Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 2.745
1.
Cancer Rep (Hoboken) ; 7(5): e2051, 2024 May.
Article En | MEDLINE | ID: mdl-38702989

BACKGROUND: Glioblastomas are characterized by aggressive behavior. Surgery, radiotherapy, and alkylating agents, including temozolomide are the most common treatment options for glioblastoma. Often, conventional therapies fail to treat these tumors since they develop drug resistance. There is a need for newer agents to combat this deadly tumor. Natural products such as gedunin have shown efficacy in several human diseases. A comprehensive study of gedunin, an heat shock protein (HSP)90 inhibitor, has not been thoroughly investigated in glioblastoma cell lines with different genetic modifications. AIMS: A key objective of this study was to determine how gedunin affects the biological and signaling mechanisms in glioblastoma cells, and to determine how those mechanisms affect the proliferation and apoptosis of glioblastoma cells. METHODS: The viability potentials of gedunin were tested using MTT, cell counts, and wound healing assays. Gedunin's effects on glioma cells were further validated using LDH and colony formation assays. In addition, we investigated the survival and apoptotic molecular signaling targets perturbed by gedunin using Western blot analysis and flow cytometry. RESULTS: Our results show that there was a reduction in cell viability and inhibition of wound healing in the cells tested. Western blot analysis of the gene expression data revealed genes such as EGFR and mTOR/Akt/NF kappa B to be associated with gedunin sensitivity. Gedunin treatment induced apoptosis by cleaving poly ADP-ribose polymerase, activating caspases, and downregulating BCL-xL. Based on these results, gedunin suppressed cell growth and HSP client proteins, resulting in apoptosis in glioblastoma cell lines. CONCLUSION: Our data provide in vitro support for the anticancer activity of gedunin in glioma cells by downregulating cancer survival proteins.


Apoptosis , Cell Proliferation , Glioblastoma , Limonins , Humans , Glioblastoma/pathology , Glioblastoma/drug therapy , Glioblastoma/metabolism , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Line, Tumor , Signal Transduction/drug effects , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Brain Neoplasms/pathology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Survival/drug effects , Antineoplastic Agents/pharmacology
2.
Nat Commun ; 15(1): 4237, 2024 May 18.
Article En | MEDLINE | ID: mdl-38762492

Immune checkpoint inhibition targeting the PD-1/PD-L1 pathway has become a powerful clinical strategy for treating cancer, but its efficacy is complicated by various resistance mechanisms. One of the reasons for the resistance is the internalization and recycling of PD-L1 itself upon antibody binding. The inhibition of lysosome-mediated degradation of PD-L1 is critical for preserving the amount of PD-L1 recycling back to the cell membrane. In this study, we find that Hsc70 promotes PD-L1 degradation through the endosome-lysosome pathway and reduces PD-L1 recycling to the cell membrane. This effect is dependent on Hsc70-PD-L1 binding which inhibits the CMTM6-PD-L1 interaction. We further identify an Hsp90α/ß inhibitor, AUY-922, which induces Hsc70 expression and PD-L1 lysosomal degradation. Either Hsc70 overexpression or AUY-922 treatment can reduce PD-L1 expression, inhibit tumor growth and promote anti-tumor immunity in female mice; AUY-922 can further enhance the anti-tumor efficacy of anti-PD-L1 and anti-CTLA4 treatment. Our study elucidates a molecular mechanism of Hsc70-mediated PD-L1 lysosomal degradation and provides a target and therapeutic strategies for tumor immunotherapy.


B7-H1 Antigen , HSC70 Heat-Shock Proteins , Lysosomes , HSC70 Heat-Shock Proteins/metabolism , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Lysosomes/metabolism , Animals , Mice , Humans , Female , Cell Line, Tumor , Proteolysis , Endosomes/metabolism , Neoplasms/immunology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice, Inbred C57BL , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , CTLA-4 Antigen/metabolism , CTLA-4 Antigen/antagonists & inhibitors , CTLA-4 Antigen/immunology , Cell Membrane/metabolism , Myelin Proteins , MARVEL Domain-Containing Proteins
3.
ACS Appl Mater Interfaces ; 16(20): 25788-25798, 2024 May 22.
Article En | MEDLINE | ID: mdl-38716694

Phototherapy, represented by photodynamic therapy (PDT) and photothermal therapy (PTT), has great potential in tumor treatment. However, the presence of antioxidant glutathione (GSH) and the heat shock proteins (HSPs) expression caused by high temperature can weaken the effects of PDT and PTT. Here, a multifunctional nanocomplex BT&GA@CL is constructed to realize enhanced synergistic PDT/PTT. Cinnamaldehyde liposomes (CLs) formed by cinnamaldehyde dimer self-assembly were loaded with in gambogic acid (GA) and an aggregation-induced emission molecule BT to obtain BT&GA@CL. As a drug carrier, CL can consume glutathione (GSH) and release drugs responsively. The released BT aggregates can simultaneously act as both a photothermal agent and photosensitizer to achieve PDT and PTT under 660 nm laser irradiation. Specifically, GA as an HSP90 inhibitor can attenuate PTT-induced HSP90 protein expression, thereby weakening the tolerance of tumor cells to high temperatures and enhancing PTT. Such a multifunctional nanocomplex simultaneously modulates the content of GSH and HSP90 in tumor cells, thus enhancing both PDT and PTT, ultimately achieving the goal of efficient combined tumor suppression.


