Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.059
Filter
2.
Alzheimers Res Ther ; 16(1): 145, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961437

ABSTRACT

BACKGROUND: Heat-related illness (HRI) is commonly considered an acute condition, and its potential long-term consequences are not well understood. We conducted a population-based cohort study and an animal experiment to evaluate whether HRI is associated with dementia later in life. METHODS: The Taiwan National Health Insurance Research Database was used in the epidemiological study. We identified newly diagnosed HRI patients between 2001 and 2015, but excluded those with any pre-existing dementia, as the study cohort. Through matching by age, sex, and the index date with the study cohort, we selected individuals without HRI and without any pre-existing dementia as a comparison cohort at a 1:4 ratio. We followed each cohort member until the end of 2018 and compared the risk between the two cohorts using Cox proportional hazards regression models. In the animal experiment, we used a rat model to assess cognitive functions and the histopathological changes in the hippocampus after a heat stroke event. RESULTS: In the epidemiological study, the study cohort consisted of 70,721 HRI patients and the comparison cohort consisted of 282,884 individuals without HRI. After adjusting for potential confounders, the HRI patients had a higher risk of dementia (adjusted hazard ratio [AHR] = 1.24; 95% confidence interval [CI]: 1.19-1.29). Patients with heat stroke had a higher risk of dementia compared with individuals without HRI (AHR = 1.26; 95% CI: 1.18-1.34). In the animal experiment, we found cognitive dysfunction evidenced by animal behavioral tests and observed remarkable neuronal damage, degeneration, apoptosis, and amyloid plaque deposition in the hippocampus after a heat stroke event. CONCLUSIONS: Our epidemiological study indicated that HRI elevated the risk of dementia. This finding was substantiated by the histopathological features observed in the hippocampus, along with the cognitive impairments detected, in the experimental heat stroke rat model.


Subject(s)
Dementia , Animals , Dementia/epidemiology , Dementia/pathology , Male , Female , Humans , Aged , Taiwan/epidemiology , Rats , Cohort Studies , Hippocampus/pathology , Middle Aged , Heat Stress Disorders/epidemiology , Heat Stress Disorders/complications , Aged, 80 and over , Risk Factors , Disease Models, Animal
4.
Emerg Med Clin North Am ; 42(3): 485-492, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38925769

ABSTRACT

There is a growing incidence of heat-related illnesses due to rising global temperatures. Heat-related illnesses range from mild to severe, with heat stroke being the most critical. The wet bulb global temperature index considers humidity and solar intensity; its use is recommended to estimate heat stress on an individual and mitigate risk. Efficient cooling methods, such as cold water immersion, are essential in severe cases. Prevention is through hydration, appropriate clothing, recognition of high risk medications, and awareness of environmental conditions. Recognizing heat-related illnesses early in the clinical course and implementing rapid cooling strategies reduces morbidity and mortality.


Subject(s)
Heat Stress Disorders , Humans , Heat Stress Disorders/therapy , Heat Stress Disorders/diagnosis , Hot Temperature
5.
Sci Rep ; 14(1): 14599, 2024 06 25.
Article in English | MEDLINE | ID: mdl-38918487

