Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 125
Filter
1.
Environ Microbiol Rep ; 16(4): e13312, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39049182

ABSTRACT

Biological nitrogen fixation provides fixed nitrogen for microbes living in the oligotrophic open ocean. UCYN-A2, the previously known symbiont of Braarudosphaera bigelowii, now believed to be an early-stage B. bigelowii organelle that exchanges fixed nitrogen for fixed carbon, is globally distributed. Indirect evidence suggested that B. bigelowii might be a mixotrophic (phagotrophic) phototrophic flagellate. The goal of this study was to determine if B. bigelowii can graze on bacteria using several independent approaches. The results showed that B. bigelowii grazed on co-occurring bacteria at a rate of 5-7 cells/h/B. bigelowii and that the overall grazing rate was significantly higher at nighttime than at daytime. Bacterial abundance changes, assessed with 16S rRNA gene amplicon sequencing analysis, may have indicated preferential grazing by B. bigelowii on specific bacterial genotypes. In addition, Lysotracker™ staining of B. bigelowii suggested digestive activity inside B. bigelowii. Carbon and nitrogen fixation measurements revealed that the carbon demand of B. bigelowii could not be fulfilled by photosynthesis alone, implying supplementation by heterotrophy. These independent lines of evidence together revealed that B. bigelowii engages in phagotrophy, which, beyond serving as a supplementary source of carbon and energy, may also facilitate the indirect assimilation of inorganic nutrients.


Subject(s)
Haptophyta , Nitrogen Fixation , Symbiosis , Haptophyta/metabolism , Haptophyta/growth & development , Haptophyta/physiology , Nitrogen/metabolism , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Bacteria/isolation & purification , Carbon/metabolism , RNA, Ribosomal, 16S/genetics , Phagocytosis , Phylogeny
2.
Environ Microbiol Rep ; 16(4): e13313, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38988030

ABSTRACT

Phytoplankton and bacteria form the foundation of marine food webs. While most studies on phytoplankton bloom influence on bacteria dynamics focus on diatom-dominated blooms due to their global ecological significance, it is unclear if similar patterns extend to other species that compete with diatoms like Phaeocystis spp. This study aimed to contribute to the understanding of associations between phytoplankton and bacteria in a temperate ecosystem. For this, we studied the dynamics of phytoplankton and bacteria, combining 16S metabarcoding, microscopy, and flow cytometry over 4 years (282 samples). Phytoplankton and bacterial communities were studied throughout the year, particularly during contrasting phytoplankton blooms dominated by the Haptophyte Phaeocystis globosa or diatoms. We applied extended local similarity analysis (eLSA) to construct networks during blooming and non-blooming periods. Overall, the importance of seasonal and species-specific interactions between phytoplankton and bacteria is highlighted. In winter, mixed diatom communities were interconnected with bacteria, indicating a synergistic degradation of diverse phytoplankton-derived substrates. In spring, despite the intensity variations of P. globosa blooms, the composition of bacterial communities remained consistent over several years, suggesting establishing a stable-state environment for bacterial communities. Specific associations between monospecific diatom blooms and bacteria were evidenced in summer.


Subject(s)
Bacteria , Diatoms , Ecosystem , Haptophyta , Phytoplankton , Seasons , Diatoms/growth & development , Phytoplankton/growth & development , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Bacteria/growth & development , Haptophyta/growth & development , Eutrophication , Seawater/microbiology , Seawater/chemistry , Microbiota , RNA, Ribosomal, 16S/genetics
3.
Mar Pollut Bull ; 205: 116590, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38878419

ABSTRACT

The Beibu Gulf has experienced blooms of Phaeocystis globosa "giant colony" ecotype (PGGCE), with noticeable variations in bloom scale across years. However, driving environmental factors and their roles remain poorly understood. In this study, we quantified dynamics of PGGCE cells in 2016-2017 and 2018-2019, and analyzed their correlations with environment factors. The results revealed that PGGCE blooms primarily occurred in Guangxi coast and western waters of Leizhou Peninsula during winter months, exhibiting distinct developmental processes. Bloom intensity, duration, and distribution differed significantly between two bloom events. In 2016-2017, peak PGGCE density exceeded 2.0 × 105 cells L-1 nearly double that of 2018-2019. Furthermore, bloom sustained five months during 2016-2017, compared to three months during 2018-2019. Prolonged period of low temperatures and elevated nitrate concentrations favored PGGCE growth and colony formation, resulting in a larger scale bloom during winter 2016 as opposed to winter 2018.