Glutathione , Liposomes , Photochemotherapy , Photosensitizing Agents , Xanthones , Liposomes/chemistry , Glutathione/metabolism , Glutathione/chemistry , Humans , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Xanthones/chemistry , Xanthones/pharmacology , Animals , Mice , Photothermal Therapy , Cell Line, Tumor , Neoplasms/drug therapy , Neoplasms/therapy , Neoplasms/pathology , Neoplasms/metabolism , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology
4.
Anticancer Res ; 44(6): 2555-2565, 2024 Jun.
Article En | MEDLINE | ID: mdl-38821604

BACKGROUND/AIM: Breast cancer is the most prevalent form of cancer among women worldwide, with a high mortality rate. While the most common cause of breast cancer death is metastasis, there is currently no potential treatment for patients at the metastatic stage. The present study investigated the potential of using a combination of HSP90 and mTOR inhibitor in the treatment of breast cancer cell growth, migration, and invasion. MATERIALS AND METHODS: Gene Expression Profiling Interactive Analysis (GEPIA) was used to investigate the gene expression profiles. Western blot analysis and fluorescence staining were used for protein expression and localization, respectively. MTT, wound healing, and transwell invasion assays were used for cell proliferation, migration, and invasion, respectively. RESULTS: GEPIA demonstrated that HSP90 expression was significantly higher in breast invasive carcinoma compared to other tumor types, and this expression correlated with mTOR levels. Treatment with 17-AAG, an HSP90 inhibitor, and Torkinib, an mTORC1/2 inhibitor, significantly inhibited cell proliferation. Moreover, combination treatment led to down-regulation of AKT. Morphological changes revealed a reduction in F-actin intensity, a marked reduction of YAP, with interference in nuclear localization. CONCLUSION: Targeting HSP90 and mTOR has the potential to suppress breast cancer cell growth and progression by disrupting AKT signaling and inhibiting F-actin polymerization. This combination treatment may hold promise as a therapeutic strategy for breast cancer treatment that ameliorates adverse effects of a single treatment.


Actins , Breast Neoplasms , Cell Movement , Cell Proliferation , HSP90 Heat-Shock Proteins , Proto-Oncogene Proteins c-akt , TOR Serine-Threonine Kinases , Humans , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Proliferation/drug effects , Cell Movement/drug effects , Phosphorylation/drug effects , Actins/metabolism , Actins/genetics , Cell Line, Tumor , Neoplasm Invasiveness , Signal Transduction/drug effects , Lactams, Macrocyclic/pharmacology , Benzoquinones/pharmacology , MTOR Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects
5.
Int J Mol Sci ; 25(10)2024 May 17.
Article En | MEDLINE | ID: mdl-38791506

Breast cancer, the most invasive cancer in women globally, necessitates novel treatments due to prevailing limitations of therapeutics. Search of news anticancer targets is more necessary than ever to tackle this pathology. Heat-Shock Protein 90 (HSP90), a chaperone protein, is implicated in breast cancer pathogenesis, rendering it an appealing target. Looking for alternative approach such as Plant-based compounds and natural HSP90 inhibitors offer promising prospects for innovative therapeutic strategies. This study aims to identify plant-based compounds with anticancer effects on breast cancer models and elucidate their mechanism of action in inhibiting the HSP90 protein. A systematic review was conducted and completed in January 2024 and included in vitro, in vivo, and in silico studies that investigated the effectiveness of plant-based HSP90 inhibitors tested on breast cancer models. Eleven studies were included in the review. Six plants and 24 compounds from six different classes were identified and proved to be effective against HSP90 in breast cancer models. The studied plant extracts showed a dose- and time-dependent decrease in cell viability. Variable IC50 values showed antiproliferative effects, with the plant Tubocapsicum anomalum demonstrating the lowest value. Withanolides was the most studied class. Fennel, Trianthema portulacastrum, and Spatholobus suberectus extracts were shown to inhibit tumor growth and angiogenesis and modulate HSP90 expression as well as its cochaperone interactions in breast cancer mouse models. The identified plant extracts and compounds were proven effective against HSP90 in breast cancer models, and this inhibition showed promising effects on breast cancer biology. Collectively, these results urge the need of further studies to better understand the mechanism of action of HSP90 inhibitors using comparable methods for preclinical observations.