ABSTRACT

The incidence and prevalence of dialysis in Taiwan are high compared to other regions. Consequently, mitigating chronic kidney disease (CKD) and the worsening of kidney function have emerged as critical healthcare priorities in Taiwan. Heat stress is known to be a significant risk factor for CKD and kidney function impairment. However, differences in the impact of heat stress between males and females remains unexplored. We conducted this retrospective cross-sectional analysis using data from the Taiwan Biobank (TWB), incorporating records of the wet bulb globe temperature (WBGT) during midday (11 AM-2 PM) and working hours (8 AM-5 PM) periods based on the participants' residential address. Average 1-, 3-, and 5-year WBGT values prior to the survey year were calculated and analyzed using a geospatial artificial intelligence-based ensemble mixed spatial model, covering the period from 2010 to 2020. A total of 114,483 participants from the TWB were included in this study, of whom 35.9% were male and 1053 had impaired kidney function (defined as estimated glomerular filtration rate < 60 ml/min/1.73 m2). Multivariable analysis revealed that in the male participants, during the midday period, the 1-, 3-, and 5-year average WBGT values per 1 â„ƒ increase were significantly positively associated with eGFR < 60 ml/min/1.73 m2 (odds ratio [OR], 1.096, 95% confidence interval [CI] = 1.002-1.199, p = 0.044 for 1 year; OR, 1.093, 95% CI = 1.000-1.196, p = 0.005 for 3 years; OR, 1.094, 95% CI = 1.002-1.195, p = 0.045 for 5 years). However, significant associations were not found for the working hours period. In the female participants, during the midday period, the 1-, 3-, and 5-year average WBGT values per 1 â„ƒ increase were significantly negatively associated with eGFR < 60 ml/min/1.73 m2 (OR, 0.872, 95% CI = 0.778-0.976, p = 0.018 for 1 year; OR, 0.874, 95% CI = 0.780-0.978, p = 0.019 for 3 years; OR, 0.875, 95% CI = 0.784-0.977, p = 0.018 for 5 years). In addition, during the working hours period, the 1-, 3-, and 5-year average WBGT values per 1 â„ƒ increase were also significantly negatively associated with eGFR < 60 ml/min/1.73 m2 (OR, 0.856, 95% CI = 0.774-0.946, p = 0.002 for 1 year; OR, 0.856, 95% CI = 0.774-0.948, p = 0.003 for 3 years; OR, 0.853, 95% CI = 0.772-0.943, p = 0.002 for 5 years). In conclusion, our results revealed that increased WBGT was associated with impaired kidney function in males, whereas increased WBGT was associated with a protective effect against impaired kidney function in females. Further studies are needed to elucidate the exact mechanisms underlying these sex-specific differences.


Subject(s)
Glomerular Filtration Rate , Humans , Female , Male , Taiwan/epidemiology , Middle Aged , Cross-Sectional Studies , Retrospective Studies , Aged , Adult , Kidney/physiopathology , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/physiopathology , Sex Factors , Risk Factors , Heat-Shock Response , Heat Stress Disorders/epidemiology , Heat Stress Disorders/physiopathology
6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-38860702

ABSTRACT

Study objectives were to determine the effects of mitoquinol (MitoQ, a mitochondrial-targeted antioxidant) on biomarkers of metabolism and inflammation during acute heat stress (HS). Crossbred barrows [n = 32; 59.0 ±â€…5.6 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCon), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were acclimated for 6 d to individual pens before study initiation. The trial consisted of two experimental periods (P). During P1 (2 d), pigs were fed ad libitum and housed in TN conditions (20.6 ±â€…0.8 °C). During P2 (24 h), HSCon and HSMitoQ pigs were exposed to continuous HS (35.2 ±â€…0.2 °C), while TNCon and TNMitoQ remained in TN conditions. MitoQ (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +6.8 °C, and +101 breaths per minute, respectively; P < 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (FI; 67%; P < 0.01); however, FI tended to be increased in HSMitoQ relative to HSCon pigs (1.5 kg vs. 0.9 kg, respectively; P = 0.08). Heat-stressed pigs lost BW compared to their TN counterparts (-4.7 kg vs. +1.6 kg, respectively; P < 0.01); however, the reduction in BW was attenuated in HSMitoQ compared to HSCon pigs (-3.9 kg vs. -5.5 kg, respectively; P < 0.01). Total gastrointestinal tract weight (empty tissue and luminal contents) was decreased in HS pigs relative to their TN counterparts (6.2 kg vs. 8.6 kg, respectively; P < 0.01). Blood glucose increased in HSMitoQ relative to HSCon pigs (15%; P = 0.04). Circulating non-esterified fatty acids (NEFA) increased in HS compared to TN pigs (P < 0.01), although this difference was disproportionately influenced by elevated NEFA in HSCon relative to HSMitoQ pigs (251 µEq/L vs. 142 µEq/L; P < 0.01). Heat-stressed pigs had decreased circulating insulin relative to their TN counterparts (47%; P = 0.04); however, the insulin:FI ratio tended to increase in HS relative to TN pigs (P = 0.09). Overall, circulating leukocytes were similar across treatments (P > 0.10). Plasma C-reactive protein remained similar among treatments; however, haptoglobin increased in HS relative to TN pigs (48%; P = 0.03). In conclusion, acute HS exposure negatively altered animal performance, inflammation, and metabolism, which were partially ameliorated by MitoQ.