Subject(s)
Ecotype , Eutrophication , Haptophyta , China , Haptophyta/growth & development , Environmental Monitoring , Seasons , Seawater/chemistry
4.
Sci Total Environ ; 946: 174134, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38909792

ABSTRACT

Phaeocystis globosa is among the dominant microalgae associated with harmful algal blooms. P. globosa has a polymorphic life cycle and its ecological success has been attributed to algal colony formation, however, few studies have assessed differences in microbial communities and their functional profiles between intra- and extra-colonies during P. globosa blooms. To address this, environmental and metagenomics tools were used to conduct a time-series analysis of the bacterial composition and metabolic characteristics of intra- and extra-colonies during a natural P. globosa bloom. The results show that bacterial composition, biodiversity, and network interactions differed significantly between intra- and extra-colonies. Dominant extra-colonial bacteria were Bacteroidia and Saccharimonadis, while dominant intra-colonial bacteria included Alphaproteobacteria and Gammaproteobacteria. Despite the lower richness and diversity observed in the intra-colonial bacterial community, relative to extra-colonies, the complexity and interconnectedness of the intra-colonial networks were higher. Regarding bacterial function, more functional genes were enriched in substance metabolism (polysaccharides, iron element and dimethylsulfoniopropionate) and signal communication (quorum sensing, indoleacetic acid-IAA) pathways in intra- than in extra-colonies. Conceptual model construction showed that microbial cooperative synthesis of ammonium, vitamin B12, IAA, and siderophores were strongly related to the P. globosa bloom, particularly in the intra-colonial environment. Overall, our data highlight the differences in bacterial structure and functions within and outside the colony during P. globosa blooms. These findings represent fundamental information indicating that phenotypic heterogeneity is a selective strategy that improves microbial population competitiveness and environmental adaptation, benefiting P. globosa bloom formation and persistence.


Subject(s)
Haptophyta , Harmful Algal Bloom , Microbiota , Haptophyta/growth & development , Microalgae , Bacteria/classification , Biodiversity
5.
J Math Biol ; 88(6): 77, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695878

ABSTRACT

A dynamic reaction-diffusion model of four variables is proposed to describe the spread of lytic viruses among phytoplankton in a poorly mixed aquatic environment. The basic ecological reproductive index for phytoplankton invasion and the basic reproduction number for virus transmission are derived to characterize the phytoplankton growth and virus transmission dynamics. The theoretical and numerical results from the model show that the spread of lytic viruses effectively controls phytoplankton blooms. This validates the observations and experimental results of Emiliana huxleyi-lytic virus interactions. The studies also indicate that the lytic virus transmission cannot occur in a low-light or oligotrophic aquatic environment.


Subject(s)
Basic Reproduction Number , Eutrophication , Mathematical Concepts , Models, Biological , Phytoplankton , Phytoplankton/virology , Phytoplankton/growth & development , Phytoplankton/physiology , Basic Reproduction Number/statistics & numerical data , Haptophyta/virology , Haptophyta/growth & development , Haptophyta/physiology , Computer Simulation
6.
Appl Microbiol Biotechnol ; 108(1): 352, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819468

