions in the RT RNase H domain were tested in an engineered HIV-1 group O RT, containing mutations K358R/A359G/S360A and devoid of RNase H activity due to the presence of E478Q (O3MQ RT). Twenty mutant RTs with Lys or Arg at positions interacting with the template-primer (i.e., at positions 473-477, 499-502 and 505) were obtained and characterized. Most of them produced significant amounts of cDNA at 37, 50 and 65 °C, as determined in RT-PCR reactions. However, a big loss of activity was observed with mutants A477K/R, S499K/R, V502K/R and Y505K/R, particularly at 65 °C. Binding affinity experiments confirmed that residues 477, 502 and 505 were less tolerant to mutations. Amino acid substitutions Q500K and Q500R produced a slight increase of cDNA synthesis efficiency at 50 and 65 °C, without altering the KD for model DNA/DNA and RNA/DNA heteroduplexes. Interestingly, molecular dynamics simulations predicted that those mutations inactivate the RNase H activity by altering the geometry of the catalytic site. Proof of this unexpected effect was obtained after introducing Q500K or Q500R in the wild-type HIV-1BH10 RT and mutant K358R/A359G/S360A RT. Our results reveal a novel mechanism of RNase H inactivation that preserves RT DNA binding and polymerization efficiency without substituting RNase H active site residues.


Subject(s)
HIV Reverse Transcriptase , Ribonuclease H , Humans , DNA, Complementary , HIV Reverse Transcriptase/chemistry , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , Protein Domains , Ribonuclease H/chemistry , Ribonuclease H/genetics , Ribonuclease H/metabolism , RNA/metabolism , Amino Acid Substitution
16.
Nucleic Acids Res ; 51(14): 7125-7142, 2023 08 11.
Article in English | MEDLINE | ID: mdl-37279911

ABSTRACT

The discovery of reverse transcriptases (RTs) challenged the central dogma by establishing that genetic information can also flow from RNA to DNA. Although they act as DNA polymerases, RTs are distantly related to replicases that also possess de novo primase activity. Here we identify that CRISPR associated RTs (CARTs) directly prime DNA synthesis on both RNA and DNA. We demonstrate that RT-dependent priming is utilized by some CRISPR-Cas complexes to synthesise new spacers and integrate these into CRISPR arrays. Expanding our analyses, we show that primer synthesis activity is conserved in representatives of other major RT classes, including group II intron RT, telomerase and retroviruses. Together, these findings establish a conserved innate ability of RTs to catalyse de novo DNA primer synthesis, independently of accessory domains or alternative priming mechanisms, which likely plays important roles in a wide variety of biological pathways.


Reverse transcriptases (RTs) are replicative enzymes that copy RNA into DNA and undertake roles, including viral replication, retrotransposition and telomere maintenance. The initiation of RT synthesis activities is usually dependent on the presence of a primer. The current dogma proposes that a variety of indirect, RT-independent, priming mechanisms instigate synthesis. However, this study establishes that CRISPR-associated RTs (CARTs) are capable of priming DNA synthesis from scratch, which enables the capture of foreign genetic material for storage in CRISPR arrays. The authors also report that other notable RT family members, including retrotransposon RTs, telomerase and retroviral RT are, surprisingly, able to directly catalyze primer synthesis. These findings significantly alter our understanding of priming mechanisms utilised by RTs in various biological pathways.


Subject(s)
RNA-Directed DNA Polymerase , DNA-Directed DNA Polymerase/genetics , HIV Reverse Transcriptase/genetics , Introns/genetics , Retroviridae/genetics , RNA/genetics , RNA-Directed DNA Polymerase/genetics , RNA-Directed DNA Polymerase/metabolism , DNA Replication
17.
J Antimicrob Chemother ; 78(8): 1921-1928, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37303226

