Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.493
Filter
1.
Vet Immunol Immunopathol ; 275: 110813, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39142124

ABSTRACT

Innate immune parameters, a first line of defense against invading pathogens like bacteria, parasites, fungi, etc, play a significant role in the prevention and elimination of aetiological agents primarily by recognition of invading pathogen-specific molecules by different pattern recognition receptors. Toll-like receptors (TLRs), a type-I transmembrane glycoprotein, cause innate immune responses mainly by produing inflammatory cytokines, chemokines and interferons. The objective of present study was to determine the role of TLRs in parasite resistance in Malpura sheep. In the current study, transcript variation of TLRs and its downstream signalling molecules namely MyD88, TRIF, IRF-3, TRAF, TGF-ß, NFκB, and CD14 were ascertained by real-time PCR in Haemonchus contortus resistant (R) and susceptible (S) Malpura sheep. Results have shown significantly (P<0.05) up-regulated expression of TLR-2, TLR-4, TLR-5, TLR-8 and TLR-10 in July however down-regulated patterns were observed in August and September in R-line sheep compared to S-line sheep. This indicates that at more or less equal parasite load, the TLR genes in R sheep produce more transcripts, but after parasite loads have increased hugely in the S line, they easily surpass the levels seen in the S line. Result suggests that transcriptional activity of the TLR genes was related to parasite load and there were differences between the lines at different infection intensities. Three-point transcript expression observation of the signalling molecules namely TRIF, IRF-3, TRAF, a similar pattern was observed in R sheep compared with S sheep.


Subject(s)
Haemonchiasis , Haemonchus , Immunity, Innate , Sheep Diseases , Toll-Like Receptors , Animals , Toll-Like Receptors/genetics , Toll-Like Receptors/immunology , Haemonchus/immunology , Sheep/immunology , Haemonchiasis/veterinary , Haemonchiasis/immunology , Haemonchiasis/parasitology , Immunity, Innate/genetics , Sheep Diseases/immunology , Sheep Diseases/parasitology , Sheep Diseases/genetics , Disease Resistance/immunology , Disease Resistance/genetics
2.
Parasitol Res ; 123(8): 299, 2024 Aug 14.
Article in English | MEDLINE | ID: mdl-39141122

ABSTRACT

To understand the benzimidazole (BZ) resistance of Haemonchus contortus in Southern Xinjiang, three single nucleotide polymorphisms (SNPs) designated as F167Y, E198A, and F200Y, in the isotype-1 ß-tubulin gene which are associated with BZ resistance, were investigated for H. contortus populations from sheep in Hejing and Minfeng counties of Southern Xinjiang. In brief, a total of 190 H. contortus adults were collected from 52 out of 70 slaughtered sheep in city abattoirs across two regions in Southern Xinjiang. The species identity of each adult worm was confirmed by PCR amplification of ITS-2 using H. contortus-specific primers targeting the ITS-2. The samples were then investigated for BZ-related SNPs at locus 167, 198, and 200, by PCR-sequencing of the isotype-1 ß-tubulin gene. The results showed that only E198A and F200Y mutations were detected in the investigated H. contortus populations. The E198A mutation (homozygous and heterozygote resistant: found in 40% and 30% of sequenced samples from Minfeng and Hejing counties, respectively) was predominant compared with the F200Y mutation (homozygous and heterozygote resistant: found in 14% and 13.3% of sequenced samples from Minfeng and Hejing counties, respectively). The results indicate a high prevalence of BZ resistance in H. contortus populations from certain areas of Southern Xinjiang. Our findings provide valuable information for the prevention and control of H. contortus in areas with similar conditions.


Subject(s)
Anthelmintics , Benzimidazoles , Drug Resistance , Haemonchiasis , Haemonchus , Polymorphism, Single Nucleotide , Sheep Diseases , Tubulin , Animals , Haemonchus/drug effects , Haemonchus/genetics , Benzimidazoles/pharmacology , Sheep , Drug Resistance/genetics , Sheep Diseases/parasitology , Sheep Diseases/epidemiology , China/epidemiology , Tubulin/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Anthelmintics/pharmacology , Sequence Analysis, DNA , DNA, Ribosomal Spacer/genetics , Polymerase Chain Reaction
3.
Parasit Vectors ; 17(1): 296, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38982488