ABSTRACT

Fucoxanthin is a versatile substance in the food and pharmaceutical industries owing to its excellent antioxidant and anti-obesity properties. Several microalgae, including the haptophyte Pavlova spp., can produce fucoxanthin and are potential industrial fucoxanthin producers, as they lack rigid cell walls, which facilitates fucoxanthin extraction. However, the commercial application of Pavlova spp. is limited owing to insufficient biomass production. In this study, we aimed to develop a mixotrophic cultivation method to increase biomass and fucoxanthin production in Pavlova gyrans OPMS 30543X. The effects of culturing OPMS 30543X with different organic carbon sources, glycerol concentrations, mixed-nutrient conditions, and light intensities on the consumption of organic carbon sources, biomass production, and fucoxanthin accumulation were analyzed. Several organic carbon sources, such as glycerol, glucose, sucrose, and acetate, were examined, revealing that glycerol was well-consumed by the microalgae. Biomass and fucoxanthin production by OPMS 30543X increased in the presence of 10 mM glycerol compared to that observed without glycerol. Metabolomic analysis revealed higher levels of the metabolites related to the glycolytic, Calvin-Benson-Bassham, and tricarboxylic acid cycles under mixotrophic conditions than under autotrophic conditions. Cultures grown under mixotrophic conditions with a light intensity of 100 µmol photons m-2 s-1 produced more fucoxanthin than autotrophic cultures. Notably, the amount of fucoxanthin produced (18.9 mg/L) was the highest reported thus far for Pavlova species. In conclusion, the use of mixotrophic culture is a promising strategy for increasing fucoxanthin production in Pavlova species. KEY POINTS: • Glycerol enhances biomass and fucoxanthin production in Pavlova gyrans • Metabolite levels increase under mixotrophic conditions • Mixotrophic conditions and medium-light intensity are appropriate for P. gyrans.


Subject(s)
Biomass , Glycerol , Haptophyta , Xanthophylls , Xanthophylls/metabolism , Glycerol/metabolism , Haptophyta/metabolism , Haptophyta/growth & development , Haptophyta/radiation effects , Microalgae/metabolism , Microalgae/growth & development , Culture Media/chemistry , Carbon/metabolism , Light , Metabolomics
7.
Environ Pollut ; 351: 124084, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38697245

ABSTRACT

Due to the potential impacts of microplastics (MPs) and nanoplastics (NPs) on algal growth and thereby affect the climate-relevant substances, dimethylsulfoniopropionate (DMSP) and dimethyl sulfide (DMS), we studied the polystyrene (PS) MPs and NPs of 1 µm and 80 nm impacts on the growth, chlorophyll content, reactive oxygen species (ROS), antioxidant enzyme activity, and DMS/DMSP production in Emiliania huxleyi. E. huxleyi is a prominent oceanic alga that plays a key role in DMS and DMSP production. The results revealed that high concentrations of MPs and NPs inhibited the growth, carotenoid (Car), and Chl a concentrations of E. huxleyi. However, short-time exposure to low concentrations of PS MPs and NPs stimulated the growth of E. huxleyi. Furthermore, high concentrations of MPs and NPs resulted in an increase in the superoxide anion radical (O2.-) production rate and a decrease in the malondialdehyde (MDA) content compared with the low concentrations. Exposure to MPs and NPs at 5 mg L-1 induced superoxide dismutase (SOD) activity as a response to scavenging ROS. High concentrations of MPs and NPs significantly inhibited the production of DMSP and DMS. The findings of this study support the potential ecotoxicological impacts of MPs and NPs on algal growth, antioxidant system, and dimethylated sulfur compounds production, which maybe potentially impact the global climate.


Subject(s)
Antioxidants , Haptophyta , Reactive Oxygen Species , Sulfides , Sulfonium Compounds , Water Pollutants, Chemical , Antioxidants/metabolism , Sulfonium Compounds/metabolism , Haptophyta/growth & development , Haptophyta/metabolism , Haptophyta/drug effects , Reactive Oxygen Species/metabolism , Water Pollutants, Chemical/toxicity , Microplastics/toxicity , Chlorophyll/metabolism , Superoxide Dismutase/metabolism , Nanoparticles/toxicity , Polystyrenes/toxicity
8.
Science ; 376(6590): 312-316, 2022 04 15.
Article in English | MEDLINE | ID: mdl-35420932

ABSTRACT

Directing crystal growth into complex morphologies is challenging, as crystals tend to adopt thermodynamically stable morphologies. However, many organisms form crystals with intricate morphologies, as exemplified by coccoliths, microscopic calcite crystal arrays produced by unicellular algae. The complex morphologies of the coccolith crystals were hypothesized to materialize from numerous crystallographic facets, stabilized by fine-tuned interactions between organic molecules and the growing crystals. Using electron tomography, we examined multiple stages of coccolith development in three dimensions. We found that the crystals express only one set of symmetry-related crystallographic facets, which grow differentially to yield highly anisotropic shapes. Morphological chirality arises from positioning the crystals along specific edges of these same facets. Our findings suggest that growth rate manipulations are sufficient to yield complex crystalline morphologies.