ABSTRACT

OBJECTIVES: The NNRTI doravirine has been recently approved for the first-line treatment of HIV-infected patients, eliciting favourable responses against viruses bearing the K103N, Y181C and G190A mutations. This study used in vitro drug selections to elaborate the breadth of doravirine responses against viruses bearing NNRTI and NRTI resistance-associated mutations (RAMs). METHODS: WT clinical isolates (n = 6) and viruses harbouring common NRTI and NNRTI RAMs (n = 6) were serially passaged in escalating concentrations of doravirine, doravirine/islatravir, doravirine/lamivudine and rilpivirine over 24 weeks. Genotypic analysis ascertained the appearance and accumulation of NNRTI RAMs. Phenotypic drug susceptibility assays assessed resistance conferred by acquired NNRTI RAMs. RESULTS: For WT viruses, doravirine pressure led to the appearance of V108I or V106A/I/M RAMs after 8 weeks, conferring low-level (∼2-fold) resistance. After 24 weeks, the accumulation of three to six secondary RAMs, including F227L, M230L, L234I and/or Y318, resulted in high-level (>100-fold) resistance to doravirine. Notably, viruses with these doravirine RAMs remained susceptible to rilpivirine and efavirenz. This contrasted with rilpivirine where acquisition of E138K, L100I and/or K101E resulted in >50-fold cross-resistance to all NNRTIs. Doravirine selection of viruses bearing common NRTI and NNRTI RAMs showed delayed acquisition of RAMs compared with WT virus. Pairing doravirine with islatravir or lamivudine attenuated the development of NNRTI RAMs. CONCLUSIONS: Doravirine showed favourable resistance profiles against viruses harbouring NRTI and NNRTI RAMs. The high barrier to resistance to doravirine coupled with the long intracellular half-life of islatravir may provide the opportunity for long-acting treatment options.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Anti-HIV Agents/pharmacology , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , Lamivudine/therapeutic use , Drug Resistance, Viral/genetics , Rilpivirine/pharmacology , Rilpivirine/therapeutic use , HIV Seropositivity/drug therapy , Mutation , Reverse Transcriptase Inhibitors/therapeutic use , HIV Reverse Transcriptase/genetics
18.
J Med Virol ; 95(4): e28704, 2023 04.
Article in English | MEDLINE | ID: mdl-36967541

ABSTRACT

Higher risk of cerebrospinal fluid escape (CVE) has been associated with the use of specific antiretroviral (ARV) classes, such as protease inhibitors. We assessed whether archived resistance-associated mutations (RAMs) can mediate this relationship by identifying patients treated with incompletely active antiretroviral regimens. A retrospective multicentric study on 282 adult people with HIV on antiretroviral therapy (ART) and available historical plasma genotype resistance testing (HGRT) for reverse transcriptase (RT) and protease genes between 2001 and 2021. The odds ratio for demographic, clinic-, and ART-related variables and CVE was estimated by multivariable modeling. HGRT-adjusted central nervous system effectiveness penetration (CPE) score was computed in modeling the risk. Median age, plasma VL, and CD4 count were 49 years, <50 copies/mL, and 310 cells/µL. CVE was detected in 51 participants (17.0%). No difference in CVE prevalence was observed according to ART type, number of ARVs or ARV classes. Participants with CVE had more frequently plasma (52.9% vs. 32.1%, p = 0.005) and CSF RAMs in RT (n = 63, 57.1% vs. 28.6%, p = 0.029), but not in protease gene. The presence of plasma RAMs in RT associated with increased odds of CVE in adjusted analyses (aOR 3.9, p < 0.001) and in models restricted to plasma viral load ≤50 copies/mL (n = 202; aOR 4.3, p = 0.003). CVE risk decreased by 40% per each point increase in HGRT-adjusted CPE score in multivariable models (p < 0.001). Rather than the type of ARV classes or of ART regimens, functional mono or dual regimens caused by the presence of RAMs affecting ART components may explain the majority of cases of CVE.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , HIV-1/genetics , Retrospective Studies , Antiretroviral Therapy, Highly Active , RNA-Directed DNA Polymerase/genetics , HIV Infections/complications , HIV Infections/drug therapy , HIV Infections/epidemiology , Anti-Retroviral Agents/therapeutic use , HIV Seropositivity/drug therapy , Mutation , Peptide Hydrolases/genetics , Peptide Hydrolases/therapeutic use , Viral Load , Anti-HIV Agents/therapeutic use , Anti-HIV Agents/pharmacology , Drug Resistance, Viral/genetics , HIV Reverse Transcriptase/genetics
19.
AIDS Res Hum Retroviruses ; 39(3): 119-123, 2023 03.
Article in English | MEDLINE | ID: mdl-36515174

