Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.332
Filter
1.
Nat Commun ; 15(1): 5175, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38890325

ABSTRACT

The receptor-binding site of influenza A virus hemagglutinin partially overlaps with major antigenic sites and constantly evolves. In this study, we observe that mutations G186D and D190N in the hemagglutinin receptor-binding site have coevolved in two recent human H3N2 clades. X-ray crystallography results show that these mutations coordinately drive the evolution of the hemagglutinin receptor binding mode. Epistasis between G186D and D190N is further demonstrated by glycan binding and thermostability analyses. Immunization and neutralization experiments using mouse and human samples indicate that the evolution of receptor binding mode is accompanied by a change in antigenicity. Besides, combinatorial mutagenesis reveals that G186D and D190N, along with other natural mutations in recent H3N2 strains, alter the compatibility with a common egg-adaptive mutation in seasonal influenza vaccines. Overall, our findings elucidate the role of epistasis in shaping the recent evolution of human H3N2 hemagglutinin and substantiate the high evolvability of its receptor-binding mode.


Subject(s)
Epistasis, Genetic , Evolution, Molecular , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H3N2 Subtype , Influenza, Human , Humans , Influenza A Virus, H3N2 Subtype/genetics , Influenza A Virus, H3N2 Subtype/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Animals , Mice , Binding Sites , Influenza, Human/virology , Mutation , Crystallography, X-Ray , Influenza Vaccines , Protein Binding , Receptors, Virus/metabolism , Receptors, Virus/genetics , Receptors, Virus/chemistry , Female
2.
Emerg Microbes Infect ; 13(1): 2364736, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38847071

ABSTRACT

Since 2007, h9.4.2.5 has emerged as the most predominant branch of H9N2 avian influenza viruses (AIVs) that affects the majority of the global poultry population. The spread of this viral branch in vaccinated chicken flocks has not been considerably curbed despite numerous efforts. The evolutionary fitness of h9.4.2.5-branched AIVs must consequently be taken into consideration. The glycosylation modifications of hemagglutinin (HA) play a pivotal role in regulating the balance between receptor affinity and immune evasion for influenza viruses. Sequence alignment showed that five major HA glycosylation patterns have evolved over time in h9.4.2.5-branched AIVs. Here, we compared the adaptive phenotypes of five virus mutants with different HA glycosylation patterns. According to the results, the mutant with 6 N-linked glycans displayed the best acid and thermal stability and a better capacity for multiplication, although having a relatively lower receptor affinity than 7 glycans. The antigenic profile between the five mutants revealed a distinct antigenic distance, indicating that variations in glycosylation level have an impact on antigenic drift. These findings suggest that changes in the number of glycans on HA can not only modulate the receptor affinity and antigenicity of H9N2 AIVs, but also affect their stability and multiplication. These adaptive phenotypes may underlie the biological basis for the dominant strain switchover of h9.4.2.5-branched AIVs. Overall, our study provides a systematic insight into how changes in HA glycosylation patterns regulate the evolutionary fitness and epidemiological dominance drift of h9.4.2.5-branched H9N2 AIVs, which will be of great benefit for the glycosylation-dependent vaccine design.


Subject(s)
Chickens , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Glycosylation , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/metabolism , Animals , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Influenza in Birds/virology , Chickens/virology , Mutation , Polysaccharides/metabolism , Virus Replication , Madin Darby Canine Kidney Cells , Poultry Diseases/virology
3.
Emerg Microbes Infect ; 13(1): 2373314, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38922326

ABSTRACT

The proportion of human isolates with reduced neuraminidase inhibitors (NAIs) susceptibility in highly pathogenic avian influenza (HPAI) H7N9 virus was high. These drug-resistant strains showed good replication capacity without serious loss of fitness. In the presence of oseltamivir, R229I substitution were found in HA1 region of the HPAI H7N9 virus before NA R292K appeared. HPAI H7N9 or H7N9/PR8 recombinant viruses were developed to study whether HA R229I could increase the fitness of the H7N9 virus bearing NA 292K. Replication efficiency was assessed in MDCK or A549 cells. Neuraminidase enzyme activity and receptor-binding ability were analyzed. Pathogenicity in C57 mice was evaluated. Antigenicity analysis was conducted through a two-way HI test, in which the antiserum was obtained from immunized ferrets. Transcriptomic analysis of MDCK infected with HPAI H7N9 24hpi was done. It turned out that HA R229I substitution from oseltamivir induction in HA1 region increased (1) replication ability in MDCK(P < 0.05) and A549(P < 0.05), (2) neuraminidase enzyme activity, (3) binding ability to both α2,3 and α2,6 receptor, (4) pathogenicity to mice(more weight loss; shorter mean survival day; viral titer in respiratory tract, P < 0.05; Pathological changes in pneumonia), (5) transcriptome response of MDCK, of the H7N9 virus bearing NA 292K. Besides, HA R229I substitution changed the antigenicity of H7N9/PR8 virus (>4-fold difference of HI titre). It indicated that through the fine-tuning of HA-NA balance, R229I increased the fitness and changed the antigenicity of H7N9 virus bearing NA 292K. Public health attention to this mechanism needs to be drawn.