Subject(s)
Haptophyta , Anisotropy , Calcium Carbonate/chemistry , Crystallization , Crystallography , Haptophyta/growth & development , Haptophyta/ultrastructure
9.
Microbiol Spectr ; 10(1): e0093421, 2022 02 23.
Article in English | MEDLINE | ID: mdl-35019679

ABSTRACT

Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.


Subject(s)
Autophagic Cell Death , Gammaproteobacteria/chemistry , Haptophyta/cytology , Haptophyta/drug effects , Herbicides/toxicity , Oxidative Stress/drug effects , Gammaproteobacteria/metabolism , Haptophyta/growth & development , Haptophyta/metabolism , Harmful Algal Bloom , Herbicides/chemistry , Herbicides/metabolism , Herbicides/pharmacology , Hydrogen-Ion Concentration , Photosynthesis/drug effects , Reactive Oxygen Species
10.
Nat Microbiol ; 6(11): 1357-1366, 2021 11.
Article in English | MEDLINE | ID: mdl-34697459

ABSTRACT

Phytoplankton are key components of the oceanic carbon and sulfur cycles1. During bloom events, some species can emit large amounts of the organosulfur volatile dimethyl sulfide (DMS) into the ocean and consequently the atmosphere, where it can modulate aerosol formation and affect climate2,3. In aquatic environments, DMS plays an important role as a chemical signal mediating diverse trophic interactions. Yet, its role in microbial predator-prey interactions remains elusive with contradicting evidence for its role in either algal chemical defence or in the chemo-attraction of grazers to prey cells4,5. Here we investigated the signalling role of DMS during zooplankton-algae interactions by genetic and biochemical manipulation of the algal DMS-generating enzyme dimethylsulfoniopropionate lyase (DL) in the bloom-forming alga Emiliania huxleyi6. We inhibited DL activity in E. huxleyi cells in vivo using the selective DL-inhibitor 2-bromo-3-(dimethylsulfonio)-propionate7 and overexpressed the DL-encoding gene in the model diatom Thalassiosira pseudonana. We showed that algal DL activity did not serve as an anti-grazing chemical defence but paradoxically enhanced predation by the grazer Oxyrrhis marina and other microzooplankton and mesozooplankton, including ciliates and copepods. Consumption of algal prey with induced DL activity also promoted O. marina growth. Overall, our results demonstrate that DMS-mediated grazing may be ecologically important and prevalent during prey-predator dynamics in aquatic ecosystems. The role of algal DMS revealed here, acting as an eat-me signal for grazers, raises fundamental questions regarding the retention of its biosynthetic enzyme through the evolution of dominant bloom-forming phytoplankton in the ocean.


Subject(s)
Diatoms/physiology , Haptophyta/metabolism , Phytoplankton/physiology , Sulfides/metabolism , Zooplankton/physiology , Animals , Ecosystem , Eutrophication , Haptophyta/growth & development , Seawater/microbiology , Seawater/parasitology
11.
Sci Rep ; 11(1): 12672, 2021 06 16.
Article in English | MEDLINE | ID: mdl-34135441

ABSTRACT

Prymnesium parvum is an environmentally harmful algae and well known for its toxic effects to the fish culture. However, there is a dearth of studies on the growth behavior of P. parvum and information on how the availability of nutrients and environmental factors affect their growth rate. To address this knowledge gap, we used a uniform design approach to quantify the effects of major nutrients (N, P, Si and Fe) and environmental factors (water temperature, pH and salinity) on the biomass density of P. parvum. We also generated the growth model for P. parvum as affected by each of these nutrients and environmental factors to estimate optimum conditions of growth. Results showed that P. parvum can reach its maximum growth rate of 0.789, when the water temperature, pH and salinity is 18.11 °C, 8.39, and 1.23‰, respectively. Moreover, maximum growth rate (0.895-0.896) of P. parvum reached when the concentration of nitrogen, phosphorous, silicon and iron reach 3.41, 1.05, 0.69 and 0.53 mg/l, respectively. The order of the effects of the environmental factors impacting the biomass density of P. parvum was pH > salinity > water temperature, while the order of the effects of nutrients impacting the biomass density of P. parvum was nitrogen > phosphorous > iron > silicon. These findings may assist to implement control measures of the population of P. parvum where this harmful alga threatens aquaculture industry in the waterbodies such as Ningxia region in China.