ABSTRACT

HIV-1 pol nucleotide ambiguities encoding amino acid mixtures occur commonly during population-based genotypic drug resistance testing. However, few studies have addressed the validity of sequences with fully ambiguous codons (FACs) containing codons translatable to more than four amino acids. We identified 839 published HIV-1 pol sequences with 846 FACs at 131 positions and determined their distribution relative to 215 HLA-associated pol positions (HAPs) and 84 drug-resistance positions. Among HIV-1 reverse transcriptase (RT) and protease sequences from antiretroviral therapy (ART)-naive and -experienced persons, there was a strong correlation between the likelihood a position was a FAC and that it was an HAP (Spearman's correlation coefficient rho >0.40; p < 1e-6). Among HIV-1 RT sequences from ART-experienced persons, there was a correlation between the likelihood that a position was a FAC and that it was a drug-resistance position (rho = 0.2; p = 8e-4). In the context of population-based genotypic resistance testing, FACs usually result from antiviral or immune selection pressure.


Subject(s)
Anti-HIV Agents , HIV Infections , HIV Seropositivity , HIV-1 , Humans , Antiviral Agents/therapeutic use , HIV-1/genetics , HIV Infections/drug therapy , HIV Infections/genetics , Amino Acids/genetics , HIV Reverse Transcriptase/genetics , HIV Seropositivity/drug therapy , Codon , Drug Resistance, Viral/genetics , Mutation , Anti-HIV Agents/therapeutic use , HIV Protease/genetics
20.
AIDS ; 36(14): 1949-1958, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36305180

ABSTRACT

OBJECTIVES: Assess the impact of pre-treatment high-frequency and low-frequency drug-resistant HIV variants on long-term outcomes of first-line efavirenz-based antiretroviral therapy (ART). DESIGN: Prospective observational study. METHODS: Participants' pre-treatment plasma RNA had two sections of HIV pol encoding reverse transcriptase sequenced (Illumina, MiSeq) using unique molecular identifiers to detect wild-type (pre-treatment drug-resistant variants less than 1% of viral quasispecies), low-frequency (1-9%) or high-frequency drug-resistant variants (10-100%). Associations between pre-treatment drug resistance and virologic outcomes over 24 months of efavirenz-based ART were assessed for the number and frequency of mutations by drug class and other resistance parameters. RESULTS: Virologic failure was detected in 30 of 352 (9%) and pre-treatment drug-resistant variants were detected in the viral quasispecies of 31 of 352 (9%) participants prescribed efavirenz-based ART. Survival analyses revealed statistically significant associations between pre-treatment drug resistance at low (P < 0.0001) and high (P < 0.001) frequencies, at oligonucleotide ligation assay (OLA) (P < 0.00001) and non-OLA (P < 0.01) codons, to a single-antiretroviral class (P < 0.00001), and a shorter time to virologic failure of efavirenz-based ART. Regression analyses detected independent effects across resistance categories, including both low-frequency (P < 0.01) and high-frequency (P < 0.001) drug-resistant variants. CONCLUSION: We observed that pre-treatment HIV drug resistance detected at low frequencies increased the risk of virologic failure over 24 months of efavirenz-based ART, but that most failures, regardless of drug-resistant variants' frequencies, were detected within a year of ART initiation. These observations suggest that when efavirenz-based ART is prescribed, screening for pre-treatment drug resistance by an assay capable of detecting low-frequency variants, including OLA, may guide clinicians to prescribe more effective ART.


Subject(s)
Anti-HIV Agents , Drug Resistance, Viral , HIV Infections , Humans , Anti-HIV Agents/therapeutic use , HIV Infections/drug therapy , HIV Reverse Transcriptase/genetics , HIV-1/genetics , Treatment Failure
SELECTION OF CITATIONS
SEARCH DETAIL
...