Heat stress (HS) compromises animal health and productivity, and this causes major economic losses in almost every livestock sector. The negative consequences of HS are thought to originate from intestinal barrier dysfunction and subsequent immune activation. The underlying causes of lost intestinal integrity during HS are likely multifactorial; however, intestinal ischemia, increased accumulation of reactive oxygen species, and the ensuing epithelial oxidative damage might be potential causes. Mitochondria-targeted antioxidants, such as mitoquinol (MitoQ), are probably more effective than traditional dietary antioxidants (i.e., selenium, vitamin E) at alleviating oxidative stress, as they localize and accumulate within the mitochondria, potentiating their antioxidant activity. Thus, the present study aimed to investigate MitoQ's role during a thermal event in growing pigs. Herein, HS increased all body temperature indices, decreased feed intake (FI), and induced substantial body weight (BW) loss. Interestingly, the reduction in FI and BW was less dramatic in pigs receiving MitoQ. Changes in circulating metabolism and the acute phase response were observed due to the HS challenge; however, contrary to our expectations, these changes were not offset by MitoQ administration. Although our results suggest a positive MitoQ effect on growth performance, future studies are needed to corroborate the replicability of this response during HS.


Subject(s)
Ubiquinone , Animals , Ubiquinone/analogs & derivatives , Ubiquinone/pharmacology , Ubiquinone/administration & dosage , Male , Swine , Organophosphorus Compounds/pharmacology , Organophosphorus Compounds/administration & dosage , Antioxidants/pharmacology , Hot Temperature/adverse effects , Heat-Shock Response/drug effects , Swine Diseases/drug therapy , Heat Stress Disorders/veterinary , Heat Stress Disorders/drug therapy , Random Allocation , Body Temperature/drug effects
7.
BMC Public Health ; 24(1): 1711, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38926816

ABSTRACT

PURPOSE: Global warming has led to an increase in the number and intensity of extreme heat events, posing a significant threat to the health and safety of workers, especially those working outdoors, as they often have limited access to cooling strategies. The present systematic literature review (a) summarizes the current knowledge on the impacts of climate change on outdoor workers, (b) provides historical background on this issue, (c) explores factors that reduce and increase thermal stress resilience, (d) discusses the heat mitigation strategies, and (e) provides an overview of existing policy and legal frameworks on occupational heat exposure among outdoor workers. MATERIALS AND METHODS: In this systematic review, we searched scientific databases including Scopus (N = 855), Web of Science (N = 828), and PubMed (N = 202). Additionally, we identified relevant studies on climate change and heat-stress control measures through Google Scholar (N = 116) using specific search terms. In total, we monitored 2001 articles pertaining to worker populations (men = 2921; women = 627) in various outdoor climate conditions across 14 countries. After full-text assessment, 55 studies were selected for inclusion, and finally, 29 eligible papers were included for data extraction. RESULTS: Failure to implement effective control strategies for outdoor workers will result in decreased resilience to thermal stress. The findings underscore a lack of awareness regarding certain adaptation strategies and interventions aimed at preventing and enhancing resilience to the impact of climate change on heat stress prevalence among workers in outdoor tropical and subtropical environments. However, attractive alternative solutions from the aspects of economic and ecological sustainability in the overall assessment of heat stress resilience can be referred to acclimatization, shading, optimized clothing properties and planned breaks. CONCLUSION: The integration of climate change adaptation strategies into occupational health programs can enhance occupational heat resilience among outdoor workers. Conducting cost-benefit evaluations of health and safety measures for thermal stress adaptation strategies among outdoor workers is crucial for professionals and policymakers in low- and middle-income tropical and subtropical countries. In this respect, complementary measures targeting hydration, work-rest regimes, ventilated garments, self-pacing, and mechanization can be adopted to protect outdoor workers. Risk management strategies, adaptive measures, heat risk awareness, practical interventions, training programs, and protective policies should be implemented in hot-dry and hot-humid climates to boost the tolerance and resilience of outdoor workers.


Subject(s)
Climate Change , Heat Stress Disorders , Humans , Heat Stress Disorders/prevention & control , Heat Stress Disorders/epidemiology , Occupational Exposure/prevention & control , Occupational Exposure/adverse effects , Hot Temperature/adverse effects , Female , Male
8.
Sci Rep ; 14(1): 14557, 2024 06 24.
Article in English | MEDLINE | ID: mdl-38914736