Subject(s)
Haptophyta/growth & development , Aquaculture , Biomass , Fresh Water/chemistry , Iron , Microalgae/growth & development , Nitrogen , Nutrients , Pest Control , Phosphorus , Salinity
12.
Appl Opt ; 60(16): 4778-4786, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34143042

ABSTRACT

An inelastic hyperspectral Scheimpflug lidar system was developed for microalgae classification and quantification. The correction for the refraction at the air-glass-water interface was established, making our system suitable for aquatic environments. The fluorescence spectrum of microalgae was extracted by principal component analysis, and seven species of microalgae from different phyla have been classified. It was verified that when the cell density of Phaeocystis globosa was in the range of ${{1}}{{{0}}^4}\sim{{1}}{{{0}}^6}\;{\rm{cell}}\;{\rm{m}}{{\rm{L}}^{- 1}}$, the cell density had a linear relationship with the fluorescence intensity. The experimental results show our system can identify and quantify microalgae, with application prospects for microalgae monitoring in the field environment and early warning of red tides or algal blooms.


Subject(s)
Hyperspectral Imaging/instrumentation , Microalgae/classification , Microalgae/growth & development , Optical Imaging/methods , Cell Count , Environmental Monitoring/methods , Haptophyta/classification , Haptophyta/growth & development
13.
Mar Biotechnol (NY) ; 23(2): 331-341, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33713238

ABSTRACT

The natural pigment fucoxanthin has attracted global attention because of its superior antioxidant properties. The haptophyte marine microalgae Pavlova spp. are assumed to be promising industrial fucoxanthin producers as their lack of a cell wall could facilitate the commercialization of cultured cells as a whole food. This study screened promising Pavlova strains with high fucoxanthin content to develop an outdoor cultivation method for fucoxanthin production. Initial laboratory investigations of P. pinguis NBRC 102807, P. lutheri NBRC 102808, and Pavlova sp. OPMS 30543 identified OPMS 30543 as having the highest fucoxanthin content. The culture conditions were optimized for OPMS 30543. Compared with f/2 and Walne's media, the use of Daigo's IMK medium led to the highest biomass production and highest fucoxanthin accumulation. The presence of seawater elements in Daigo's IMK medium was necessary for the growth of OPMS 30543. OPMS 30543 was then cultured outdoors using acrylic pipe photobioreactors, a plastic bag, an open tank, and a raceway pond. Acrylic pipe photobioreactors with small diameters enabled the highest biomass production. Using an acrylic pipe photobioreactor with 60-mm diameter, a fucoxanthin productivity of 4.88 mg/L/day was achieved in outdoor cultivation. Thus, this study demonstrated the usefulness of Pavlova sp. OPMS 30543 for fucoxanthin production in outdoor cultivation.


Subject(s)
Haptophyta/chemistry , Haptophyta/growth & development , Xanthophylls/metabolism , Biomass , Culture Media , Photobioreactors
14.
J Photochem Photobiol B ; 217: 112145, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33735745