Breast Neoplasms , HSP90 Heat-Shock Proteins , Animals , Female , Humans , Antineoplastic Agents, Phytogenic/pharmacology , Antineoplastic Agents, Phytogenic/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Plant Extracts/pharmacology , Neoplasms, Experimental/drug therapy , Neoplasms, Experimental/metabolism , Neoplasms, Experimental/pathology
6.
Eur J Pharm Sci ; 198: 106792, 2024 Jul 01.
Article En | MEDLINE | ID: mdl-38714237

Non-alcoholic steatohepatitis (NASH) is characterized by liver inflammation, fat accumulation, and collagen deposition. Due to the limited availability of effective treatments, there is a pressing need to develop innovative strategies. Given the complex nature of the disease, employing combination approaches is essential. Hedgehog signaling has been recognized as potentially promoting NASH, and cholesterol can influence this signaling by modifying the conformation of PTCH1 and SMO activity. HSP90 plays a role in the stability of SMO and GLI proteins. We revealed significant positive correlations between Hedgehog signaling proteins (Shh, SMO, GLI1, and GLI2) and both cholesterol and HSP90 levels. Herein, we investigated the novel combination of the cholesterol-lowering agent lovastatin and the HSP90 inhibitor PU-H71 in vitro and in vivo. The combination demonstrated a synergy score of 15.09 and an MSA score of 22.85, as estimated by the ZIP synergy model based on growth inhibition rates in HepG2 cells. In a NASH rat model induced by thioacetamide and a high-fat diet, this combination therapy extended survival, improved liver function and histology, and enhanced antioxidant defense. Additionally, the combination exhibited anti-inflammatory and anti-fibrotic potential by influencing the levels of TNF-α, TGF-ß, TIMP-1, and PDGF-BB. This effect was evident in the suppression of the Col1a1 gene expression and the levels of hydroxyproline and α-SMA. These favorable outcomes may be attributed to the combination's potential to inhibit key Hedgehog signaling molecules. In conclusion, exploring the applicability of this combination contributes to a more comprehensive understanding and improved management of NASH and other fibrotic disorders.


HSP90 Heat-Shock Proteins , Hedgehog Proteins , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Non-alcoholic Fatty Liver Disease , Signal Transduction , Animals , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/metabolism , Hedgehog Proteins/metabolism , Hedgehog Proteins/antagonists & inhibitors , Signal Transduction/drug effects , Male , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Hep G2 Cells , Diet, High-Fat/adverse effects , Liver/drug effects , Liver/metabolism , Drug Therapy, Combination , Rats , Rats, Sprague-Dawley , Cholesterol/metabolism
7.
J Clin Invest ; 134(9)2024 May 01.
Article En | MEDLINE | ID: mdl-38690734

There is intense interest in identifying compounds that selectively kill senescent cells, termed senolytics, for ameliorating age-related comorbidities. However, screening for senolytic compounds currently relies on primary cells or cell lines where senescence is induced in vitro. Given the complexity of senescent cells across tissues and diseases, this approach may not target the senescent cells that develop under specific conditions in vivo. In this issue of the JCI, Lee et al. describe a pipeline for high-throughput drug screening of senolytic compounds where senescence was induced in vivo and identify the HSP90 inhibitor XL888 as a candidate senolytic to treat idiopathic pulmonary fibrosis.


Cellular Senescence , HSP90 Heat-Shock Proteins , Idiopathic Pulmonary Fibrosis , Senotherapeutics , Humans , Senotherapeutics/pharmacology , Cellular Senescence/drug effects , Animals , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Mice
8.
J Med Chem ; 67(8): 6189-6206, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38577779

Identification of intracellular targets of anticancer drug candidates provides key information on their mechanism of action. Exploiting the ability of the anticancer (C∧N)-chelated half-sandwich iridium(III) complexes to covalently bind proteins, click chemistry with a bioorthogonal azido probe was used to localize a phenyloxazoline-chelated iridium complex within cells and profile its interactome at the proteome-wide scale. Proteins involved in protein folding and actin cytoskeleton regulation were identified as high-affinity targets. Upon iridium complex treatment, the folding activity of Heat Shock Protein HSP90 was inhibited in vitro and major cytoskeleton disorganization was observed. A wide array of imaging and biochemical methods validated selected targets and provided a multiscale overview of the effects of this complex on live human cells. We demonstrate that it behaves as a dual agent, inducing both electrophilic and oxidative stresses in cells that account for its cytotoxicity. The proposed methodological workflow can open innovative avenues in metallodrug discovery.