ABSTRACT

The study aims to develop an abnormal body temperature probability (ABTP) model for dairy cattle, utilizing environmental and physiological data. This model is designed to enhance the management of heat stress impacts, providing an early warning system for farm managers to improve dairy cattle welfare and farm productivity in response to climate change. The study employs the Least Absolute Shrinkage and Selection Operator (LASSO) algorithm to analyze environmental and physiological data from 320 dairy cattle, identifying key factors influencing body temperature anomalies. This method supports the development of various models, including the Lyman Kutcher-Burman (LKB), Logistic, Schultheiss, and Poisson models, which are evaluated for their ability to predict abnormal body temperatures in dairy cattle effectively. The study successfully validated multiple models to predict abnormal body temperatures in dairy cattle, with a focus on the temperature-humidity index (THI) as a critical determinant. These models, including LKB, Logistic, Schultheiss, and Poisson, demonstrated high accuracy, as measured by the AUC and other performance metrics such as the Brier score and Hosmer-Lemeshow (HL) test. The results highlight the robustness of the models in capturing the nuances of heat stress impacts on dairy cattle. The research develops innovative models for managing heat stress in dairy cattle, effectively enhancing detection and intervention strategies. By integrating advanced technologies and novel predictive models, the study offers effective measures for early detection and management of abnormal body temperatures, improving cattle welfare and farm productivity in changing climatic conditions. This approach highlights the importance of using multiple models to accurately predict and address heat stress in livestock, making significant contributions to enhancing farm management practices.


Subject(s)
Body Temperature , Dairying , Animals , Cattle , Body Temperature/physiology , Dairying/methods , Risk Factors , Cattle Diseases/diagnosis , Cattle Diseases/physiopathology , Heat Stress Disorders/veterinary , Heat Stress Disorders/physiopathology , Female , Climate Change , Probability , Risk Assessment/methods
9.
J Therm Biol ; 122: 103883, 2024 May.
Article in English | MEDLINE | ID: mdl-38875961

ABSTRACT

Melatonin (MT) is an amine hormone secreted by the body that has antioxidant and anti-inflammatory properties. The aim of this study was to investigate pathophysiological protection of MT in heat-stressed chickens. By modelling heat-stressed chickens and treating them with MT. After 21 days of administration, serum antioxidant enzymes, biochemical indices, inflammatory cytokine and heat-stress indices were detected, along with cardiopulmonary function indices and histological observations in chickens. The results show heat-stress induced a decrease (P < 0.05) in body weight and an increase in body temperature, which was reversed after MT intervention. Treatment with MT inhibited (P < 0.05) the secretion of pro-inflammatory factors interleukin-1ß, interleukin-6, tumor necrosis factor α, serum heat shock protein 70, corticosterone, and elevated (P < 0.05) the levels of biochemical factors total protein, albumin, globulin, and increased (P < 0.05) the activities of antioxidant enzymes superoxide dismutase, glutathione peroxidase and catalase in chicken serum caused by heat stress, and the best effect was observed with the medium dose of MT. The heat-stress caused cardiac atrophy and pulmonary congestion, decreased (P < 0.05) the cardiac function indices creatine kinase isoenzyme, cardiac troponin I, angiotensin receptor I, creatine kinase and lung function indices myeloperoxidase, angiotensin-II, heat shock factor I, and increased (P < 0.05) the lung vascular endothelial growth factor II. Sections of the heart and lungs after administration of MT were observed to be more complete with more normal tissue indices. At the same time, compared with heat stress, heart and lung function indices of grade chickens after MT administration were significantly (P < 0.05)reduced and tended to normal levels, and the best effect was observed in the medium-dose MT. In conclusion, heat stress can cause pathophysiological damage in chickens, and 1 mg/kg/d of exogenous melatonin can attenuate this adverse effect.


Subject(s)
Chickens , Heat Stress Disorders , Heat-Shock Response , Melatonin , Animals , Melatonin/pharmacology , Melatonin/administration & dosage , Heat-Shock Response/drug effects , Heat Stress Disorders/drug therapy , Heat Stress Disorders/veterinary , Antioxidants , Cytokines/metabolism , Cytokines/blood , Male , Poultry Diseases/drug therapy
10.
J Therm Biol ; 122: 103856, 2024 May.
Article in English | MEDLINE | ID: mdl-38823216