ABSTRACT

Photophysiological responses of phytoplankton to changing multiple environmental drivers are essential in understanding and predicting ecological consequences of ocean climate changes. In this study, we investigated the combined effects of two CO2 levels (410 and 925 µatm) and five light intensities (80 to 480 µmol photons m-2 s-1) on cellular pigments contents, photosynthesis and calcification of the coccolithophore Emiliania huxleyi grown under nutrient replete and limited conditions, respectively. Our results showed that high light intensity, high CO2 level and nitrate limitation acted synergistically to reduce cellular chlorophyll a and carotenoid contents. Nitrate limitation predominantly enhanced calcification rate; phosphate limitation predominantly reduced photosynthetic carbon fixation rate, with larger extent of the reduction under higher levels of CO2 and light. Reduced availability of both nitrate and phosphate under the elevated CO2 concentration decreased saturating light levels for the cells to achieve the maximal relative electron transport rate (rETRmax). Light-saturating levels for rETRmax were lower than that for photosynthetic and calcification rates under the nutrient limitation. Regardless of the culture conditions, rETR under growth light levels correlated linearly and positively with measured photosynthetic and calcification rates. Our findings imply that E. huxleyi cells acclimated to macro-nutrient limitation and elevated CO2 concentration decreased their light requirement to achieve the maximal electron transport, photosynthetic and calcification rates, indicating a photophysiological strategy to cope with CO2 rise/pH drop in shoaled upper mixing layer above the thermocline where the microalgal cells are exposed to increased levels of light and decreased levels of nutrients.


Subject(s)
Carbon Dioxide/pharmacology , Haptophyta/growth & development , Light , Nutrients/chemistry , Photosynthesis/drug effects , Calcification, Physiologic/drug effects , Calcification, Physiologic/radiation effects , Chlorophyll A/metabolism , Electron Transport , Haptophyta/metabolism , Hydrogen-Ion Concentration , Nutrients/deficiency , Photosynthesis/radiation effects
15.
PLoS One ; 16(2): e0246745, 2021.
Article in English | MEDLINE | ID: mdl-33571269

ABSTRACT

The future physiology of marine phytoplankton will be impacted by a range of changes in global ocean conditions, including salinity regimes that vary spatially and on a range of short- to geological timescales. Coccolithophores have global ecological and biogeochemical significance as the most important calcifying marine phytoplankton group. Previous research has shown that the morphology of their exoskeletal calcified plates (coccoliths) responds to changing salinity in the most abundant coccolithophore species, Emiliania huxleyi. However, the extent to which these responses may be strain-specific is not well established. Here we investigated the growth response of six strains of E. huxleyi under low (ca. 25) and high (ca. 45) salinity batch culture conditions and found substantial variability in the magnitude and direction of response to salinity change across strains. Growth rates declined under low and high salinity conditions in four of the six strains but increased under both low and high salinity in strain RCC1232 and were higher under low salinity and lower under high salinity in strain PLYB11. When detailed changes in coccolith and coccosphere size were quantified in two of these strains that were isolated from contrasting salinity regimes (coastal Norwegian low salinity of ca. 30 and Mediterranean high salinity of ca. 37), the Norwegian strain showed an average 26% larger mean coccolith size at high salinities compared to low salinities. In contrast, coccolith size in the Mediterranean strain showed a smaller size trend (11% increase) but severely impeded coccolith formation in the low salinity treatment. Coccosphere size similarly increased with salinity in the Norwegian strain but this trend was not observed in the Mediterranean strain. Coccolith size changes with salinity compiled for other strains also show variability, strongly suggesting that the effect of salinity change on coccolithophore morphology is likely to be strain specific. We propose that physiological adaptation to local conditions, in particular strategies for plasticity under stress, has an important role in determining ecotype responses to salinity.


Subject(s)
Haptophyta/growth & development , Salinity
16.
Chemosphere ; 263: 127927, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32814137

ABSTRACT

Prymnesium parvum continues to spread globally, producing harmful algal blooms that release toxins known to cause fish kills. While previous work has identified possible P. parvum toxin(s) (e.g., prymnesins, fatty acids, fatty acid amides) and investigated treatment strategies targeted at minimizing cell abundance, studies examining efficacy of treatment approaches to remove toxins are lacking. To understand influences of sunlight on toxins stability and toxicity to fish, acutely toxic P. parvum cultures were exposed to three light scenarios (lab dark control, field dark, and field light) and then evaluated for acute toxicity to fish and prymnesins abundance. Previous work showed acute toxicity to fathead minnow larvae was ameliorated after 2 h of sunlight exposure, and results observed herein found an identical trend. Acute toxicity disappeared in light exposed filtrate, but filtrate exposed to 35 °C without sunlight remained acutely toxic to fish. Additionally, six prymnesins were identified through high-resolution mass spectrometry and abundance corresponded to acute toxicity levels. Prymnesins were present at the highest level in filtrate that was acutely toxic but diminished in filtrate that was exposed to light and correspondingly ameliorated acute toxicity to fish. These findings suggest prymnesins are responsible for measured acute toxicity and are photo-labile, which represents an important implication for treatment strategies.