Subject(s)
Antiviral Agents , Influenza A Virus, H7N9 Subtype , Neuraminidase , Orthomyxoviridae Infections , Oseltamivir , Virus Replication , Animals , Oseltamivir/pharmacology , Influenza A Virus, H7N9 Subtype/genetics , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/pathogenicity , Influenza A Virus, H7N9 Subtype/immunology , Influenza A Virus, H7N9 Subtype/physiology , Neuraminidase/genetics , Neuraminidase/metabolism , Dogs , Virus Replication/drug effects , Antiviral Agents/pharmacology , Humans , Mice , Orthomyxoviridae Infections/virology , Madin Darby Canine Kidney Cells , A549 Cells , Mice, Inbred C57BL , Drug Resistance, Viral/genetics , Amino Acid Substitution , Influenza, Human/virology , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Female , Viral Proteins/genetics , Viral Proteins/metabolism
4.
J Biotechnol ; 391: 57-63, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38851397

ABSTRACT

Antigen-presenting cells (APCs) play an important role in virus infection control by bridging innate and adaptive immune responses. Macrophages and dendritic cells (DCs) possess various surface receptors to recognize/internalize antigens, and antibody binding can enhance pathogen-opsonizing uptake by these APCs via interaction of antibody fragment crystallizable (Fc) domains with Fc receptors, evoking profound pathogen control in certain settings. Here, we examined phagocytosis-enhancing potential of Fc domains directly oriented on a retroviral virion/virus-like particle (VLP) surface. We generated an expression vector coding a murine Fc fragment fused to the transmembrane region (TM) of a retroviral envelope protein, deriving expression of the Fc-TM fusion protein on the transfected cell surface and production of virions incorporating the chimeric Fc upon co-transfection. Incubation of Fc-displaying simian immunodeficiency virus (SIV) with murine J774 macrophages and bone marrow-derived DCs derived Fc receptor-dependent enhanced uptake, being visualized by imaging cytometry. Alternative preparation of a murine leukemia virus (MLV) backbone-based Fc-displaying VLP loading an influenza virus hemagglutinin (HA) antigen resulted in enhanced HA internalization by macrophages, stating antigen compatibility of the design. Results show that the Fc-TM fusion molecule can be displayed on certain viruses/VLPs and may be utilized as a molecular adjuvant to facilitate APC antigen uptake.


Subject(s)
Antigen-Presenting Cells , Dendritic Cells , Immunoglobulin Fc Fragments , Virion , Animals , Mice , Immunoglobulin Fc Fragments/genetics , Immunoglobulin Fc Fragments/metabolism , Immunoglobulin Fc Fragments/immunology , Antigen-Presenting Cells/immunology , Antigen-Presenting Cells/metabolism , Virion/metabolism , Virion/genetics , Dendritic Cells/immunology , Dendritic Cells/metabolism , Macrophages/metabolism , Macrophages/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/immunology , Simian Immunodeficiency Virus/immunology , Simian Immunodeficiency Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Cell Line , Leukemia Virus, Murine/genetics , Phagocytosis , Humans
5.
Nat Microbiol ; 9(7): 1764-1777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38849624

ABSTRACT

Influenza virus infection is initiated by the attachment of the viral haemagglutinin (HA) protein to sialic acid receptors on the host cell surface. Most virus particles enter cells through clathrin-mediated endocytosis (CME). However, it is unclear how viral binding signals are transmitted through the plasma membrane triggering CME. Here we found that metabotropic glutamate receptor subtype 2 (mGluR2) and potassium calcium-activated channel subfamily M alpha 1 (KCa1.1) are involved in the initiation and completion of CME of influenza virus using an siRNA screen approach. Influenza virus HA directly interacted with mGluR2 and used it as an endocytic receptor to initiate CME. mGluR2 interacted and activated KCa1.1, leading to polymerization of F-actin, maturation of clathrin-coated pits and completion of the CME of influenza virus. Importantly, mGluR2-knockout mice were significantly more resistant to different influenza subtypes than the wild type. Therefore, blocking HA and mGluR2 interaction could be a promising host-directed antiviral strategy.


Subject(s)
Endocytosis , Mice, Knockout , Receptors, Metabotropic Glutamate , Animals , Receptors, Metabotropic Glutamate/metabolism , Receptors, Metabotropic Glutamate/genetics , Mice , Humans , Virus Internalization , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Clathrin/metabolism , Orthomyxoviridae Infections/virology , Orthomyxoviridae Infections/metabolism , HEK293 Cells , Actins/metabolism , Dogs , Madin Darby Canine Kidney Cells , Receptors, Virus/metabolism , Receptors, Virus/genetics , Influenza, Human/virology , Influenza, Human/metabolism , Orthomyxoviridae/physiology , Orthomyxoviridae/genetics , Orthomyxoviridae/metabolism
6.
Cell Host Microbe ; 32(7): 1089-1102.e10, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38889725

ABSTRACT

Avian influenza A virus (IAV) surveillance in Northern California, USA, revealed unique IAV hemagglutinin (HA) genome sequences in cloacal swabs from lesser scaups. We found two closely related HA sequences in the same duck species in 2010 and 2013. Phylogenetic analyses suggest that both sequences belong to the recently discovered H19 subtype, which thus far has remained uncharacterized. We demonstrate that H19 does not bind the canonical IAV receptor sialic acid (Sia). Instead, H19 binds to the major histocompatibility complex class II (MHC class II), which facilitates viral entry. Unlike the broad MHC class II specificity of H17 and H18 from bat IAV, H19 exhibits a species-specific MHC class II usage that suggests a limited host range and zoonotic potential. Using cell lines overexpressing MHC class II, we rescued recombinant H19 IAV. We solved the H19 crystal structure and identified residues within the putative Sia receptor binding site (RBS) that impede Sia-dependent entry.


Subject(s)
Ducks , Hemagglutinin Glycoproteins, Influenza Virus , Histocompatibility Antigens Class II , Influenza A virus , Phylogeny , Receptors, Virus , Animals , Influenza A virus/genetics , Influenza A virus/immunology , Receptors, Virus/metabolism , Receptors, Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Histocompatibility Antigens Class II/metabolism , Histocompatibility Antigens Class II/genetics , Ducks/virology , Humans , Virus Internalization , Influenza in Birds/virology , Binding Sites , Protein Binding , Crystallography, X-Ray , Cell Line , N-Acetylneuraminic Acid/metabolism , Host Specificity , Species Specificity
7.
Eur J Med Chem ; 272: 116469, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38704939

ABSTRACT

Accurate diagnosis and effective antiviral treatments are urgently needed for the prevention and control of flu caused by influenza viruses. In this study, a novel oleanic acid (OA) functionalized gold nanorod OA-AuNP was prepared through a convenient ligand-exchange reaction. As hemagglutinin (HA) on the viral surface binds strongly to the multiple OA molecules on the surface of the nanoparticle, the prepared OA-AuNP was found to exhibit potent antiviral activity against a wide range of influenza A virus strains. Furthermore, the change in color resulting from the specific binding between HA and OA and the resultant aggregation of the OA-AuNP can be visually observed or measured by UV-vis spectra with a detection limit of 2 and 0.18 hemagglutination units (HAU), respectively, which is comparable to the commercially available influenza colloid gold rapid diagnostic kits. These findings demonstrate the potential of the OA-AuNP for the development of novel multivalent antiviral conjugates and the diagnosis of influenza virus.


Subject(s)
Antiviral Agents , Gold , Nanotubes , Gold/chemistry , Nanotubes/chemistry , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Influenza A virus/drug effects , Humans , Metal Nanoparticles/chemistry , Molecular Structure , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Microbial Sensitivity Tests , Dogs , Animals , Dose-Response Relationship, Drug , Structure-Activity Relationship
8.
Proc Natl Acad Sci U S A ; 121(22): e2310677121, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38753503

ABSTRACT

Seasonal and pandemic-associated influenza strains cause highly contagious viral respiratory infections that can lead to severe illness and excess mortality. Here, we report on the optimization of our small-molecule inhibitor F0045(S) targeting the influenza hemagglutinin (HA) stem with our Sulfur-Fluoride Exchange (SuFEx) click chemistry-based high-throughput medicinal chemistry (HTMC) strategy. A combination of SuFEx- and amide-based lead molecule diversification and structure-guided design led to identification and validation of ultrapotent influenza fusion inhibitors with subnanomolar EC50 cellular antiviral activity against several influenza A group 1 strains. X-ray structures of six of these compounds with HA indicate that the appended moieties occupy additional pockets on the HA surface and increase the binding interaction, where the accumulation of several polar interactions also contributes to the improved affinity. The compounds here represent the most potent HA small-molecule inhibitors to date. Our divergent HTMC platform is therefore a powerful, rapid, and cost-effective approach to develop bioactive chemical probes and drug-like candidates against viral targets.


Subject(s)
Antiviral Agents , Hemagglutinin Glycoproteins, Influenza Virus , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Chemistry, Pharmaceutical/methods , High-Throughput Screening Assays/methods , Influenza, Human/drug therapy , Influenza, Human/virology , Crystallography, X-Ray/methods , Click Chemistry/methods , Animals , Influenza A virus/drug effects , Madin Darby Canine Kidney Cells , Viral Fusion Protein Inhibitors/pharmacology , Viral Fusion Protein Inhibitors/chemistry , Dogs
9.
Gene ; 926: 148559, 2024 Oct 30.
Article in English | MEDLINE | ID: mdl-38740352

ABSTRACT

The most prevalent glycoprotein on the influenza virus envelope is called hemagglutinin (HA), yet little is known about its involvement in the pathophysiology and etiology of severe influenza pneumonia. Here, after stimulating human bronchial epithelial cells (16-HBE) and mice with HA of H1N1 for 12 h, we investigated the proliferation, migration, inflammatory cytokines expression, and apoptosis in 16-HBE and the pathological damage in mouse lung tissue. The expression of inflammatory cytokines plasminogen activator inhibitor 1(PAI-1), urokinase-type (uPA) and tissue-type (tPA) plasminogen activators, and apoptosis were all enhanced by HA, which also prevented the proliferation and migration of bronchial epithelial cells. HA enhanced up-regulated PAI-1, uPA, and tPA protein expression within mouse lung tissue and caused lung injury. In conclusion, HA alone, but not the whole H1N1 virus, induces lung tissue injury by inhibiting cell proliferation and migration, while promoting the expression of inflammatory cytokines and apoptosis.


Subject(s)
Apoptosis , Cell Proliferation , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H1N1 Subtype , Animals , Humans , Mice , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Cell Movement , Cytokines/metabolism , Epithelial Cells/metabolism , Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , Cell Line , Pneumonia, Viral/virology , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Influenza, Human/metabolism , Influenza, Human/virology , Urokinase-Type Plasminogen Activator/genetics , Urokinase-Type Plasminogen Activator/metabolism , Orthomyxoviridae Infections/metabolism , Orthomyxoviridae Infections/virology , Plasminogen Activator Inhibitor 1/metabolism , Plasminogen Activator Inhibitor 1/genetics , Pneumonia/metabolism , Pneumonia/virology
10.
Front Immunol ; 15: 1352022, 2024.
Article in English | MEDLINE | ID: mdl-38698856

ABSTRACT

The complement system is an innate immune mechanism against microbial infections. It involves a cascade of effector molecules that is activated via classical, lectin and alternative pathways. Consequently, many pathogens bind to or incorporate in their structures host negative regulators of the complement pathways as an evasion mechanism. Factor H (FH) is a negative regulator of the complement alternative pathway that protects "self" cells of the host from non-specific complement attack. FH has been shown to bind viruses including human influenza A viruses (IAVs). In addition to its involvement in the regulation of complement activation, FH has also been shown to perform a range of functions on its own including its direct interaction with pathogens. Here, we show that human FH can bind directly to IAVs of both human and avian origin, and the interaction is mediated via the IAV surface glycoprotein haemagglutinin (HA). HA bound to common pathogen binding footprints on the FH structure, complement control protein modules, CCP 5-7 and CCP 15-20. The FH binding to H1 and H3 showed that the interaction overlapped with the receptor binding site of both HAs, but the footprint was more extensive for the H3 HA than the H1 HA. The HA - FH interaction impeded the initial entry of H1N1 and H3N2 IAV strains but its impact on viral multicycle replication in human lung cells was strain-specific. The H3N2 virus binding to cells was significantly inhibited by preincubation with FH, whereas there was no alteration in replicative rate and progeny virus release for human H1N1, or avian H9N2 and H5N3 IAV strains. We have mapped the interaction between FH and IAV, the in vivo significance of which for the virus or host is yet to be elucidated.


Subject(s)
Complement Factor H , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A virus , Influenza, Human , Protein Binding , Humans , Complement Factor H/metabolism , Complement Factor H/immunology , Animals , Influenza, Human/immunology , Influenza, Human/virology , Influenza, Human/metabolism , Influenza A virus/immunology , Influenza A virus/physiology , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/immunology , Binding Sites , Influenza in Birds/virology , Influenza in Birds/immunology , Influenza in Birds/metabolism , Birds/virology , Host-Pathogen Interactions/immunology , Influenza A Virus, H3N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/immunology
11.
mBio ; 15(5): e0074124, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38587427

ABSTRACT

Outbreaks of acute respiratory viral diseases, such as influenza and COVID-19 caused by influenza A virus (IAV) and SARS-CoV-2, pose a serious threat to global public health, economic security, and social stability. This calls for the development of broad-spectrum antivirals to prevent or treat infection or co-infection of IAV and SARS-CoV-2. Hemagglutinin (HA) on IAV and spike (S) protein on SARS-CoV-2, which contain various types of glycans, play crucial roles in mediating viral entry into host cells. Therefore, they are key targets for the development of carbohydrate-binding protein-based antivirals. This study demonstrated that griffithsin (GRFT) and the GRFT-based bivalent entry inhibitor GL25E (GRFT-L25-EK1) showed broad-spectrum antiviral effects against IAV infection in vitro by binding to HA in a carbohydrate-dependent manner and effectively protected mice from lethal IAV infection. Although both GRFT and GL25E could inhibit infection of SARS-CoV-2 Omicron variants, GL25E proved to be significantly more effective than GRFT and EK1 alone. Furthermore, GL25E effectively inhibited in vitro co-infection of IAV and SARS-CoV-2 and demonstrated good druggability, including favorable safety and stability profiles. These findings suggest that GL25E is a promising candidate for further development as a broad-spectrum antiviral drug for the prevention and treatment of infection or co-infection from IAV and SARS-CoV-2.IMPORTANCEInfluenza and COVID-19 are highly contagious respiratory illnesses caused by the influenza A virus (IAV) and SARS-CoV-2, respectively. IAV and SARS-CoV-2 co-infection exacerbates damage to lung tissue and leads to more severe clinical symptoms, thus calling for the development of broad-spectrum antivirals for combating IAV and SARS-CoV-2 infection or co-infection. Here we found that griffithsin (GRFT), a carbohydrate-binding protein, and GL25E, a recombinant protein consisting of GRFT, a 25 amino acid linker, and EK1, a broad-spectrum coronavirus inhibitor, could effectively inhibit IAV and SARS-CoV-2 infection and co-infection by targeting glycans on HA of IAV and spike (S) protein of SARS-CoV-2. GL25E is more effective than GRFT because GL25E can also interact with the HR1 domain in SARS-CoV-2 S protein. Furthermore, GL25E possesses favorable safety and stability profiles, suggesting that it is a promising candidate for development as a drug to prevent and treat IAV and SARS-CoV-2 infection or co-infection.


Subject(s)
Antiviral Agents , COVID-19 , Coinfection , Influenza A virus , Plant Lectins , SARS-CoV-2 , Virus Internalization , Animals , Antiviral Agents/pharmacology , Influenza A virus/drug effects , Mice , SARS-CoV-2/drug effects , Humans , Virus Internalization/drug effects , Coinfection/drug therapy , Coinfection/virology , Plant Lectins/pharmacology , COVID-19/virology , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/antagonists & inhibitors , Orthomyxoviridae Infections/drug therapy , Orthomyxoviridae Infections/virology , COVID-19 Drug Treatment , Dogs , Mice, Inbred BALB C , Female , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza, Human/drug therapy , Influenza, Human/virology , Madin Darby Canine Kidney Cells
12.
Comput Biol Med ; 172: 108316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38503091

ABSTRACT

Influenza, a pervasive viral respiratory illness, remains a significant global health concern. The influenza A virus, capable of causing pandemics, necessitates timely identification of specific subtypes for effective prevention and control, as highlighted by the World Health Organization. The genetic diversity of influenza A virus, especially in the hemagglutinin protein, presents challenges for accurate subtype prediction. This study introduces PreIS as a novel pipeline utilizing advanced protein language models and supervised data augmentation to discern subtle differences in hemagglutinin protein sequences. PreIS demonstrates two key contributions: leveraging pre-trained protein language models for influenza subtype classification and utilizing supervised data augmentation to generate additional training data without extensive annotations. The effectiveness of the pipeline has been rigorously assessed through extensive experiments, demonstrating a superior performance with an impressive accuracy of 94.54% compared to the current state-of-the-art model, the MC-NN model, which achieves an accuracy of 89.6%. PreIS also exhibits proficiency in handling unknown subtypes, emphasizing the importance of early detection. Pioneering the classification of HxNy subtypes solely based on the hemagglutinin protein chain, this research sets a benchmark for future studies. These findings promise more precise and timely influenza subtype prediction, enhancing public health preparedness against influenza outbreaks and pandemics. The data and code underlying this article are available in https://github.com/CBRC-lab/PreIS.


Subject(s)
Influenza A virus , Influenza, Human , Humans , Hemagglutinins , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/genetics , Influenza A virus/metabolism , Amino Acid Sequence
13.
J Virol ; 98(4): e0024824, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38466094

ABSTRACT

The H9N2 avian influenza virus (AIV) represents a significant risk to both the poultry industry and public health. Our surveillance efforts in China have revealed a growing trend of recent H9N2 AIV strains exhibiting a loss of hemagglutination activity at 37°C, posing challenges to detection and monitoring protocols. This study identified a single K141N substitution in the hemagglutinin (HA) glycoprotein as the culprit behind this diminished hemagglutination activity. The study evaluated the evolutionary dynamics of residue HA141 and studied the impact of the N141K substitution on aspects such as virus growth, thermostability, receptor-binding properties, and antigenic properties. Our findings indicate a polymorphism at residue 141, with the N variant becoming increasingly prevalent in recent Chinese H9N2 isolates. Although both wild-type and N141K mutant strains exclusively target α,2-6 sialic acid receptors, the N141K mutation notably impedes the virus's ability to bind to these receptors. Despite the mutation exerting minimal influence on viral titers, antigenicity, and pathogenicity in chicken embryos, it significantly enhances viral thermostability and reduces plaque size on Madin-Darby canine kidney (MDCK) cells. Additionally, the N141K mutation leads to decreased expression levels of HA protein in both MDCK cells and eggs. These findings highlight the critical role of the K141N substitution in altering the hemagglutination characteristics of recent H9N2 AIV strains under elevated temperatures. This emphasizes the need for ongoing surveillance and genetic analysis of circulating H9N2 AIV strains to develop effective control and prevention measures.IMPORTANCEThe H9N2 subtype of avian influenza virus (AIV) is currently the most prevalent low-pathogenicity AIV circulating in domestic poultry globally. Recently, there has been an emerging trend of H9N2 AIV strains acquiring increased affinity for human-type receptors and even losing their ability to bind to avian-type receptors, which raises concerns about their pandemic potential. In China, there has been a growing number of H9N2 AIV strains that have lost their ability to agglutinate chicken red blood cells, leading to false-negative results during surveillance efforts. In this study, we identified a K141N mutation in the HA protein of H9N2 AIV to be responsible for the loss of hemagglutination activity. This finding provides insight into the development of effective surveillance, prevention, and control strategies to mitigate the threat posed by H9N2 AIV to both animal and human health.


Subject(s)
Amino Acid Substitution , Hemagglutination , Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza in Birds , Mutation , Animals , Chick Embryo , Dogs , Humans , Chickens/virology , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/growth & development , Influenza A Virus, H9N2 Subtype/immunology , Influenza A Virus, H9N2 Subtype/metabolism , Influenza A Virus, H9N2 Subtype/pathogenicity , Influenza in Birds/virology , Poultry , Female , Mice , Cell Line , Evolution, Molecular , Temperature , Receptors, Virus/metabolism
14.
J Virol ; 98(4): e0194123, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470143

ABSTRACT

Influenza A viruses (IAVs) can overcome species barriers by adaptation of the receptor-binding site of the hemagglutinin (HA). To initiate infection, HAs bind to glycan receptors with terminal sialic acids, which are either N-acetylneuraminic acid (NeuAc) or N-glycolylneuraminic acid (NeuGc); the latter is mainly found in horses and pigs but not in birds and humans. We investigated the influence of previously identified equine NeuGc-adapting mutations (S128T, I130V, A135E, T189A, and K193R) in avian H7 IAVs in vitro and in vivo. We observed that these mutations negatively affected viral replication in chicken cells but not in duck cells and positively affected replication in horse cells. In vivo, the mutations reduced virus virulence and mortality in chickens. Ducks excreted high viral loads longer than chickens, although they appeared clinically healthy. To elucidate why these viruses infected chickens and ducks despite the absence of NeuGc, we re-evaluated the receptor binding of H7 HAs using glycan microarray and flow cytometry studies. This re-evaluation demonstrated that mutated avian H7 HAs also bound to α2,3-linked NeuAc and sialyl-LewisX, which have an additional fucose moiety in their terminal epitope, explaining why infection of ducks and chickens was possible. Interestingly, the α2,3-linked NeuAc and sialyl-LewisX epitopes were only bound when presented on tri-antennary N-glycans, emphasizing the importance of investigating the fine receptor specificities of IAVs. In conclusion, the binding of NeuGc-adapted H7 IAV to tri-antennary N-glycans enables viral replication and shedding by chickens and ducks, potentially facilitating interspecies transmission of equine-adapted H7 IAVs.IMPORTANCEInfluenza A viruses (IAVs) cause millions of deaths and illnesses in birds and mammals each year. The viral surface protein hemagglutinin initiates infection by binding to host cell terminal sialic acids. Hemagglutinin adaptations affect the binding affinity to these sialic acids and the potential host species targeted. While avian and human IAVs tend to bind to N-acetylneuraminic acid (sialic acid), equine H7 viruses prefer binding to N-glycolylneuraminic acid (NeuGc). To better understand the function of NeuGc-specific adaptations in hemagglutinin and to elucidate interspecies transmission potential NeuGc-adapted viruses, we evaluated the effects of NeuGc-specific mutations in avian H7 viruses in chickens and ducks, important economic hosts and reservoir birds, respectively. We also examined the impact on viral replication and found a binding affinity to tri-antennary N-glycans containing different terminal epitopes. These findings are significant as they contribute to the understanding of the role of receptor binding in avian influenza infection.


Subject(s)
Chickens , Ducks , Horses , Influenza A virus , Influenza in Birds , Neuraminic Acids , Animals , Humans , Chickens/genetics , Chickens/metabolism , Chickens/virology , Ducks/genetics , Ducks/metabolism , Ducks/virology , Epitopes/chemistry , Epitopes/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Horses/genetics , Horses/metabolism , Horses/virology , Influenza A virus/chemistry , Influenza A virus/classification , Influenza A virus/metabolism , Influenza in Birds/genetics , Influenza in Birds/transmission , Influenza in Birds/virology , Mutation , N-Acetylneuraminic Acid/chemistry , N-Acetylneuraminic Acid/metabolism , Neuraminic Acids/chemistry , Neuraminic Acids/metabolism , Receptors, Virus/chemistry , Receptors, Virus/genetics , Receptors, Virus/metabolism , Swine/virology , Viral Zoonoses/metabolism , Viral Zoonoses/transmission , Viral Zoonoses/virology
15.
J Virol ; 98(4): e0010224, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38470058

ABSTRACT

The transmembrane serine protease 2 (TMPRSS2) activates the outer structural proteins of a number of respiratory viruses including influenza A virus (IAV), parainfluenza viruses, and various coronaviruses for membrane fusion. Previous studies showed that TMPRSS2 interacts with the carboxypeptidase angiotensin-converting enzyme 2 (ACE2), a cell surface protein that serves as an entry receptor for some coronaviruses. Here, by using protease activity assays, we determine that ACE2 increases the enzymatic activity of TMPRSS2 in a non-catalytic manner. Furthermore, we demonstrate that ACE2 knockdown inhibits TMPRSS2-mediated cleavage of IAV hemagglutinin (HA) in Calu-3 human airway cells and suppresses virus titers 100- to 1.000-fold. Transient expression of ACE2 in ACE2-deficient cells increased TMPRSS2-mediated HA cleavage and IAV replication. ACE2 knockdown also reduced titers of MERS-CoV and prevented S cleavage by TMPRSS2 in Calu-3 cells. By contrast, proteolytic activation and multicycle replication of IAV with multibasic HA cleavage site typically cleaved by furin were not affected by ACE2 knockdown. Co-immunoprecipitation analysis revealed that ACE2-TMPRSS2 interaction requires the enzymatic activity of TMPRSS2 and the carboxypeptidase domain of ACE2. Together, our data identify ACE2 as a new co-factor or stabilizer of TMPRSS2 activity and as a novel host cell factor involved in proteolytic activation and spread of IAV in human airway cells. Furthermore, our data indicate that ACE2 is involved in the TMPRSS2-catalyzed activation of additional respiratory viruses including MERS-CoV.IMPORTANCEProteolytic cleavage of viral envelope proteins by host cell proteases is essential for the infectivity of many viruses and relevant proteases provide promising drug targets. The transmembrane serine protease 2 (TMPRSS2) has been identified as a major activating protease of several respiratory viruses, including influenza A virus. TMPRSS2 was previously shown to interact with angiotensin-converting enzyme 2 (ACE2). Here, we report the mechanistic details of this interaction. We demonstrate that ACE2 increases or stabilizes the enzymatic activity of TMPRSS2. Furthermore, we describe ACE2 involvement in TMPRSS2-catalyzed cleavage of the influenza A virus hemagglutinin and MERS-CoV spike protein in human airway cells. These findings expand our knowledge of the activation of respiratory viruses by TMPRSS2 and the host cell factors involved. In addition, our results could help to elucidate a physiological role for TMPRSS2.


Subject(s)
Angiotensin-Converting Enzyme 2 , Influenza A virus , Lung , Proteolysis , Serine Endopeptidases , Animals , Dogs , Humans , Angiotensin-Converting Enzyme 2/deficiency , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Biocatalysis , Cell Line , Furin/metabolism , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/growth & development , Influenza A virus/metabolism , Lung/cytology , Lung/virology , Middle East Respiratory Syndrome Coronavirus/metabolism , Protein Binding , Serine Endopeptidases/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Virus Replication
16.
J Virol ; 98(3): e0190823, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38345383

ABSTRACT

Influenza D virus (IDV) is one of the causative agents of bovine respiratory disease complex, which is the most common and economically burdensome disease affecting the cattle industry, and the need for an IDV vaccine has been proposed to enhance disease control. IDVs are classified into five genetic lineages based on the coding sequences of the hemagglutinin-esterase-fusion (HEF) protein, an envelope glycoprotein, which is the main target of protective antibodies against IDV infection. Herein, we prepared a panel of monoclonal antibodies (mAbs) against the HEF protein of viruses of various lineages to investigate the antigenic characteristics of IDVs and found that the mAbs could be largely separated into three groups. The first, second, and third groups demonstrated lineage-specific reactivity, cross-reactivity to viruses of multiple but not all lineages, and cross-reactivity to viruses of all lineages, respectively. Analyzing the escape mutant viruses from virus-neutralizing mAbs revealed that the receptor-binding region of the HEF molecule harbors virus-neutralizing epitopes that are conserved across multiple lineage viruses. In contrast, the apex region of the molecule possessed epitopes unique to each lineage virus. Furthermore, reverse genetics-generated recombinant viruses with point mutations revealed that amino acids within positions 210-214 of the HEF protein determined the antigenic specificity of each lineage virus. Taken together, this study reveals considerable antigenic variation among IDV lineages, although they are presumed to form a single serotype in terms of HEF antigenicity. Characterization of the antigenic epitope structure of HEF may contribute to selecting and creating effective vaccine viruses against IDV.IMPORTANCEInfluenza D viruses (IDVs) are suggested to create cross-reactive single serotypes in hemagglutinin-esterase-fusion (HEF) antigenicity, as indicated by serological analyses among distinct HEF lineage viruses. This is supported by the high identities of HEF gene sequences among strains, unlike the hemagglutinin (HA) genes of the influenza A virus that exhibit HA subtypes. Herein, we analyzed HEF antigenicity using a monoclonal antibody panel prepared from several virus lineages and found the existence of lineage-conserved and lineage-specific epitopes in HEF molecules. These findings confirm the HEF commonality and divergence among IDVs and provide useful information for constructing a vaccine containing a recombinant IDV virus with an engineered HEF gene, thereby leading to broad immunogenicity.


Subject(s)
Deltainfluenzavirus , Influenza Vaccines , Animals , Cattle , Antibodies, Viral , Deltainfluenzavirus/physiology , Epitope Mapping , Epitopes , Esterases , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins , Influenza Vaccines/immunology
17.
ACS Synth Biol ; 13(2): 546-557, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38259154

ABSTRACT

Influenza A virus (IAV) is a negative-sense RNA virus that causes seasonal infections and periodic pandemics, inflicting huge economic and human costs on society. The current production of influenza virus for vaccines is initiated by generating a seed virus through the transfection of multiple plasmids in HEK293 cells followed by the infection of seed viruses into embryonated chicken eggs or cultured mammalian cells. We took a system design and synthetic biology approach to engineer cell lines that can be induced to produce all viral components except hemagglutinin (HA) and neuraminidase (NA), which are the antigens that specify the variants of IAV. Upon the transfection of HA and NA, the cell line can produce infectious IAV particles. RNA-Seq transcriptome analysis revealed inefficient synthesis of viral RNA and upregulated expression of genes involved in host response to viral infection as potential limiting factors and offered possible targets for enhancing the productivity of the synthetic cell line. Overall, we showed for the first time that it was possible to create packaging cell lines for the production of a cytopathic negative-sense RNA virus. The approach allows for the exploitation of altered kinetics of the synthesis of viral components and offers a new method for manufacturing viral vaccines.


Subject(s)
Artificial Cells , Influenza A virus , Influenza Vaccines , Animals , Humans , Influenza A virus/genetics , Influenza Vaccines/genetics , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Hemagglutinins , Mammals/metabolism
18.
Virol Sin ; 39(2): 277-289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38246238

ABSTRACT

Influenza A virus (IAV) binds sialic acid receptors on the cell surface to enter the host cells, which is the key step in initiating infection, transmission and pathogenesis. Understanding the factors that contribute to the highly efficient entry of IAV into human cells will help elucidate the mechanism of viral entry and pathogenicity, and provide new targets for intervention. In the present study, we reported a novel membrane protein, C1QTNF5, which binds to the hemagglutinin protein of IAV and promotes IAV infection in vitro and in vivo. We found that the HA1 region of IAV hemagglutinin is critical for the interaction with C1QTNF5 protein, and C1QTNF5 interacts with hemagglutinin mainly through its N-terminus (1-103 aa). In addition, we further demonstrated that overexpression of C1QTNF5 promotes IAV entry, while blocking the interaction between C1QTNF5 and IAV hemagglutinin greatly inhibits viral entry. However, C1QTNF5 does not function as a receptor to mediate IAV infection in sialic acid-deficient CHO-Lec2 cells, but promotes IAV to attach to these cells, suggesting that C1QTNF5 is an important attachment factor for IAV. This work reveals C1QTNF5 as a novel IAV attachment factor and provides a new perspective for antiviral strategies.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Virus Attachment , Virus Internalization , Animals , Humans , Mice , A549 Cells , CHO Cells , Cricetulus , HEK293 Cells , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A virus/pathogenicity , Influenza, Human/genetics , Influenza, Human/metabolism , Orthomyxoviridae Infections/metabolism , Protein Binding , Receptors, Virus/metabolism , Receptors, Virus/genetics , Collagen/genetics , Collagen/metabolism
19.
Front Biosci (Landmark Ed) ; 29(1): 11, 2024 01 16.
Article in English | MEDLINE | ID: mdl-38287809

ABSTRACT

BACKGROUND: Highly pathogenic H5Nx viruses cause avian influenza, a zoonotic disease that can infect humans. The vaccine can facilitate the prevention of human infections from infected poultry. Our previous study showed that an H5 cleavage-site peptide vaccine containing the polybasic amino acid RRRK could protect chickens from lethal infections of the highly pathogenic H5N6 avian influenza virus. METHODS: Chickens immunized with the various polybasic amino combinations (RRRK, RRR, RR, R, RK, and K) of H5 cleavage-site peptides were challenged with highly pathogenic H5N6 avian influenza viruses. The challenged chickens were monitored for survival rate, and viral titers in swabs and tissue samples were measured in Madin-Darby canine kidney (MDCK) cells using the median tissue culture infectious dose 50 (log10 TCID50/mL). RESULTS: Most H5 cleavage-site vaccines containing various combinations of polybasic amino acids protected chickens from lethal infection. Chickens immunized with the RK-containing peptide combination of the H5 cleavage site were not protected. CONCLUSIONS: The polybasic amino acids (RRRK) of H5 cleavage cleavage-site peptide vaccines are important for protecting chickens against HP H5N6 avian influenza virus. The H5 cleavage cleavage-site peptide containing RK did not protect chickens against the virus.


Subject(s)
Influenza A virus , Influenza in Birds , Animals , Dogs , Humans , Chickens/metabolism , Influenza in Birds/prevention & control , Hemagglutinin Glycoproteins, Influenza Virus/chemistry , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Amino Acids/metabolism , Peptides
20.
mBio ; 15(1): e0295723, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38112470

ABSTRACT

IMPORTANCE: Despite the accumulation of evidence showing that airborne transmissible influenza A virus (IAV) typically has a lower pH threshold for hemagglutinin (HA) fusion activation, the underlying mechanism for such a link remains unclear. In our study, by using a pair of isogenic recombinant A(H9N2) viruses with a phenotypical difference in virus airborne transmission in a ferret model due to an acid-destabilizing mutation (HA1-Y17H) in the HA, we demonstrate that an acid-stable A(H9N2) virus possesses a multitude of advantages over its less stable counterpart, including better fitness in the ferret respiratory tract, more effective aerosol emission from infected animals, and improved host susceptibility. Our study provides supporting evidence for the requirement of acid stability in efficient airborne transmission of IAV and sheds light on fundamental mechanisms for virus airborne transmission.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus , Influenza A Virus, H9N2 Subtype , Influenza, Human , Animals , Ferrets , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H9N2 Subtype/genetics , Influenza A Virus, H9N2 Subtype/metabolism , Respiratory Aerosols and Droplets/virology , Influenza, Human/transmission , Humans , Disease Models, Animal , Amino Acid Substitution
SELECTION OF CITATIONS
SEARCH DETAIL