ABSTRACT

In the future, conflicts between animal welfare and climate change will gradually intensify. In the present study, we investigated the daily rumination time (RT) of lactating Holstein-Friesian cows in a zone with temperate climate and the effects of heat load duration and heat load intensity. Responses of individual cows to heat load were assessed, adjusting for milk yield, lactation number, days in milk as well as reproductive status and season. A total of 27,149 data points from 183 cows in a naturally ventilated barn in Brandenburg, Germany, were collected from June 2015 to May 2017. Ambient temperature and relative humidity were recorded at eight positions inside the barn every 5 min, and the temperature-humidity index (THI) was calculated. Based on THI, the degree of heat load was determined, using critical thresholds of THI = 68, 72, and 80. Daily RT was measured with a microphone-based sensor system (collar) on the cow's neck. The analysis models included autocorrelations in time series as well as individual cow-related effects. With each 5 min exposure to contemporaneous heat load, a decrease of approximately 1.17 min d-1 in RT per cow from non-heat stress to heat stress conditions by exceeding THI ≥68 (p < 0.01). This effect was intensified by exceeding the critical THI thresholds of 68 and 72. As heat load duration and intensity increased, daily RT decreased in comparison to daily RT under non-stress conditions. High-yielding (>38.4 kg milk/day) cows were more influenced in rumination time than low-yielding (≤28.8 kg milk/day) cows. With moderate contemporaneous heat load, RT decreased by 0.14 min d-1 per 5 min in high-yielding cows compared to low-yielding cows under moderate heat load. A decrease of 0.1 min d-1 was found in daily RT of mid-yielding cows. However, the delayed effects of heat load (one to three days after the heat stress event) were associated with days in milk and reproduction status. When the heat load duration lasted for several days, the responses were less pronounced than the impacts of contemporaneous heat load (when the heat stress event lasted for one day). Delayed mild heat load resulted in an increase in RT by 0.13 min d-1 in lactating cows ≤60 DIM. This was also found with delayed moderate heat load. Lactating cows ≤60 DIM showed a rise of 0.09 min d-1 in RT. RT also showed interactions with reproduction status of cows under delayed moderate heat stress. Lactating cows with ≤180 days of pregnancy showed an increase of 0.61 min d-1 in RT. Similarly, cows with >180 days of pregnancy had 0.64 min d-1 more RT compared to non-pregnant cows. Further analysis with higher temporal resolution of RT than data accumulation in 24-h blocks as well as the assessment of the correlation between feed composition, intake and rumination will elucidate the influence of heat load on daily RT.


Subject(s)
Heat-Shock Response , Lactation , Animals , Cattle/physiology , Female , Humidity , Hot Temperature , Rumination, Digestive , Climate , Heat Stress Disorders/veterinary , Heat Stress Disorders/physiopathology
11.
BMJ Open ; 14(6): e077529, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890141

ABSTRACT

INTRODUCTION: African cities, particularly Abidjan and Johannesburg, face challenges of rapid urban growth, informality and strained health services, compounded by increasing temperatures due to climate change. This study aims to understand the complexities of heat-related health impacts in these cities. The objectives are: (1) mapping intraurban heat risk and exposure using health, socioeconomic, climate and satellite imagery data; (2) creating a stratified heat-health forecast model to predict adverse health outcomes; and (3) establishing an early warning system for timely heatwave alerts. The ultimate goal is to foster climate-resilient African cities, protecting disproportionately affected populations from heat hazards. METHODS AND ANALYSIS: The research will acquire health-related datasets from eligible adult clinical trials or cohort studies conducted in Johannesburg and Abidjan between 2000 and 2022. Additional data will be collected, including socioeconomic, climate datasets and satellite imagery. These resources will aid in mapping heat hazards and quantifying heat-health exposure, the extent of elevated risk and morbidity. Outcomes will be determined using advanced data analysis methods, including statistical evaluation, machine learning and deep learning techniques. ETHICS AND DISSEMINATION: The study has been approved by the Wits Human Research Ethics Committee (reference no: 220606). Data management will follow approved procedures. The results will be disseminated through workshops, community forums, conferences and publications. Data deposition and curation plans will be established in line with ethical and safety considerations.


Subject(s)
Cities , Climate Change , Machine Learning , Humans , South Africa , Research Design , Hot Temperature/adverse effects , Satellite Imagery , Heat Stress Disorders/epidemiology
15.
Nursing ; 54(7): 16-23, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38913921

ABSTRACT

ABSTRACT: This article concisely overviews heat-related illnesses, emphasizing their significant impact on public health. It explores the pathophysiology of conditions ranging from mild heat cramps to life-threatening heat stroke, highlighting key heat transfer mechanisms and the importance of environmental factors. Differential diagnosis considerations, prevention strategies, and nursing implications are discussed, underscoring the need for prompt recognition and intervention in managing these conditions.


Subject(s)
Heat Stress Disorders , Humans , Heat Stress Disorders/nursing , Heat Stress Disorders/physiopathology , Diagnosis, Differential , Heat Stroke/nursing , Heat Stroke/physiopathology , Heat Stroke/diagnosis , Hot Temperature/adverse effects , Hot Temperature/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...