Subject(s)
Haptophyta/growth & development , Lipoproteins/chemistry , Sunlight , Toxins, Biological/toxicity , Water Pollutants, Chemical/toxicity , Animals , Cyprinidae , Fatty Acids , Harmful Algal Bloom , Larva , Mass Spectrometry
17.
Ecotoxicol Environ Saf ; 207: 111571, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33254419

ABSTRACT

Marine microalgae with high removal efficiency of phenol are needed for the remediation of polluted seawater in cases involving phenol spills. To achieve this purpose, adaptive laboratory evolution (ALE) was performed by a microalga Isochrysis galbana Parke MACC/H59, which is capable of degrading phenol at concentrations of less than 100 mg L-1 in 4 d. Two acclimation conditions were used: (i) 90 d at 100 mg L-1 phenol, and (ii) 90 d at 100 mg L-1 phenol followed by another 90 d at 200 mg L-1 phenol. By doing so, two strains (PAS-1 and PAS-2) could be obtained respectively. They grew rapidly at phenol concentrations up to 200 mg L-1 and 300 mg L-1, respectively, with a specific growth rate 2.52-3.40 times and 1.93-3.23 times that of the control (without phenol). Also, both strains had a higher removal capacity of phenol than the unacclimated alga. Phenol at an initial concentration of 200 mg L-1 was completely removed in 5 d thereby. For 300 mg L-1 phenol, a removal efficiency of 92% was achieved in 10 days by using PAS-2, with a removal rate constant of 30.01 d-1 (about twice that of PAS-1) and a half-life of 4.90 d (about half that of PAS-1), showing that a better strain may be obtained by extending the acclimation time. The enhancement of phenol biodegradation can be explained by the elevated activity of phenol hydroxylase (PH) in both strains. These results indicated that ALE could be an efficient tool used to enhance the tolerance and biodegradation of marine microalgae to phenol in seawater.


Subject(s)
Acclimatization/physiology , Biodegradation, Environmental , Haptophyta/physiology , Phenols/metabolism , Water Pollutants, Chemical/metabolism , Haptophyta/growth & development , Microalgae/metabolism , Phenol/metabolism , Seawater
18.
Prep Biochem Biotechnol ; 51(5): 511-518, 2021.
Article in English | MEDLINE | ID: mdl-33078672

ABSTRACT

Marine microalga Isochrysis sp. contains omega-3 fatty acids like eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). Environmental factors play a major role in PUFA biosynthesis. Hence, the study focused to optimize factors such as temperature, pH, and photoperiod by response surface methodology (RSM). RSM results showed that the model is significant (p ≤ 0.05) with a high correlation coefficient (R2 = 0.908). The optimum conditions showed that maximum biomass (327 mg/L) at the temperature of 30 °C, pH of 7.5 and 16:8 (Light: Dark cycle), whereas the higher amount of DHA (13.3%) and EPA (9.0%) was observed in the conditions of 18 °C, pH of 7.5 and 16:8 (Light: Dark cycle). The biomass content was directly proportional to the temperature whereas DHA content was inversely proportional. It was revealed that the mRNA expression of EPA and DHA specific desaturases (5Des & 4Des) were significantly elevated in low temperature (20 °C) conditions. The results were highly correlated with the fatty acid profile of Isochrysis sp. grown under low temperature (20 °C) conditions which enhanced the EPA and DHA levels. This study suggests that the temperature is the most influencing factor which can be exploited in the industrial application of DHA and EPA production from Isochrysis sp.