ABSTRACT

The population of South American camelids (SAC) has been steadily growing in Europe, where they are confronted with the regional endoparasite population of ruminants. As there are no anthelmintic drugs registered for use against nematode infections in SACs, anthelmintics (AH) available for ruminants or horses are usually applied. Reports indicating potential failures in administered AH are increasing. However, the generally low egg counts in SACs complicate the application of resistance tests in the field. The present study reports a follow-up study on SAC farms where anthelmintic resistance (AR) was suspected. The aims were (i) to repeat faecal egg count reduction tests (FECRTs) on potentially affected farms identified in a previous study with larger sample sizes, (ii) to verify suspected AR of Haemonchus contortus against benzimidazoles (BZ) by performing a single-nucleotide polymorphism (SNP) analysis using digital polymerase chain reaction (dPCR), and (iii) to apply the mini-FLOTAC technique for more reliable results at low egg counts in line with current recommendations. Seven farms (9-46 animals each) were examined by coproscopy, larval differentiation and SNP analysis. A FECRT was performed on six of these farms with moxidectin (three farms), monepantel (two farms) and ivermectin (one farm). The FEC was calculated according to the current World Association for the Advancement of Veterinary Parasitology (WAAVP) guidelines with the clinical protocol (a newly introduced variant of FECRT which can be used for smaller sample sizes and lower egg counts on the cost of sensitivity) and an expected efficacy of 99%. A high level (> 90%) of BZ-resistance-associated SNPs on codon 200 of H. contortus was observed on all farms. With the FECRT, resistance was demonstrated for ivermectin (74% FECR), while it remained inconclusive for one farm for moxidectin treatment. Sustained efficacy was demonstrated for the remaining treatments. This study showed an advanced level of BZ resistance in H. contortus of SACs and the development of AR against macrocyclic lactones on some farms. Thus, constant monitoring of AH treatment and sustainable worm control methods both need to be applied.


Subject(s)
Anthelmintics , Benzimidazoles , Camelids, New World , Drug Resistance , Feces , Haemonchiasis , Haemonchus , Parasite Egg Count , Animals , Haemonchus/drug effects , Haemonchus/genetics , Drug Resistance/genetics , Anthelmintics/pharmacology , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/drug therapy , Parasite Egg Count/veterinary , Benzimidazoles/pharmacology , Feces/parasitology , Camelids, New World/parasitology , Alleles , Polymorphism, Single Nucleotide , Lactones/pharmacology , Germany , Macrolides/pharmacology
5.
Trop Anim Health Prod ; 56(6): 195, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963478

ABSTRACT

This experiment aimed to assess the regulatory effects of treatment with Balanites aegyptiaca fruit ethanol extract (BA-EE) on oxidant/antioxidant status, anti-inflammatory cytokines, and cell apoptosis gene expression in the abomasum of Haemonchus contortus-infected goats. Twenty goat kids were assigned randomly to four equal groups: (G1) infected-untreated, (G2) uninfected-BA-EE-treated, (G3) infected-albendazole-treated, (G4) infected-BA-EE-treated. Each goat in (G1), (G3), and (G4) was orally infected with 10,000 infective third-stage larvae. In the fifth week postinfection, single doses of albendazole (5 mg/kg.BW) and BA-EE (9 g/kg.BW) were given orally. In the ninth week postinfection, the animals were slaughtered to obtain abomasum specimens. The following oxidant/antioxidant markers were determined: malondialdehyde (MDA), glutathione (GSH), glutathione-S-transferase (GST), superoxide dismutase (SOD), catalase (CAT). The mRNA gene expression of cytokines (IL-3, IL-6, IL-10, TNF-α) and cell apoptosis markers (Bax, Bcl-2) were estimated. (G1) showed significantly reduced GSH content and GST and SOD activities but a markedly increased MDA level. (G3) and (G4) revealed a markedly lower MDA level with pronouncedly elevated GSH, SOD, and GST levels. The antioxidant properties of BA-EE were superior to those of albendazole. The mRNA gene expressions of IL-3, IL-6, IL-10, TNF-α, and Bax-2 were upregulated in (G1) but downregulated in (G3) and (G4). Bcl-2 and Bcl-2/Bax ratio expression followed a reverse course in the infected and both treated groups. We conclude that BA-EE treatment has a protective role in the abomasum of H. contortus-infected goats. This could be attributed to its antioxidant properties and ability to reduce pro-inflammatory cytokines and cell apoptosis.


Subject(s)
Abomasum , Antioxidants , Apoptosis , Cytokines , Goat Diseases , Goats , Haemonchiasis , Haemonchus , Plant Extracts , Animals , Goat Diseases/parasitology , Goat Diseases/drug therapy , Plant Extracts/pharmacology , Plant Extracts/administration & dosage , Cytokines/metabolism , Cytokines/genetics , Apoptosis/drug effects , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchus/drug effects , Abomasum/parasitology , Antioxidants/metabolism , Anthelmintics/pharmacology , Anthelmintics/administration & dosage , Random Allocation , Ethanol , Gene Expression/drug effects , Albendazole/pharmacology , Albendazole/administration & dosage , Fruit/chemistry , Lamiaceae/chemistry , Male
6.
Vet Parasitol ; 330: 110243, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38944892

ABSTRACT

Gastrointestinal helminth infection, particularly by Haemonchus contortus, poses significant challenges to sheep farming worldwide. While anthelmintic drugs have been traditional control measures, the emergence of resistance calls for alternative strategies. Understanding the interaction between parasites, host, and their microbiome is crucial for management of helminth infection. This study intricately explores the interactions between microbial communities in Kashmir Merino sheep infected with H. contortus, to understand the complex interplay between host, parasite, and their microbiome. Sheep abomasal contents and H. contortus were collected from infected and control groups, processed for DNA extraction, and subjected to metagenomic sequencing of the 16 S rRNA gene. Downstream analysis unveils distinct microbial patterns, where Proteobacteria were dominant in H. contortus, while Bacteroidota and Firmicutes prevailed in the sheep abomasum. The revelation of unique genera and shifts in diversity indices underscored helminth-induced disruptions in the host. Beta diversity analysis further showed significant variations in bacterial profiles, providing insights into the intricate host, parasite, and microbiome dynamics. Additionally, this study elucidated the presence of pathogenic bacteria within H. contortus, accentuating their potential role in exacerbating sheep health issues. This finding underscores the complexity of the host-parasite-microbiome interaction showing helminth-induced microbiome alterations of the host.


Subject(s)
Abomasum , Haemonchiasis , Haemonchus , Sheep Diseases , Animals , Sheep , Haemonchus/physiology , Sheep Diseases/parasitology , Sheep Diseases/microbiology , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Abomasum/parasitology , Abomasum/microbiology , RNA, Ribosomal, 16S/genetics , Microbiota , Host-Parasite Interactions , India , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification
7.
Vet Parasitol Reg Stud Reports ; 52: 101047, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38880566

ABSTRACT

The variability in the expression of different P-glycoprotein (P-gp) genes in parasitic nematodes of ruminants such as Haemonchus contortus (Hco-pgp) may be caused by different factors including nematode biology, geographical region and anthelmintic pressure. This study analysed the relative expression level of 10 P-gp genes in two H. contortus (Hco-pgp) field isolates from Yucatan, Mexico: 1) PARAISO (IVM-resistant) and 2) FMVZ-UADY (IVM-susceptible). These isolates were compared with a susceptible reference isolate from Puebla, Mexico, namely "CENID-SAI". In all cases H. contortus adult males were used. The Hco-pgp genes (1, 2, 3, 4, 9, 10, 11, 12, 14 and 16) were analysed for each isolate using the RT-qPCR technique. The Hco-pgp expressions were pairwise compared using the 2-ΔΔCt method and a t-test. The PARAISO isolate showed upregulation compared to the CENID-SAI isolate for Hco-pgp 1, 3, 9, 10 and 16 (P < 0.05), and the PARAISO isolate showed upregulation vs. FMVZ-UADY isolate for Hco-pgp 2 and 9 (P < 0.05), displaying 6.58- and 5.93-fold differences (P < 0.05), respectively. In contrast, similar Hco-pgp gene expression levels were recorded for FMVZ-UADY and CENID-SAI isolates except for Hco-pgp1 (P <0.1), which presented a significant upregulation (6.08-fold). The relative expression of Hco-pgp allowed confirming the IVM-resistant status of the PARAISO isolate and the IVM-susceptible status of the FMVZ-UADY isolate when compared to the CENID-SAI reference isolate. Therefore, understanding the association between the Hco-pgp genes expression of H. contortus and its IVM resistance status could help identifying the genes that could be used as molecular markers in the diagnosis of IVM resistance. However, it is important to consider the geographic origin of the nematode isolate and the deworming history at the farm of origin.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Drug Resistance , Haemonchiasis , Haemonchus , Ivermectin , Animals , Haemonchus/drug effects , Haemonchus/genetics , Ivermectin/pharmacology , Mexico , Male , Drug Resistance/genetics , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Phenotype , Anthelmintics/pharmacology , Gene Expression , Sheep Diseases/parasitology , Sheep
8.
Dev Comp Immunol ; 159: 105216, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38901502

ABSTRACT

Lambs harboring the Hb-AA ß-globin haplotype present improved cell-mediated responses and increased resistance against Haemonchus contortus infection. The aim of the present study was to compare the effect of sex and ß-globin haplotypes on specific humoral responses and phenotypes of resistance during H. contortus infection in Morada Nova sheep. As expected, females displayed stronger resistance during the first and second experimental challenges. Differential systemic humoral immune responses were observed comparing sex groups, in which higher levels of specific antibodies targeting 24 kDa excretory-secretory (ES24) protein of H. contortus of IgG and IgM antibodies were respectively observed as predominant isotypes in males and females. The IgM levels were significantly correlated with phenotypes of resistance, evaluated by packed cell volume and fecal egg counts. To our knowledge this is the first study reporting divergent humoral responses profiles to H. contortus infection between male and female sheep. The impact of ß-globin haplotypes was less pronounced in females compared to males. Notably, only males showed significant weight differences across haplotypes, with Hb-AA lambs being the heaviest. Additionally, Hb-AA males had significantly higher PCV (indicating better red blood cell health) and lower FEC (indicating lower parasite burden). These findings suggest a more pronounced effect of ß-globin polymorphisms on H. contortus infection in males, potentially due to their generally weaker resistance compared to females. This study highlights the importance of sex and ß-globin haplotypes in shaping immune responses to H. contortus infection. Specifically, IgM antibodies targeting the ES24 protein appear to play a crucial role in host-parasite interactions and may hold promise for therapeutic development.


Subject(s)
Haemonchiasis , Haemonchus , Immunity, Humoral , Polymorphism, Genetic , Sheep Diseases , beta-Globins , Animals , Female , Male , Antibodies, Helminth/immunology , Antigens, Helminth/immunology , beta-Globins/genetics , beta-Globins/immunology , Disease Resistance/immunology , Disease Resistance/genetics , Haemonchiasis/veterinary , Haemonchiasis/immunology , Haemonchiasis/parasitology , Haemonchus/immunology , Haplotypes , Helminth Proteins/immunology , Helminth Proteins/genetics , Helminth Proteins/metabolism , Immunoglobulin G/immunology , Immunoglobulin G/metabolism , Immunoglobulin M/immunology , Immunoglobulin M/metabolism , Sex Factors , Sheep/immunology , Sheep Diseases/immunology , Sheep Diseases/parasitology , Sheep Diseases/genetics
9.
Parasite Immunol ; 46(6): e13054, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38922988

ABSTRACT

Pathogen recognition is an essential component to achieve the desired outcome of host protection. Nod-like receptor pyrin containing domain 3 (NLRP3) is a cytoplasmic pattern recognition receptor (PRR) with a wide array of agonists, such as PAMPs, DAMPs, ATP, bacterial product and viral products. Stimulation of the NLRP3 inflammasome results in proteolytic activation of IL-1ß and IL-18, cell pyroptosis and classically, the induction of proinflammatory responses. St. Croix (STC) sheep have resistance traits exhibiting the appropriate T-helper type 2 immune response ensuing protection during helminth parasitic infection whereas parasite-susceptible Suffolk (SUF) sheep have an impaired response resulting in parasite establishment and adverse symptoms. The objective of these experiments was to determine if NLRP3 protein in H. contortus-infected SUF sheep was defective using the classical activation pathway of NLRP3 inflammasome. Peripheral blood mononuclear cells (PBMCs) derived from H. contortus-infected STC and SUF sheep were isolated from whole blood and treated (MCC950 treatment for 2 h followed by LPS treatment for 3 h, 1400 W treatment for 2 h followed by LPS treatment for 3 h, LPS treatment for 3 h or culture media for 3 h). qPCR analysis of LPS-stimulated PBMC revealed an upregulation in inflammatory associated genes IL-1ß, TLR4, TNFα and NFκB (p < 0.0001) in STC PBMC and downregulation in IFNγ, IL-6 and iNOS for SUF PBMC. Pharmacological inhibition of iNOS in SUF PBMC resulted in an upregulation in the expression of IFNγ. These preliminary data begin to discover a relationship between NLRP3 activation and TLR4 signalling in PBMC of STC and SUF sheep.


Subject(s)
Haemonchiasis , Haemonchus , Leukocytes, Mononuclear , Lipopolysaccharides , NLR Family, Pyrin Domain-Containing 3 Protein , Sheep Diseases , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Sheep , Lipopolysaccharides/immunology , Leukocytes, Mononuclear/immunology , Haemonchiasis/immunology , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Sheep Diseases/immunology , Sheep Diseases/parasitology , Haemonchus/immunology , Cells, Cultured , Cytokines/metabolism
10.
Exp Parasitol ; 262: 108778, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735517

ABSTRACT

Sheep haemonchosis is a disease that causes serious losses in livestock production, particularly with the increase of cases of anthelmintic resistance around the world. This justifies the urgent need of alternative solutions. The aim of this study was to determine the chemical profile, in vitro, and, in vivo, anthelmintic properties of Thymus capitatus essential oil. To evaluate the, in vitro, anthelmintic activity of the T. capitatus EO on Haemonchus contortus, two tests were used: egg hatch assay (EHA) and adult worm motility (AWM) assay. The nematicidal effect of this oil was evaluated, in vivo, in mice infected artificially with Heligmosomoides polygyrus using faecal egg count reduction (FECR) and total worm count reduction (TWCR). Chromatographic characterization of T.capitatus composition using gas chromatography coupled to mass spectrometry (GC-MS) demonstrated the presence of carvacrol (81.16%), as the major constituents. The IC50 values obtained was 1.9 mg/mL in the EHT. In the AWM assay; T. capitatus essential oil achieved 70.8% inhibition at 1 mg/mL after 8 h incubation. The in vivo, evaluation on H. polygyrus revealed a significant nematicidal effect 7 days post-treatment by inducing 49.5% FECR and 64.5% TWCR, using the highest dose (1600 mg/kg). The results of present study, demonstrate that T.capitatus EO possess a significant anthelmintic properties. Furthermore, it could be an alternative source of anthelmintic agents against gastrointestinal infections caused by H. contortus.


Subject(s)
Anthelmintics , Feces , Flowers , Gas Chromatography-Mass Spectrometry , Haemonchiasis , Haemonchus , Nematospiroides dubius , Oils, Volatile , Parasite Egg Count , Strongylida Infections , Thymus Plant , Animals , Haemonchus/drug effects , Oils, Volatile/pharmacology , Oils, Volatile/chemistry , Oils, Volatile/isolation & purification , Mice , Nematospiroides dubius/drug effects , Thymus Plant/chemistry , Haemonchiasis/veterinary , Haemonchiasis/drug therapy , Haemonchiasis/parasitology , Strongylida Infections/drug therapy , Strongylida Infections/veterinary , Strongylida Infections/parasitology , Anthelmintics/pharmacology , Anthelmintics/isolation & purification , Anthelmintics/therapeutic use , Anthelmintics/chemistry , Feces/parasitology , Parasite Egg Count/veterinary , Flowers/chemistry , Female , Sheep , Inhibitory Concentration 50 , Monoterpenes/pharmacology , Monoterpenes/isolation & purification , Monoterpenes/chemistry , Male , Sheep Diseases/parasitology , Sheep Diseases/drug therapy , Cymenes
11.
Exp Parasitol ; 262: 108777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38735520

ABSTRACT

This study describes the in vitro anthelmintic effect of a hydroalcoholic extract (HA-E) and its fractions from Cyrtocarpa procera fruits against Haemonchus contortus eggs and infective larvae. The HA-E was subjected to bipartition using ethyl acetate, which resulted in an aqueous fraction (Aq-F) and an organic fraction (EtOAc-F). The HA-E and both fractions were tested using the egg hatching inhibition assay (EHIA) and the larval mortality test (LMT). Fractionation of the EtOAc-F was achieved using different chromatographic processes, i.e., open glass column and HPLC analysis. Fractionation of the EtOAc-F gave 18 subfractions (C1R1-C1R18), and those that showed the highest yields (C1R15, C1R16, C1R17 and C1R18) were subjected to anthelmintic assays. The HA-E and the EtOAc-F displayed 100% egg hatching inhibition at 3 and 1 mg/mL, respectively, whereas Aq-F exhibited 92.57% EHI at 3 mg/mL. All subfractions tested showed ovicidal effect. Regarding the larval mortality test, HA-E and EtOAc-F exhibited a larvicidal effect higher than 50% at 50 and 30 mg/mL, respectively. The subfractions that showed the highest larval mortality against H. contortus were C1R15 and C1R17, with larval mortalities of 53.57% and 60.23% at 10 mg/mL, respectively. Chemical analysis of these bioactive subfractions (C1R15 and C1R17) revealed the presence of gallic acid, protocatechuic acid, and ellagic acid. This study shows evidence about the ovicidal and larvicidal properties of C. procera fruits that could make these plant products to be considered as a natural potential anthelmintic agents for controlling haemonchosis in goats and sheep.


Subject(s)
Anthelmintics , Fruit , Haemonchus , Larva , Ovum , Plant Extracts , Animals , Haemonchus/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Fruit/chemistry , Anthelmintics/pharmacology , Anthelmintics/isolation & purification , Anthelmintics/chemistry , Ovum/drug effects , Chromatography, High Pressure Liquid , Sheep , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Sheep Diseases/parasitology
12.
Vet Parasitol ; 329: 110195, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38754156

ABSTRACT

The nematode Haemonchus contortus is, as a parasite, responsible for most mortality of small ruminants, causing significant economic losses. Numerous plant-derived compounds have exhibited promising anthelmintic activities against this nematode. Notably, the Annona genus stands out for demonstrated anthelmintic effects by extracts from several of its species against different nematodes. This study aimed to assess the effect of an Annona tomentosa fraction, rich in alkaloids, on H. contortus. This fraction, named Alk.F, is derived from the methanolic extract of the plant's stem bark. Chemical characterization of Alk.F was performed by liquid chromatography coupled with mass spectrometry. Among the nine predominant peaks obtained, seven alkaloids were identified: reticuline, reticuline N-oxide, reticuline N-oxide isomer, cyclanoline, asimilobine, tetrahydropalmatine and anonaine. Alk.F inhibited the larval development of H. contortus with an IC50 of 0.026 mg/mL, inhibited larval exsheathment with an IC50 of 0.38 mg/mL, and displayed low hemolytic activity towards sheep erythrocytes. Furthermore, atomic force microscopy revealed that Alk.F altered adhesive forces and the height profile on the surface of H. contortus larvae. In conclusion, A. tomentosa alkaloids alter the cuticle structure of H. contortus, inhibiting larval development and exsheathment, thus offering possibilities for contributing to the development of new anthelmintic drugs.


Subject(s)
Alkaloids , Annona , Anthelmintics , Haemonchus , Plant Extracts , Animals , Haemonchus/drug effects , Annona/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anthelmintics/pharmacology , Anthelmintics/chemistry , Alkaloids/pharmacology , Alkaloids/chemistry , Larva/drug effects , Plant Bark/chemistry , Sheep , Haemonchiasis/veterinary , Haemonchiasis/drug therapy , Haemonchiasis/parasitology
13.
Cells ; 13(10)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786064

ABSTRACT

BACKGROUND: Haemonchus contortus is a parasite widely distributed in tropical, subtropical, and warm temperate regions, causing significant economic losses in the livestock industry worldwide. However, little is known about the genetics of H. contortus resistance in livestock. In this study, we monitor the dynamic immune cell responses in diverse peripheral blood mononuclear cells (PBMCs) during H. contortus infection in goats through single-cell RNA sequencing (scRNA-Seq) analysis. METHODS AND RESULTS: A total of four Boer goats, two goats with oral infection with the L3 larvae of H. contortus and two healthy goats as controls, were used in the animal test. The infection model in goats was established and validated by the fecal egg count (FEC) test and qPCR analysis of the gene expression of IL-5 and IL-6. Using scRNA-Seq, we identified seven cell types, including T cells, monocytes, natural killer cells, B cells, and dendritic cells with distinct gene expression signatures. After identifying cell subpopulations of differentially expressed genes (DEGs) in the case and control groups, we observed the upregulation of multiple inflammation-associated genes, including NFKBIA and NFKBID. Kyoto Encyclopedia of the Genome (KEGG) enrichment analysis revealed significant enrichment of NOD-like receptor pathways and Th1/Th2 cell differentiation signaling pathways in CD4 T cells DEGs. Furthermore, the analysis of ligand-receptor interaction networks showed a more active state of cellular communication in the PBMCs from the case group, and the inflammatory response associated MIF-(CD74 + CXCR4) ligand receptor complex was significantly more activated in the case group, suggesting a potential inflammatory response. CONCLUSIONS: Our study preliminarily revealed transcriptomic profiling characterizing the cell type specific mechanisms in host PBMCs at the single-cell level during H. contortus infection.


Subject(s)
Gene Expression Profiling , Goats , Haemonchiasis , Haemonchus , Single-Cell Analysis , Animals , Haemonchus/immunology , Haemonchiasis/veterinary , Haemonchiasis/immunology , Haemonchiasis/genetics , Haemonchiasis/parasitology , Transcriptome/genetics , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/immunology , Goat Diseases/immunology , Goat Diseases/parasitology , Goat Diseases/genetics
14.
Parasitol Res ; 123(5): 201, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698272

ABSTRACT

Gastrointestinal nematodes (GINs) are a common threat faced by pastoral livestock. Since their major introduction to the UK in the early 1990s, South American camelids have been cograzed with sheep, horses, and other livestock, allowing exposure to a range of GIN species. However, there have been no molecular-based studies to investigate the GIN populations present in these camelids. In the current study, we sampled nine alpaca herds from northern England and southern Scotland and used high-throughput metabarcoded sequencing to describe their GIN species composition. A total of 71 amplicon sequence variants (ASVs) were identified representing eight known GIN species. Haemonchus contortus was the most prevalent species found in almost all herds in significant proportions. The identification of H. contortus in other livestock species is unusual in the northern UK, implying that alpacas may be suitable hosts and potential reservoirs for infection in other hosts. In addition, the camelid-adapted GIN species Camelostrongylus mentulatus was identified predominantly in herds with higher faecal egg counts. These findings highlight the value of applying advanced molecular methods, such as nemabiome metabarcoding to describe the dynamics of gastrointestinal nematode infections in novel situations. The results provide a strong base for further studies involving cograzing animals to confirm the potential role of alpacas in transmitting GIN species between hosts.


Subject(s)
Camelids, New World , Haemonchiasis , Haemonchus , Animals , Camelids, New World/parasitology , Haemonchus/genetics , Haemonchus/classification , Haemonchus/isolation & purification , Prevalence , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/epidemiology , DNA Barcoding, Taxonomic , United Kingdom/epidemiology , Strongylida Infections/veterinary , Strongylida Infections/parasitology , Strongylida Infections/epidemiology , Feces/parasitology , England/epidemiology , Scotland/epidemiology
15.
Parasitol Res ; 123(5): 226, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814484

ABSTRACT

In this study, 858 novel long non-coding RNAs (lncRNAs) were predicted as sensitive and resistant strains of Haemonchus contortus to ivermectin. These lncRNAs underwent bioinformatic analysis. In total, 205 lncRNAs significantly differed using log2 (difference multiplicity) > 1 or log2 (difference multiplicity) < - 1 and FDR < 0.05 as the threshold for significant difference analysis. We selected five lncRNAs based on significant differences in expression, cis-regulation, and their association with the Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. These expressions of lncRNAs, namely MSTRG.12610.1, MSTRG.8169.1, MSTRG.6355.1, MSTRG.980.1, and MSTRG.9045.1, were significantly downregulated. These findings were consistent with the results of transcriptomic sequencing. We further investigated the relative expression of target gene mRNAs and the regulation of mRNA and miRNA, starting with lncRNA cis-regulation of mRNA, and constructed a lncRNA-mRNA-miRNA network regulation. After a series of statistical analyses, we finally screened out UGT8, Unc-116, Fer-related kinase-1, GGPP synthase 1, and sart3, which may be involved in developing drug resistance under the regulation of their corresponding lncRNAs. The findings of this study provide a novel direction for future studies on drug resistance targets.


Subject(s)
Drug Resistance , Haemonchus , Ivermectin , RNA, Long Noncoding , Animals , Haemonchus/genetics , Haemonchus/drug effects , RNA, Long Noncoding/genetics , Ivermectin/pharmacology , Drug Resistance/genetics , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Anthelmintics/pharmacology , MicroRNAs/genetics , Computational Biology , Gene Expression Profiling , Gene Expression Regulation/drug effects
16.
Parasitol Res ; 123(5): 227, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38814495

ABSTRACT

The species Haemonchus contortus occurs in many regions worldwide, mainly parasitising small ruminants and economically impacting animal production. Climate change is considered a driving force for the risk of diseases caused by helminths and can also affect relationships between parasites and their hosts, with the potential to cause losses in both animal production and biodiversity in general. The aim of this study was to model the potential distribution of H. contortus in South America. We used MaxEnt to perform the analyses and describe the contribution of important bioclimatic variables involved in the species distribution. Our results show that H. contortus colonised most of the areas with habitats that suit the species' environmental requirements and that this parasite presents habitat suitability in a future scenario. Understanding the effects of climate change on the occurrence and distribution of parasite species is essential for monitoring these pathogens, in addition to predicting the areas that tend to present future parasite outbreaks and identify opportunities to mitigate the impacts of the emergence of diseases caused by these organisms.


Subject(s)
Haemonchiasis , Haemonchus , Animals , Haemonchus/classification , South America , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/epidemiology , Climate Change , Ecosystem
17.
Exp Parasitol ; 261: 108768, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38679124

ABSTRACT

This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.


Subject(s)
Anthelmintics , Catalase , Gerbillinae , Glutathione , Haemonchiasis , Haemonchus , Oxidative Stress , Plant Extracts , Plant Leaves , Superoxide Dismutase , Animals , Haemonchus/drug effects , Plant Leaves/chemistry , Oxidative Stress/drug effects , Haemonchiasis/veterinary , Haemonchiasis/drug therapy , Haemonchiasis/parasitology , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Anthelmintics/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Superoxide Dismutase/metabolism , Catalase/metabolism , Catalase/analysis , Glutathione/metabolism , Glutathione/analysis , Gas Chromatography-Mass Spectrometry , Male , Parasite Egg Count/veterinary , Biomarkers , Glutathione Peroxidase/metabolism , Female
18.
Vet Parasitol ; 328: 110177, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38583271

ABSTRACT

Infection by gastrointestinal nematodes (GIN), particularly Haemonchus contortus, can be detrimental to sheep health and performance. Genetic susceptibility to GIN varies between breeds, with those lacking high levels of natural resistance often requiring frequent anthelmintic treatment when facing parasitic challenge. Genetic technology can serve as a tool to decrease GIN susceptibility via selection for sheep with reduced fecal egg count (FEC) estimated breeding values (EBVs). However, the physiological changes that result from implementation of this strategy are not well described. Additionally, there is a need for comparison of animals from recent selective breeding against breeds with inherent GIN resistance. In this study we administered a challenge of H. contortus to Dorper x White Dorper (DWD; n = 92) lambs that have been genetically selected for either low (DWD-) or high (DWD+) FEC EBVs and Barbados Blackbelly x Mouflon (BBM; n = 19) lambs from a genetically resistant breed backgrounds. Lamb FEC, packed-cell volume (PCV) and serum IgG were measured at intermittent levels over 5 weeks. At day 21 and day 35, the selectively bred DWD- had a lower mean FEC compared to DWD+, but were higher than BBM. Reductions in both PCV and serum IgG from initial day 0 levels were observed in DWD lambs, but not in BBM. Furthermore, from a subset of lambs (n = 24) harvested at day 21, DWD- only tended (p = 0.056) to have lower mean worm counts than DWD+, with BBM having the lowest mean worm count. Differentially expressed genes (DEGs) identified via RNA-sequencing of abomasal tissue at day 21 indicate a more pronounced Th2 immune response and more rapid worm expulsion occurred in iBBM than iDWD- and iDWD+ lambs. However, gene expression in DWD- suggests an association between reduced FEC EBV and gastric acid secretion and the ability to limit worm fecundity. Ultimately, selection of Dorper sheep for low FEC EBV can reduce susceptibility to GIN, but it will likely require multiple generations with this trait as a breeding priority before presenting a similar resistance level to Caribbean breeds.


Subject(s)
Feces , Haemonchiasis , Haemonchus , Parasite Egg Count , Sheep Diseases , Animals , Sheep , Sheep Diseases/parasitology , Sheep Diseases/immunology , Sheep Diseases/genetics , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Haemonchiasis/immunology , Parasite Egg Count/veterinary , Feces/parasitology , Selective Breeding , Male , Female , Genetic Predisposition to Disease , Breeding
19.
Vet Parasitol ; 328: 110184, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643645

ABSTRACT

This study applied the in vitro rumen exsheathment test (IVRET) to evaluate the exsheathment kinetics of Haemonchus contortus infective larvae (L3) incubated in ruminal liquor (RL) containing acetone:water extracts of Acacia pennatula (AP), Gymnopodium floribundum (GF), Havardia albicans (HA) or Lysiloma latisiliquum (LL). The role of polyphenols in the biological activity of the evaluated extracts was also determined. Larvae were incubated in RL either alone or added with a different plant extract (AP, GF, HA, or LL) at 1200 µg/mL. Polyethylene glycol (PEG) was added to block polyphenols in each treatment (RL+PEG, AP+PEG, GF+PEG, HA+PEG, and LL+PEG). After incubation times of 0, 1, 3, 6, 9, and 24 h, the exsheathment process was stopped to count the number of ensheathed and exsheathed L3. A Log-Logistic model was used to determine the L3 exsheathment kinetics in the different RL treatments. The inflection point of the respective kinetic curves, which indicates the time to reach 50 % exsheathed L3 (T50), was the only parameter that differed when comparing the exsheathment models (99 % probability of difference). The T50 values obtained for GF, HA, and LL treatments (T50 = 7.11 - 7.58 h) were higher in comparison to the T50 of RL (5.72 h) (≥ 70 % probability of difference). The L3 incubated in RL added with GF, HA, and LL extracts delayed their exsheathment at 3 and 6 h of incubation (28.71 - 48.06 % exsheathment reduction) compared to the RL treatment. The T50 value for AP, AP+PEG, GF+PEG, HA+PEG, and LL+PEG were similar to RL and RL+PEG (T50 = 5.34 - 6.97 h). In conclusion, the IVRET can be used to identify plants with the potential to delay the exsheathment of H. contortus L3 in the ruminal liquor. The acetone:water extracts of G. floribundum, H. albicans, and L. latisiliquum delayed the T50 of H. contortus exsheathment, which was evident at 3 and 6 h of incubation in ruminal liquor. The observed exsheathment delay was attributed to the polyphenol content of the extracts.


Subject(s)
Haemonchus , Larva , Plant Extracts , Rumen , Animals , Haemonchus/drug effects , Rumen/parasitology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Larva/drug effects , Haemonchiasis/veterinary , Haemonchiasis/parasitology , Anthelmintics/pharmacology , Anthelmintics/chemistry
20.
Acta Parasitol ; 69(2): 1132-1140, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38568361

ABSTRACT

PURPOSE: We analysed the possible synergistic activity among active extracts from Artemisia cina and Tagetes lucida combinations on Haemonchus contortus, a nematode parasitising sheep. METHODS: The work was carried out in vitro on eggs and infective larvae (L3) of H. contortus. The results were analysed with SAS 9.1, applying the ANOVA and Tukey test, and the lethal concentration (LC) values LC50 and LC90 were determined with regression analysis, employing Proc Probit of SAS 9.1. Additionally, the lethal concentration (LC) was calculated with LC50 and LC90 to determine the synergistic effect. RESULTS: The results demonstrated a high efficacy of the two plants studied on both nematode eggs and L3 larvae as well as of their combinations. The highest egg hatching inhibition was obtained with a 50/50 combination, and the best larvae mortality was obtained with 25% A. cina and 75% T. lucida at 10 mg/mL. Additionally, this combination showed a synergistic effect. CONCLUSION: The two plant species studied here can be applied as natural anthelmintic alternatives due to their high bioactive effect and synergistic response.


Subject(s)
Anthelmintics , Artemisia , Drug Synergism , Haemonchus , Larva , Plant Extracts , Tagetes , Animals , Haemonchus/drug effects , Artemisia/chemistry , Plant Extracts/pharmacology , Plant Extracts/chemistry , Tagetes/chemistry , Larva/drug effects , Anthelmintics/pharmacology , Acetates/pharmacology , Sheep , Haemonchiasis/parasitology , Haemonchiasis/veterinary , Haemonchiasis/drug therapy , Sheep Diseases/parasitology , Sheep Diseases/drug therapy , Ovum/drug effects , Hexanes
SELECTION OF CITATIONS
SEARCH DETAIL