Antineoplastic Agents , Coordination Complexes , Iridium , Oxidative Stress , Humans , Iridium/chemistry , Iridium/pharmacology , Oxidative Stress/drug effects , Coordination Complexes/pharmacology , Coordination Complexes/chemistry , Coordination Complexes/chemical synthesis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/chemistry , Click Chemistry
9.
J Nanobiotechnology ; 22(1): 198, 2024 Apr 22.
Article En | MEDLINE | ID: mdl-38649957

Heat shock protein 90 (HSP90) is overexpressed in numerous cancers, promotes the maturation of numerous oncoproteins and facilitates cancer cell growth. Certain HSP90 inhibitors have entered clinical trials. Although less than satisfactory clinical effects or insurmountable toxicity have compelled these trials to be terminated or postponed, these results of preclinical and clinical studies demonstrated that the prospects of targeting therapeutic strategies involving HSP90 inhibitors deserve enough attention. Nanoparticulate-based drug delivery systems have been generally supposed as one of the most promising formulations especially for targeting strategies. However, so far, no active targeting nano-formulations have succeeded in clinical translation, mainly due to complicated preparation, complex formulations leading to difficult industrialization, incomplete biocompatibility or nontoxicity. In this study, HSP90 and CD44-targeted A6 peptide functionalized biomimetic nanoparticles (A6-NP) was designed and various degrees of A6-modification on nanoparticles were fabricated to evaluate targeting ability and anticancer efficiency. With no excipients, the hydrophobic HSP90 inhibitor G2111 and A6-conjugated human serum albumin could self-assemble into nanoparticles with a uniform particle size of approximately 200 nm, easy fabrication, well biocompatibility and avoidance of hepatotoxicity. Besides, G2111 encapsulated in A6-NP was only released less than 5% in 12 h, which may avoid off-target cell toxicity before entering into cancer cells. A6 peptide modification could significantly enhance uptake within a short time. Moreover, A6-NP continues to exert the broad anticancer spectrum of Hsp90 inhibitors and displays remarkable targeting ability and anticancer efficacy both in hematological malignancies and solid tumors (with colon tumors as the model cancer) both in vitro and in vivo. Overall, A6-NP, as a simple, biomimetic and active dual-targeting (CD44 and HSP90) nanomedicine, displays high potential for clinical translation.


Antineoplastic Agents , Colonic Neoplasms , HSP90 Heat-Shock Proteins , Hyaluronan Receptors , Leukemia, Myeloid, Acute , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Hyaluronan Receptors/metabolism , Animals , Cell Line, Tumor , Mice , Colonic Neoplasms/drug therapy , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/metabolism , Nanoparticles/chemistry , Drug Delivery Systems/methods , Mice, Nude , Mice, Inbred BALB C , Peptides/chemistry , Peptides/pharmacology
10.
Theranostics ; 14(6): 2442-2463, 2024.
Article En | MEDLINE | ID: mdl-38646654

Rationale: Resistance to targeted therapies like trastuzumab remains a critical challenge for HER2-positive breast cancer patients. Despite the progress of several N-terminal HSP90 inhibitors in clinical trials, none have achieved approval for clinical use, primarily due to issues such as induction of the heat shock response (HSR), off-target effects, and unfavorable toxicity profiles. We sought to examine the effects of HVH-2930, a novel C-terminal HSP90 inhibitor, in overcoming trastuzumab resistance. Methods: The effect of HVH-2930 on trastuzumab-sensitive and -resistant cell lines in vitro was evaluated in terms of cell viability, expression of HSP90 client proteins, and impact on cancer stem cells. An in vivo model with trastuzumab-resistant JIMT-1 cells was used to examine the efficacy and toxicity of HVH-2930. Results: HVH-2930 was rationally designed to fit into the ATP-binding pocket interface cavity of the hHSP90 homodimer in the C-terminal domain of HSP90, stabilizing its open conformation and hindering ATP binding. HVH-2930 induces apoptosis without inducing the HSR but by specifically suppressing the HER2 signaling pathway. This occurs with the downregulation of HER2/p95HER2 and disruption of HER2 family member heterodimerization. Attenuation of cancer stem cell (CSC)-like properties was associated with the downregulation of stemness factors such as ALDH1, CD44, Nanog and Oct4. Furthermore, HVH-2930 administration inhibited angiogenesis and tumor growth in trastuzumab-resistant xenograft mice. A synergistic effect was observed when combining HVH-2930 and paclitaxel in JIMT-1 xenografts. Conclusion: Our findings highlight the potent efficacy of HVH-2930 in overcoming trastuzumab resistance in HER2-positive breast cancer. Further investigation is warranted to fully establish its therapeutic potential.


Breast Neoplasms , Drug Resistance, Neoplasm , HSP90 Heat-Shock Proteins , Receptor, ErbB-2 , Trastuzumab , Xenograft Model Antitumor Assays , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Humans , Drug Resistance, Neoplasm/drug effects , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Animals , Female , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Cell Line, Tumor , Mice , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/metabolism , Mice, Nude , Apoptosis/drug effects , Cell Survival/drug effects , Antineoplastic Agents/pharmacology
11.
Lett Appl Microbiol ; 77(5)2024 May 03.
Article En | MEDLINE | ID: mdl-38658187

Species from Candida parapsilosis complex are frequently found in neonatal candidemia. The antifungal agents to treat this infection are limited and the occurrence of low in vitro susceptibility to echinocandins such as micafungin has been observed. In this context, the chaperone Hsp90 could be a target to reduce resistance. Thus, the objective of this research was to identify isolates from the C. parapsilosis complex and verify the action of Hsp90 inhibitors associated with micafungin. The fungal identification was based on genetic sequencing and mass spectrometry. Minimal inhibitory concentrations were determined by broth microdilution method according to Clinical Laboratory and Standards Institute. The evaluation of the interaction between micafungin with Hsp90 inhibitors was realized using the checkerboard methodology. According to the polyphasic taxonomy, C. parapsilosis sensu stricto was the most frequently identified, followed by C. orthopsilosis and C. metapsilosis, and one isolate of Lodderomyces elongisporus was identified by genetic sequencing. The Hsp90 inhibitor geladanamycin associated with micafungin showed a synergic effect in 31.25% of the isolates, a better result was observed with radicicol, which shows synergic effect in 56.25% tested yeasts. The results obtained demonstrate that blocking Hsp90 could be effective to reduce antifungal resistance to echinocandins.


Antifungal Agents , Candida parapsilosis , Candidemia , HSP90 Heat-Shock Proteins , Micafungin , Humans , Infant, Newborn , Antifungal Agents/pharmacology , Benzoquinones/pharmacology , Candida parapsilosis/drug effects , Candida parapsilosis/isolation & purification , Candida parapsilosis/genetics , Candidemia/microbiology , Drug Resistance, Fungal , Drug Synergism , Echinocandins/pharmacology , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , Lactams, Macrocyclic/pharmacology , Lipopeptides/pharmacology , Micafungin/pharmacology , Microbial Sensitivity Tests
12.
Leukemia ; 38(6): 1378-1389, 2024 Jun.
Article En | MEDLINE | ID: mdl-38637689

Clonal hematopoiesis (CH) driven by mutations in the DNA damage response (DDR) pathway is frequent in patients with cancer and is associated with a higher risk of therapy-related myeloid neoplasms (t-MNs). Here, we analyzed 423 serial whole blood and plasma samples from 103 patients with relapsed high-grade ovarian cancer receiving carboplatin, poly(ADP-ribose) polymerase inhibitor (PARPi) and heat shock protein 90 inhibitor (HSP90i) treatment within the phase II EUDARIO trial using error-corrected sequencing of 72 genes. DDR-driven CH was detected in 35% of patients and was associated with longer duration of prior PARPi treatment. TP53- and PPM1D-mutated clones exhibited substantially higher clonal expansion rates than DNMT3A- or TET2-mutated clones during treatment. Expansion of DDR clones correlated with HSP90i exposure across the three study arms and was partially abrogated by the presence of germline mutations related to homologous recombination deficiency. Single-cell DNA sequencing of selected samples revealed clonal exclusivity of DDR mutations, and identified DDR-mutated clones as the origin of t-MN in two investigated cases. Together, these results provide unique insights into the architecture and the preferential selection of DDR-mutated hematopoietic clones under intense DNA-damaging treatment. Specifically, PARPi and HSP90i therapies pose an independent risk for the expansion of DDR-CH in a dose-dependent manner.


Clonal Hematopoiesis , DNA Damage , Mutation , Ovarian Neoplasms , Humans , Female , Ovarian Neoplasms/genetics , Ovarian Neoplasms/drug therapy , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Middle Aged , Aged , Carboplatin/pharmacology , Adult , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Protein Phosphatase 2C
13.
J Clin Invest ; 134(9)2024 Mar 07.
Article En | MEDLINE | ID: mdl-38451724

The appearance of senescent cells in age-related diseases has spurred the search for compounds that can target senescent cells in tissues, termed senolytics. However, a major caveat with current senolytic screens is the use of cell lines as targets where senescence is induced in vitro, which does not necessarily reflect the identity and function of pathogenic senescent cells in vivo. Here, we developed a new pipeline leveraging a fluorescent murine reporter that allows for isolation and quantification of p16Ink4a+ cells in diseased tissues. By high-throughput screening in vitro, precision-cut lung slice (PCLS) screening ex vivo, and phenotypic screening in vivo, we identified a HSP90 inhibitor, XL888, as a potent senolytic in tissue fibrosis. XL888 treatment eliminated pathogenic p16Ink4a+ fibroblasts in a murine model of lung fibrosis and reduced fibrotic burden. Finally, XL888 preferentially targeted p16INK4a-hi human lung fibroblasts isolated from patients with idiopathic pulmonary fibrosis (IPF), and reduced p16INK4a+ fibroblasts from IPF PCLS ex vivo. This study provides proof of concept for a platform where p16INK4a+ cells are directly isolated from diseased tissues to identify compounds with in vivo and ex vivo efficacy in mice and humans, respectively, and provides a senolytic screening platform for other age-related diseases.


Cellular Senescence , Cyclin-Dependent Kinase Inhibitor p16 , Fibroblasts , Idiopathic Pulmonary Fibrosis , Animals , Cyclin-Dependent Kinase Inhibitor p16/metabolism , Cyclin-Dependent Kinase Inhibitor p16/genetics , Mice , Humans , Fibroblasts/metabolism , Fibroblasts/pathology , Fibroblasts/drug effects , Cellular Senescence/drug effects , Idiopathic Pulmonary Fibrosis/pathology , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/genetics , Senotherapeutics/pharmacology , Male , Lung/pathology , Lung/metabolism , Female , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics
14.
Reproduction ; 167(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38471304

In brief: HSP90AA1 is a ubiquitous molecular chaperone that can resist cellular stress, such as oxidative stress and apoptosis, and mediate the efficacy and protein folding of normal cells during heat stress, as well as many other functions. This study further reveals the role of HSP90AA1 in bovine oocyte maturation and early embryonic development. Abstract: HSP90AA1, a highly abundant and ubiquitous molecular chaperone, plays important roles in various cellular processes including cell cycle control, cell survival, and hormone signaling pathways. In this study, we investigated the functions of HSP90AA1 in bovine oocyte and early embryo development. We found that HSP90AA1 was expressed at all stages of development, but was mainly located in the cytoplasm, with a small amount distributed in the nucleus. We then evaluated the effect of HSP90AA1 on the in vitro maturation of bovine oocytes using tanespimycin (17-AAG), a highly selective inhibitor of HSP90AA1. The results showed that inhibition of HSP90AA1 decreased nuclear and cytoplasmic maturation of oocytes, disrupted spindle assembly and chromosome distribution, significantly increased acetylation levels of α-tubulin in oocytes and affected epigenetic modifications (H3K27me3 and H3K27ac). In addition, H3K9me3 was increased at various stages during early embryo development. Finally, the impact of HSP90AA1 on early embryo development was explored. The results showed that inhibition of HSP90AA1 reduced the cleavage and blastocyst formation rates, while increasing the fragmentation rate and decreasing blastocyst quality. In conclusion, HSP90AA1 plays a crucial role in bovine oocyte maturation as well as early embryo development.


HSP90 Heat-Shock Proteins , Oocytes , Oogenesis , Animals , Cattle , Blastocyst/metabolism , Embryonic Development , In Vitro Oocyte Maturation Techniques/methods , Molecular Chaperones/metabolism , Molecular Chaperones/pharmacology , Oocytes/metabolism , Oogenesis/genetics , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism
15.
J Surg Res ; 298: 14-23, 2024 Jun.
Article En | MEDLINE | ID: mdl-38537450

INTRODUCTION: Activated hepatic stellate cells (HSCs) are the primary effector cells in hepatic fibrosis, over depositing extracellular matrix (ECM) proteins. Our previous work found oridonin analog CYD0682 attenuates proliferation, Transforming Growth Factor ß (TGFß)-induced signaling, and ECM production in immortalized HSCs. The underlying mechanism behind these reductions is unclear. The Signal Transduction and Activator of Transcription 3 (STAT3) pathway plays a central role in HSC activation and has been found to be overexpressed in models of hepatic injury. In this study, we will examine the effect of CYD0682 on STAT3 signaling. METHODS: Immortalized human (LX-2) and rat (HSC-T6) HSC lines were treated with CYD0682 or Tanespimycin (17-AAG) with or without TGF-ß. Nuclear and cytosolic proteins were extracted. Protein expression was analyzed with Western blot. DNA binding activity was assessed with STAT3 DNA Binding ELISA. Cell viability was assessed with Alamar blue assay. RESULTS: CYD0682 treatment inhibited STAT3 phosphorylation at tyrosine 705 in a dose-dependent manner in LX-2 and HSC-T6 cells. STAT3 DNA binding activity and STAT3 regulated protein c-myc were significantly decreased by CYD0682. Notably, TGFß-induced STAT3 phosphorylation and ECM protein expression were inhibited by CYD0682. STAT3 is reported to be a Heat Shock Protein 90 (HSP90) client protein. Notably, CYD0682 attenuated the expression of endogenous STAT3 and other HSP90 client proteins FAK, IKKα, AKT and CDK9. HSP90 specific inhibitor 17-AAG suppressed endogenous and TGFß-induced STAT3 phosphorylation and ECM protein production. CONCLUSIONS: CYD0682 attenuates endogenous and TGFß-induced STAT3 activation and ECM production via an HSP90 dependent pathway in HSCs. Further study of this pathway may present new targets for therapeutic intervention in hepatic fibrosis.


Benzoquinones , Diterpenes, Kaurane , HSP90 Heat-Shock Proteins , Hepatic Stellate Cells , STAT3 Transcription Factor , Signal Transduction , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , STAT3 Transcription Factor/metabolism , Humans , Rats , Animals , Diterpenes, Kaurane/pharmacology , Signal Transduction/drug effects , HSP90 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Benzoquinones/pharmacology , Transforming Growth Factor beta/metabolism , Cell Line , Phosphorylation/drug effects , Lactams, Macrocyclic/pharmacology , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology
17.
Mol Carcinog ; 63(6): 1038-1050, 2024 Jun.
Article En | MEDLINE | ID: mdl-38411361

Heat shock protein 90 (Hsp90) is a tumor marker that accelerates cancer growth by disrupting protein homeostasis. However, concerns such as low clinical efficacy and drug resistance continue to be obstacles to the successful marketing of Hsp90 inhibitors. The cytoprotective function of autophagy has been identified as one of the mechanisms by which tumor cells gain resistance to chemotherapy. JD-02 was identified as a new Hsp90 inhibitor that suppressed colorectal cancer (CRC) growth by lowering client protein levels in vivo and in vitro. We found that JD-02 increased cellular autophagy, which inhibited apoptosis. JD-02 enhanced cytoprotective autophagy and regulated apoptotic suppression by increasing intracellular reactive oxygen species and inhibiting SRC protein levels, as demonstrated by quantitative proteomics, bioinformatic analysis, western blotting, and flow cytometry. This effect was reversed by autophagy inhibition. Therefore, due to the synergistic effects of Hsp90 and autophagy inhibitors in efficiently activating apoptotic pathways, they could potentially serve as promising therapeutic options for CRC.


Apoptosis , Autophagy , Colorectal Neoplasms , HSP90 Heat-Shock Proteins , Reactive Oxygen Species , Humans , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/metabolism , Colorectal Neoplasms/pathology , Autophagy/drug effects , Reactive Oxygen Species/metabolism , Apoptosis/drug effects , Animals , Mice , Cell Line, Tumor , Xenograft Model Antitumor Assays , Cell Proliferation/drug effects , src-Family Kinases/metabolism , src-Family Kinases/antagonists & inhibitors , Mice, Nude , Antineoplastic Agents/pharmacology , Signal Transduction/drug effects , Mice, Inbred BALB C
18.
Anticancer Agents Med Chem ; 24(9): 718-727, 2024.
Article En | MEDLINE | ID: mdl-38347773

BACKGROUND: This research intended to predict the active ingredients and key target genes of Indigo Naturalis in treating human chronic myeloid leukemia (CML) using network pharmacology and conduct the invitro verification. METHODS: The active components of Indigo Naturalis and the corresponding targets and leukemia-associated genes were gathered through public databases. The core targets and pathways of Indigo Naturalis were predicted through protein-protein interaction (PPI) network, gene ontology (GO) function, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. Next, after intersecting with leukemia-related genes, the direct core target gene of Indigo Naturalis active components was identified. Subsequently, HL-60 cells were stimulated with indirubin (IND) and then examined for cell proliferation using CCK-8 assay and cell cycle, cell apoptosis, and mitochondrial membrane potential using flow cytometry. The content of apoptosis-associated proteins (Cleaved Caspase 9, Cleaved Caspase 7, Cleaved Caspase 3, and Cleaved parp) were detected using Western blot, HSP90AA1 protein, and PI3K/Akt signaling (PI3K, p-PI3K, Akt, and p-Akt) within HL-60 cells. RESULTS: A total of 9 active components of Indigo Naturalis were screened. The top 10 core target genes (TNF, PTGS2, RELA, MAPK14, IFNG, PPARG, NOS2, IKBKB, HSP90AA1, and NOS3) of Indigo Naturalis active components within the PPI network were identified. According to the KEGG enrichment analysis, these targets were associated with leukemia-related pathways (such as acute myeloid leukemia and CML). After intersecting with leukemia-related genes, it was found that IND participated in the most pairs of target information and was at the core of the target network; HSP90AA1 was the direct core gene of IND. Furthermore, the in-vitro cell experiments verified that IND could inhibit the proliferation, elicit G2/M-phase cell cycle arrest, enhance the apoptosis of HL-60 cells, reduce mitochondrial membrane potential, and promote apoptosis-related protein levels. Under IND treatment, HSP90AA1 overexpression notably promoted cell proliferation and inhibited apoptosis. Additionally, IND exerted tumor suppressor effects on leukemia cells by inhibiting HSP90AA1 expression. CONCLUSION: IND, an active component of Indigo Naturalis, could inhibit CML progression, which may be achieved via inhibiting HSP90AA1 and PI3K/Akt signaling expression levels.


Antineoplastic Agents , Apoptosis , Cell Proliferation , HSP90 Heat-Shock Proteins , Indoles , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Humans , Cell Proliferation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Apoptosis/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Indoles/pharmacology , Indoles/chemistry , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , HL-60 Cells , Molecular Structure , Dose-Response Relationship, Drug , Structure-Activity Relationship , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia/drug therapy , Leukemia/pathology , Leukemia/metabolism , Signal Transduction/drug effects
19.
J Enzyme Inhib Med Chem ; 38(1): 2220558, 2023 Dec.
Article En | MEDLINE | ID: mdl-37357755

Heat shock protein 90 (Hsp90) is considered an attractive therapeutic target for cancer treatment due to its high expression in many cancers. In this study, four potent Hsp90 inhibitors (HPs 1-4) were identified using structure-based virtual screening. Among them, HP-4 exhibited the most potent inhibitory effects (IC50 = 17.64 ± 1.45 nM) against the Hsp90 protein, which was about 7.7 times stronger than that of MPC-3100 (a positive inhibitor targeting Hsp90). In vitro cytotoxicity assay suggested that HP-4 could effectively inhibit the proliferation of a series of tumour cells, including HCT-116, HeLa, A549, A2780, DU145, HepG2 and A498. Furthermore, in vivo assay displayed that HP-4 had significant anti-tumour effects on HCT-116 cell-derived xenograft models. These data demonstrate that HP-4 could be a potential lead compound for the further investigation of anti-tumour drugs.


Drug Discovery , HSP90 Heat-Shock Proteins , Cell Line, Tumor , Drug Evaluation, Preclinical/methods , HSP90 Heat-Shock Proteins/antagonists & inhibitors , Mice, Inbred BALB C , Mice, Nude , Molecular Docking Simulation , Pharmacophore , Humans , Animals , Mice
20.
Protein Pept Lett ; 30(6): 513-519, 2023.
Article En | MEDLINE | ID: mdl-37211848

BACKGROUND: OS is the most frequent malignant bone tumor with a poor prognosis. TRIM21 has been reported to play a critical role in OS by regulating the expression of the TXNIP/p21 axis and inhibiting the senescence of OS cells. AIM: Investigation of the molecular mechanism of tripartite motif 21 (TRIM21) in osteosarcoma (OS) would shed light on the understanding of the pathogenesis of OS. OBJECTIVE: This study aimed to explore the mechanism regulating the protein stability of TRIM21 in the process of OS senescence. METHODS: Human U2 OS cells were used to establish stable cells overexpressing TRIM21 (induced by Dox) or knocking down TRIM21. The co-immunoprecipitation (co-IP) assay was used to examine the interaction between TRIM21 and HSP90. Immunofluorescence (IF) assay was used to observe colocalization in OS cells. Western blot analysis was applied to detect the protein expression, and quantitative real-time PCR (qRT-PCR) assay was used to test the mRNA expression of corresponding genes. SA-ß-gal staining was used to evaluate OS senescence. RESULTS: In this study, we verified the interaction between HSP90 and TRIM21 using a co-IP assay. Knockdown or inhibition of HSP90 with its inhibitor 17-AAG accelerated the degradation of TRIM21 by the proteasome in OS cells. CHIP E3 ligase mediated this degradation of TRIM21, with the knockdown of CHIP rescuing the downregulation of TRIM21 induced by 17-AAG. TRIM21 inhibited OS senescence and downregulated the expression of senescence marker p21, while CHIP exhibited an opposite regulatory role on p21 expression. CONCLUSION: Taken together, our results demonstrated that HSP90 is responsible for the stabilization of TRIM21 in OS and that the CHIP/TRIM21/p21 axis controlled by HSP90 affects the senescence of OS cells.


Cellular Senescence , HSP90 Heat-Shock Proteins , Osteosarcoma , Humans , Benzoquinones/pharmacology , Cell Line, Tumor , Lactams, Macrocyclic/pharmacology , Osteosarcoma/genetics , Osteosarcoma/metabolism , HSP90 Heat-Shock Proteins/antagonists & inhibitors , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism
...