Subject(s)
Biomass , Fatty Acids, Omega-3/biosynthesis , Haptophyta/growth & development , Hot Temperature , Microalgae/growth & development
19.
Sci Rep ; 10(1): 20444, 2020 11 24.
Article in English | MEDLINE | ID: mdl-33235278

ABSTRACT

Phaeocystis pouchetii (Hariot) Lagerheim, 1893 regularly dominates phytoplankton blooms in higher latitudes spanning from the English Channel to the Arctic. Through zooplankton grazing and microbial activity, it is considered to be a key resource for the entire marine food web, but the actual relevance of biomass transfer to higher trophic levels is still under discussion. Cell physiology and algal nutritional state are suggested to be major factors controlling the observed variability in zooplankton grazing. However, no data have so far yielded insights into the metabolic state of Phaeocystis populations that would allow testing this hypothesis. Therefore, endometabolic markers of different growth phases were determined in laboratory batch cultures using comparative metabolomics and quantified in different phytoplankton blooms in the field. Metabolites, produced during exponential, early and late stationary growth of P. pouchetii, were profiled using gas chromatography-mass spectrometry. Then, metabolites were characterized that correlate with the growth phases using multivariate statistical analysis. Free amino acids characterized the exponential growth, whereas the early stationary phase was correlated with sugar alcohols, mono- and disaccharides. In the late stationary phase, free fatty acids, sterols and terpenes increased. These marker metabolites were then traced in Phaeocystis blooms during a cruise in the Barents Sea and North Norwegian fjords. About 50 endometabolites of P. pouchetii were detected in natural phytoplankton communities. Mannitol, scyllo-inositol, 24-methylcholesta-5,22-dien-3ß-ol, and several free fatty acids were characteristic for Phaeocystis-dominated blooms but showed variability between them. Distinct metabolic profiles were detected in the nutrient-depleted community in the inner Porsangerfjord (< 0.5 µM NO3-, < 0.1 µM PO 4 3- ), with high relative amounts of free mono- and disaccharides indicative for a limited culture. This study thereby shows how the variable physiology of phytoplankton can alter the metabolic landscape of entire plankton communities.


Subject(s)
Haptophyta/growth & development , Metabolomics/methods , Phytoplankton/growth & development , Batch Cell Culture Techniques , Fatty Acids/analysis , Gas Chromatography-Mass Spectrometry , Haptophyta/metabolism , Phytoplankton/metabolism , Sterols/analysis , Sugar Alcohols/analysis , Terpenes/analysis
20.
Biomolecules ; 10(10)2020 10 12.
Article in English | MEDLINE | ID: mdl-33053668

ABSTRACT

Polar lipids from microalgae have aroused greater interest as a natural source of omega-3 (n-3) polyunsaturated fatty acids (PUFA), an alternative to fish, but also as bioactive compounds with multiple applications. The present study aims to characterize the polar lipid profile of cultured microalga Emiliania huxleyi using hydrophilic interaction liquid chromatography coupled with high-resolution mass spectrometry (HILIC-MS) and fatty acids (FA) analysis by gas chromatography (GC-MS). The lipidome of E. huxleyi revealed the presence of distinct n-3 PUFA (40% of total FA), namely docosahexaenoic acid (22:6n-3) and stearidonic acid (18:4n-3), which give this microalga an increased commercial value as a source of n-3 PUFA present in the form of polar lipids. A total of 134 species of polar lipids were identified and some of these species, particularly glycolipids, have already been reported for their bioactive properties. Among betaine lipids, the diacylglyceryl carboxyhydroxymethylcholine (DGCC) class is the least reported in microalgae. For the first time, monomethylphosphatidylethanolamine (MMPE) has been found in the lipidome of E. huxleyi. Overall, this study highlights the potential of E. huxleyi as a sustainable source of high-value polar lipids that can be exploited for different applications, namely human and animal nutrition, cosmetics, and pharmaceuticals.


Subject(s)
Haptophyta/chemistry , Lipids/analysis , Biotechnology/methods , Cells, Cultured , Chromatography, Liquid , Gas Chromatography-Mass Spectrometry , Haptophyta/growth & development , Haptophyta/metabolism , Lipid Metabolism , Lipidomics , Metabolic Engineering/methods , Microbiological Techniques , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL