Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.155
Filter
1.
J Med Virol ; 96(7): e29777, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38949212

ABSTRACT

Hepatitis E virus (HEV) is a prevalent pathogen responsible for acute viral hepatitis, HEV genotypes 3 and 4 infections causing zoonotic infections. Currently, the nucleotide similarity analysis between humans and pigs for HEV genotype 4 is limited. In this study, stool samples from an HEV-infected patient who is a pig farmer and from pigs were collected to obtain the near full-length genome of HEV, phylogenetic trees were constructed for genotyping, and similarity of HEV sequences was analyzed. The results showed that HEV-RNA was detected in the stool samples from the patient and six pigs (6/30, 20.0%). Both HEV subtype in the patient and pigs was 4b. Additionally, similarity analysis showed that the range was 99.875%-99.944% between the patient and pigs at the nucleotide level. Four isolates of amino acid sequences (ORFs 1-3) from pigs were 100% identical to the patient. Phylogenetic tree and similarity analysis of an additional nine HEV sequences isolated from other patients in this region showed that the HEV sequence from the pig farmer had the closest relationship with the pigs from his farm rather than other sources of infection in this region. This study provides indirect evidences for HEV subtype 4b can be transmitted from pigs to humans at the nucleotide level. Further research is needed to explore the characteristics of different HEV subtypes.


Subject(s)
Feces , Genome, Viral , Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , RNA, Viral , Swine Diseases , Animals , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Swine , Hepatitis E/virology , Hepatitis E/veterinary , Hepatitis E/epidemiology , China/epidemiology , Humans , Feces/virology , Swine Diseases/virology , RNA, Viral/genetics , Male , Sequence Analysis, DNA
2.
Viruses ; 16(6)2024 May 24.
Article in English | MEDLINE | ID: mdl-38932135

ABSTRACT

Hepatitis E virus (HEV) can cause self-limiting acute and chronic hepatitis infections, particularly in immunocompromised individuals. In developing countries, HEV is mainly transmitted via drinking contaminated water, whereas zoonotic transmission dominates the route of infection in developed countries, including Japan. Pigs are an important reservoir for HEV infection. Wild boars, which share the same genus and species as domestic pigs, are also an HEV reservoir. During our nationwide study of HEV infection in wild boar populations in Japan, a genotype 6 (HEV-6) strain, wbJHG_23, was isolated in Hyogo Prefecture in 2023. The genomic length was 7244 nucleotides, excluding the poly(A) tract. The wbJHG_23 strain exhibited the highest nucleotide identity throughout its genome with two previously reported HEV-6 strains (80.3-80.9%). Conversely, it displayed lower similarity (73.3-78.1%) with the HEV-1-5, HEV-7, and HEV-8 strains, indicating that, although closely related, the wbJHG_23 strain differs significantly from the reported HEV-6 strains and might represent a novel subtype. The wbJHG_23 strain successfully infected the human-derived cancer cell lines, PLC/PRF/5 and A549 1-1H8 cells, suggesting that HEV-6 has the potential for zoonotic infection. An infectious cDNA clone was constructed using a reverse genetics system, and a cell culture system supporting the efficient propagation of the HEV-6 strain was established, providing important tools for further studies on this genotype. Using this cell culture system, we evaluated the sensitivity of the wbJHG_23 strain to ribavirin treatment. Its good response to this treatment suggested that it could be used to treat human infections caused by HEV-6.


Subject(s)
Genome, Viral , Hepatitis E virus , Hepatitis E , Phylogeny , Sus scrofa , Animals , Cell Line , DNA, Complementary/genetics , Genotype , Hepatitis E/virology , Hepatitis E/veterinary , Hepatitis E/transmission , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Japan , RNA, Viral/genetics , Sus scrofa/virology , Swine , Swine Diseases/virology , Swine Diseases/transmission
3.
J Appl Microbiol ; 135(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38849307

ABSTRACT

AIMS: Hepatitis E virus (HEV) is responsible for ∼20 million human infections worldwide every year. The genotypes HEV-3 and HEV-4 are zoonotic and are responsible for most of the autochthonous HEV cases in high-income countries. There are several cell culture systems that allow for propagation of different HEV genotypes in vitro. One of these systems uses human lung carcinoma cells (A549), and was further optimized for propagation of HEV-3 47832c strain. In this study, we investigated the effect of different media supplements as well as microRNA-122 (miR-122) on improving the replication of HEV-3 47832c in A549 cells. METHODS AND RESULTS: We observed that supplementation of maintenance media with 5% fetal bovine serum was sufficient for efficient replication of HEV-3, and verified the positive effect of media supplementation with Amphotericin B, MgCl2, and dimethyl sulfoxide on replication of HEV-3. We have also demonstrated that adding miR-122 mimics to the culture media does not have any significant effect on the replication of HEV-3 47832c. CONCLUSIONS: Herein, we detected over a 6-fold increase in HEV-3 replication in A549/D3 cells by adding all three supplements: Amphotericin B, MgCl2, and dimethyl sulfoxide to the culture media, while demonstrating that miR-122 might not play a key role in replication of HEV-3 47832c.


Subject(s)
Culture Media , Genotype , Hepatitis E virus , Virus Replication , Hepatitis E virus/genetics , Humans , MicroRNAs/genetics , Hepatitis E/virology , A549 Cells , Virus Cultivation/methods
4.
Virol J ; 21(1): 136, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38867299

ABSTRACT

BACKGROUND: Hepatitis E is a potentially serious infection in organ recipients, with an estimated two-thirds of cases becoming chronic, and with a subsequent risk of cirrhosis and death. In Europe, transmission occurs most often through the consumption of raw or undercooked pork, more rarely through blood transfusion, but also after solid organ transplantation. Here we describe a case of Hepatitis E virus (HEV) infection transmitted following kidney transplantation and review the literature describing cases of HEV infection transmitted by solid organ transplantation. CASE PRESENTATION: Three weeks after kidney transplantation, the patient presented with an isolated minimal increase in GGT and hepatic cytolysis 6 months later, leading to the diagnosis of genotype 3c hepatitis E, with a plasma viral load of 6.5 log10IU/mL. In retrospect, HEV RNA was detected in the patient's serum from the onset of hepatitis, and in the donor's serum on the day of donation, with 100% identity between the viral sequences, confirming donor-derived HEV infection. Hepatitis E had a chronic course, was treated by ribavirin, and relapsed 10 months after the end of treatment. DISCUSSION: Seven cases of transmission of HEV by solid organ transplantation have been described since 2012 without systematic screening for donors, all diagnosed at the chronic infection stage; two patients died. HEV organ donor transmission may be underestimated and there is insufficient focus on immunocompromised patients in whom mild liver function test impairment is potentially related to hepatitis E. However, since HEV infection is potentially severe in these patients, and as evidence accumulates, we believe that systematic screening of organ donors should be implemented for deceased and living donors regardless of liver function abnormalities, as is already the case in the UK and Spain. In January 2024, the French regulatory agency of transplantation has implemented mandatory screening of organ donors for HEV RNA.


Subject(s)
Hepatitis E virus , Hepatitis E , Kidney Transplantation , Tissue Donors , Hepatitis E/transmission , Hepatitis E/diagnosis , Hepatitis E/virology , Humans , Kidney Transplantation/adverse effects , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , France , Male , RNA, Viral/genetics , Middle Aged , Genotype , Viral Load , Antiviral Agents/therapeutic use
5.
Nat Commun ; 15(1): 4855, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844458

ABSTRACT

Hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans. Recent data suggest that HEV has a very heterogeneous hypervariable region (HVR), which can tolerate major genomic rearrangements. In this study, we identify insertions of previously undescribed sequence snippets in serum samples of a ribavirin treatment failure patient. These insertions increase viral replication while not affecting sensitivity towards ribavirin in a subgenomic replicon assay. All insertions contain a predicted nuclear localization sequence and alanine scanning mutagenesis of lysine residues in the HVR influences viral replication. Sequential replacement of lysine residues additionally alters intracellular localization in a fluorescence dye-coupled construct. Furthermore, distinct sequence patterns outside the HVR are identified as viral determinants that recapitulate the enhancing effect. In conclusion, patient-derived insertions can increase HEV replication and synergistically acting viral determinants in and outside the HVR are described. These results will help to understand the underlying principles of viral adaptation by viral- and host-sequence snatching during the clinical course of infection.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Virus Replication , Virus Replication/genetics , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatitis E virus/drug effects , Humans , Hepatitis E/virology , Hepatitis E/drug therapy , Ribavirin/pharmacology , Mutagenesis, Insertional , Antiviral Agents/pharmacology , RNA, Viral/genetics , Genome, Viral , Replicon/genetics
9.
Virology ; 595: 110091, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38718446

ABSTRACT

Preliminary investigations have demonstrated that the cysteines located at the C-terminus of HEV ORF2 protein exhibits disulfide bonding capability during virus-like particles (VLPs) assembly. However, the effect and mechanism underlying the pairing of disulfide bonds formed by C627, C630, and C638 remains unclear. The p222 protein encompasses C-terminus and serves as a representative of HEV ORF2 to investigate the specific impacts of C627, C630, and C638. The three cysteines were subjected to site-directed mutagenesis and expressed in prokaryotes; Both the mutated proteins and p222 underwent polymerization except for p222A; Surprisingly, only p222 was observed as abundant spherical particles under transmission electron microscope (TEM); Stability and immunogenicity of the p222 exhibited higher than other mutated proteins; LC/MS/MS analysis identified four disulfide bonds in the p222. The novel findings suggest that the three cysteines contribute to structural and functional properties of ORF2 protein, highlighting the indispensability of each cysteine.


Subject(s)
Cysteine , Hepatitis E virus , Viral Proteins , Cysteine/chemistry , Cysteine/metabolism , Hepatitis E virus/genetics , Hepatitis E virus/chemistry , Viral Proteins/genetics , Viral Proteins/chemistry , Viral Proteins/metabolism , Mutagenesis, Site-Directed , Disulfides/chemistry , Disulfides/metabolism , Animals , Humans
10.
J Virol ; 98(6): e0029524, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38712945

ABSTRACT

Hepatitis E virus is a single-strand, positive-sense RNA virus that can lead to chronic infection in immunocompromised patients. Virus-host recombinant variants (VHRVs) have been described in such patients. These variants integrate part of human genes into the polyproline-rich region that could introduce new post-translational modifications (PTMs), such as ubiquitination. The aim of this study was to characterize the replication capacity of different VHRVs, namely, RNF19A, ZNF787, KIF1B, EEF1A1, RNA18, RPS17, and RPL6. We used a plasmid encoding the Kernow strain, in which the fragment encoding the S17 insertion was deleted (Kernow p6 delS17) or replaced by fragments encoding the different insertions. The HEV RNA concentrations in the supernatants and the HepG2/C3A cell lysates were determined via RT-qPCR. The capsid protein ORF2 was immunostained. The effect of ribavirin was also assessed. The HEV RNA concentrations in the supernatants and the cell lysates were higher for the variants harboring the RNF19A, ZNF787, KIF1B, RPS17, and EEF1A1 insertions than for the Kernow p6 del S17, while it was not with RNA18 or RPL6 fragments. The number of ORF2 foci was higher for RNF19A, ZNF787, KIF1B, and RPS17 than for Kernow p6 del S17. VHRVs with replicative advantages were less sensitive to the antiviral effect of ribavirin. No difference in PTMs was found between VHRVs with a replicative advantage and those without. In conclusion, our study showed that insertions did not systematically confer a replicative advantage in vitro. Further studies are needed to determine the mechanisms underlying the differences in replicative capacity. IMPORTANCE: Hepatitis E virus (HEV) is a major cause of viral hepatitis. HEV can lead to chronic infection in immunocompromised patients. Ribavirin treatment is currently used to treat such chronic infections. Recently, seven virus-host recombinant viruses were characterized in immunocompromised patients. These viruses have incorporated a portion of a human gene fragment into their genome. We studied the consequences of these insertions on the replication capacity. We found that these inserted fragments could enhance virus replication for five of the seven recombinant variants. We also showed that the recombinant variants with replicative advantages were less sensitive to ribavirin in vitro. Finally, we found that the mechanisms leading to such a replicative advantage do not seem to rely on the post-translational modifications introduced by the human gene fragment that could have modified the function of the viral protein. The mechanisms involved in improving the replication of such recombinant viruses remain to be explored.


Subject(s)
Hepatitis E virus , Hepatitis E , RNA, Viral , Ribavirin , Virus Replication , Hepatitis E virus/genetics , Hepatitis E virus/drug effects , Humans , Hepatitis E/virology , RNA, Viral/genetics , RNA, Viral/metabolism , Ribavirin/pharmacology , Antiviral Agents/pharmacology , Hep G2 Cells , Protein Processing, Post-Translational , Recombination, Genetic
11.
Infect Genet Evol ; 121: 105602, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38734397

ABSTRACT

Hepatitis E, caused by the hepatitis E virus (HEV), is a global public health issue. Low similarity between the gene sequences of mouse and human HEV led to the belief that the risk of human infection was low. Recent reports of chronic and acute hepatitis E caused by murine HEV infection in humans in Hong Kong have raised global concerns. Therefore, it is crucial to investigate the epidemiology and prevalence of HEV in China. We comprehensively analyzed different rodent HEV strains to understand rocahepevirus occurrence in Hubei Province, China. The HEV positivity rate for was 6.43% (73/1136). We identified seven near-full-length rocahepevirus strains and detected rat HEV antigens in tissues from different mouse species. HEV has extensive tissue tropism and a high viral load in the liver. We highlight the genetic diversity of HEVs in rodents and underscore the importance of paying attention to their variation and evolution.


Subject(s)
Hepatitis E virus , Hepatitis E , Phylogeny , Hepatitis E virus/genetics , Hepatitis E virus/classification , Animals , China/epidemiology , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis E/virology , Prevalence , Mice , Rodentia/virology , Rats , Animals, Wild/virology , Genetic Variation
12.
Viruses ; 16(5)2024 04 26.
Article in English | MEDLINE | ID: mdl-38793568

ABSTRACT

The hepatitis E virus is a serious health concern worldwide, with 20 million cases each year. Growing numbers of autochthonous HEV infections in industrialized nations are brought on via the zoonotic transmission of HEV genotypes 3 and 4. Pigs and wild boars are the main animal reservoirs of HEV and play the primary role in HEV transmission. Consumption of raw or undercooked pork meat and close contact with infected animals are the most common causes of hepatitis E infection in industrialized countries. However, during the past few years, mounting data describing HEV distribution has led experts to believe that additional animals, particularly domestic ruminant species (cow, goat, sheep, deer, buffalo, and yak), may also play a role in the spreading of HEV. Up to now, there have not been enough studies focused on HEV infections associated with animal milk and the impact that they could have on the epidemiology of HEV. This critical analysis discusses the role of domestic ruminants in zoonotic HEV transmissions. More specifically, we focus on concerns related to milk safety, the role of mixed farming in cross-species HEV infections, and what potential consequences these may have on public health.


Subject(s)
Animals, Domestic , Hepatitis E virus , Hepatitis E , Milk , Ruminants , Zoonoses , Animals , Hepatitis E/transmission , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/isolation & purification , Milk/virology , Ruminants/virology , Zoonoses/virology , Zoonoses/transmission , Humans , Animals, Domestic/virology , Viral Zoonoses/transmission , Viral Zoonoses/virology , Goats/virology , Sheep/virology , Genotype
13.
Viruses ; 16(5)2024 05 08.
Article in English | MEDLINE | ID: mdl-38793625

ABSTRACT

INTRODUCTION: Hepatitis E virus (HEV) genotype 3 is the major cause of acute viral hepatitis in several European countries. It is acquired mainly by ingesting contaminated pork, but has also been reported to be transmitted through blood transfusion. Although most HEV infections, including those via blood products, are usually self-limiting, they may become chronic in immunocompromised persons. It is thus essential to identify HEV-infected blood donations to prevent transmission to vulnerable recipients. AIMS: Prior to the decision whether to introduce HEV RNA screening for all Swiss blood donations, a 2-year nationwide prevalence study was conducted. METHODS: All blood donations were screened in pools of 12-24 samples at five regional blood donation services, and HEV RNA-positive pools were subsequently resolved to the individual donation index donation (X). The viral load, HEV IgG and IgM serology, and HEV genotype were determined. Follow-up investigations were conducted on future control donations (X + 1) and previous archived donations of the donor (X - 1) where available. RESULTS: Between October 2018 and September 2020, 541,349 blood donations were screened and 125 confirmed positive donations were identified (prevalence 1:4331 donations). At the time of blood donation, the HEV RNA-positive individuals were symptom-free. The median viral load was 554 IU/mL (range: 2.01-2,500,000 IU/mL). Men (88; 70%) were more frequently infected than women (37; 30%), as compared with the sex distribution in the Swiss donor population (57% male/43% female, p < 0.01). Of the 106 genotyped cases (85%), all belonged to genotype 3. Two HEV sub-genotypes predominated; 3h3 (formerly 3s) and 3c. The remaining sub-genotypes are all known to circulate in Europe. Five 3ra genotypes were identified, this being a variant associated with rabbits. In total, 85 (68%) X donations were negative for HEV IgM and IgG. The remaining 40 (32%) were positive for HEV IgG and/or IgM, and consistent with an active infection. We found no markers of previous HEV in 87 of the 89 available and analyzed archive samples (X - 1). Two donors were HEV IgG-positive in the X - 1 donation suggesting insufficient immunity to prevent HEV reinfection. Time of collection of the 90 (72%) analyzed X + 1 donations varied between 2.9 and 101.9 weeks (median of 35 weeks) after X donation. As expected, none of those tested were positive for HEV RNA. Most donors (89; 99%) were positive for anti-HEV lgG/lgM (i.e., seroconversion). HEV lgM-positivity (23; 26%) indicates an often-long persistence of lgM antibodies post-HEV infection. CONCLUSION: The data collected during the first year of the study provided the basis for the decision to establish mandatory HEV RNA universal screening of all Swiss blood donations in minipools, a vital step in providing safer blood for all recipients, especially those who are immunosuppressed.


Subject(s)
Blood Donors , Genotype , Hepatitis E virus , Hepatitis E , RNA, Viral , Humans , Hepatitis E/epidemiology , Hepatitis E/transmission , Hepatitis E/virology , Blood Donors/statistics & numerical data , Switzerland/epidemiology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Male , Female , Adult , Prevalence , Middle Aged , RNA, Viral/genetics , RNA, Viral/blood , Hepatitis Antibodies/blood , Immunoglobulin M/blood , Young Adult , Immunoglobulin G/blood , Viral Load , Aged , Adolescent
14.
J Med Virol ; 96(6): e29691, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38783788

ABSTRACT

Hepatitis E virus (HEV) is an emerging zoonotic pathogen that is transmitted primarily through the fecal-oral route and can cause acute hepatitis in humans. Since HEV was identified as a zoonotic pathogen, different species of HEV strains have been globally identified from various hosts, leading to an expanding range of hosts. The HEV genome consists of a 5' noncoding region, three open reading frames (ORFs), and a 3' noncoding region. The ORF3 protein is the smallest but has many functions in HEV release and pathogenesis. In this review, we systematically summarize recent progress in understanding the functions of the HEV ORF3 protein in virion release, biogenesis of quasi-enveloped viruses, antigenicity, and host environmental regulation. This review will help us to understand HEV replication and pathogenesis mechanisms better.


Subject(s)
Hepatitis E virus , Hepatitis E , Viral Proteins , Hepatitis E virus/genetics , Humans , Viral Proteins/genetics , Viral Proteins/metabolism , Hepatitis E/virology , Animals , Virus Replication , Virus Release , Open Reading Frames , Host-Pathogen Interactions/genetics , Genome, Viral
15.
Viruses ; 16(4)2024 04 03.
Article in English | MEDLINE | ID: mdl-38675900

ABSTRACT

Hepatitis E virus (HEV) is the main cause of acute hepatitis in humans worldwide and is responsible for a large number of outbreaks especially in Africa. Human infections are mainly caused by genotypes 1 and 2 of the genus Paslahepevirus, which are exclusively associated with humans. In contrast, viruses of genotypes 3 and 4 are zoonotic and have their main reservoir in domestic and wild pigs, from which they can be transmitted to humans primarily through the consumption of meat products. Both genotypes 3 and 4 are widespread in Europe, Asia, and North America and lead to sporadic cases of hepatitis E. However, there is little information available on the prevalence of these genotypes and possible transmission routes from animal reservoirs to humans in African countries. We therefore analysed 1086 pig sera collected in 2016/2017 in four districts in Sierra Leone for antibodies against HEV using a newly designed in-house ELISA. In addition, the samples were also analysed for HEV RNA by quantitative real-time RT-PCR. The overall seroprevalence in Sierra Leone was low with only 44 positive sera and a prevalence of 4.0%. Two serum pools were RT-PCR-positive and recovered partial sequences clustered into the genotype 3 (HEV-3) of the order Paslahepevirus, species Paslahepevirus balayani. The results are the first evidence of HEV-3 infection in pigs from Sierra Leone and demonstrate a low circulation of the virus in these animals to date. Further studies should include an examination of humans, especially those with close contact with pigs and porcine products, as well as environmental sampling to evaluate public health effects within the framework of a One Health approach.


Subject(s)
Genotype , Hepatitis E virus , Hepatitis E , Phylogeny , Swine Diseases , Animals , Hepatitis E/epidemiology , Hepatitis E/veterinary , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/classification , Hepatitis E virus/isolation & purification , Hepatitis E virus/immunology , Seroepidemiologic Studies , Swine , Swine Diseases/virology , Swine Diseases/epidemiology , Sierra Leone/epidemiology , Hepatitis Antibodies/blood , RNA, Viral/genetics , Sus scrofa/virology , Humans
16.
J Virol Methods ; 327: 114920, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38574772

ABSTRACT

INTRODUCTION: We evaluated the performance of the automated Altostar HEV RNA platform for detecting HEV RNA. METHODS AND RESULTS: Clinical performance was determined by testing 81 plasma samples and 10 fecal samples manually quantified previously with the Realstar RT-PCR assay using the Magnapure instrument for extraction. The assays were concordant for 79/81 plasma samples (97.5%) and 10/10 (100%) fecal samples. The two plasma samples that tested negative with the Altostar assay had a very low HEV RNA concentration (1.6 and 1.4 log10 IU/ml). Quantitative results obtained with the automated platform and the manual workflow were highly correlated (ρ= 0.98, p<0.01). The intra-run and inter-run standard deviation were 0.09 IU/ml and 0.13 IU/ml respectively. The assay was linear from 2 to 6 log IU/ml. The limit of detection determined by Probit analysis with the WHO HEV RNA standard was 7.6 [95% CI: 4.4-52.5] IU/ml. CONCLUSIONS: The Altostar platform enables highly accurate testing for the detection of HEV RNA in stool and the quantification of HEV RNA in plasma. This allowed us to shorten turnaround times and to save time for the technical staff.


Subject(s)
Automation, Laboratory , Feces , Hepatitis E virus , Hepatitis E , RNA, Viral , Feces/virology , Humans , RNA, Viral/isolation & purification , RNA, Viral/blood , RNA, Viral/analysis , RNA, Viral/genetics , Hepatitis E virus/isolation & purification , Hepatitis E virus/genetics , Hepatitis E/diagnosis , Hepatitis E/virology , Hepatitis E/blood , Sensitivity and Specificity , Plasma/virology , Molecular Diagnostic Techniques/methods
17.
Food Microbiol ; 121: 104529, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38637065

ABSTRACT

Hepatitis E virus (HEV) is the causative agent of foodborne infections occurring in high income countries mainly by consumption of undercooked and raw pork products. The virus is zoonotic with pigs and wild boars as the main reservoirs. Several studies proved the presence of HEV-RNA in pork liver sausages, pâté and other pork by-products. However, the detection of HEV nucleic acids does not necessary correspond to infectious virus and information on the persistence of the virus in the food is still limited. To which extent and how long the virus can survive after conventional industrial and home-made conservation and cooking procedures is largely unknown. In the present study, we investigated the persistence of two subtypes of HEV-3, by measuring the viral RNA on cell supernatant of infected A549 cells, after long-term storage at +4 °C and -20 °C and after heating for short or long-time span. Results confirmed that either low temperature storage (+4 °C) or freezing (-20 °C) do not influence the survival of the virus, and only a moderate reduction of presence of its RNA after 12 weeks at +4 °C was observed. To the other side, heating at 56 °C for long time (1 h) or at higher temperatures (>65 °C) for shorter time inactivated the virus successfully.


Subject(s)
Hepatitis E virus , Hepatitis E , Meat Products , Swine Diseases , Swine , Animals , Hepatitis E virus/genetics , Hot Temperature , RNA, Viral/genetics , Phylogeny , Sus scrofa
18.
Emerg Infect Dis ; 30(5): 934-940, 2024 May.
Article in English | MEDLINE | ID: mdl-38666600

ABSTRACT

To determine the kinetics of hepatitis E virus (HEV) in asymptomatic persons and to evaluate viral load doubling time and half-life, we retrospectively tested samples retained from 32 HEV RNA-positive asymptomatic blood donors in Germany. Close-meshed monitoring of viral load and seroconversion in intervals of ≈4 days provided more information about the kinetics of asymptomatic HEV infections. We determined that a typical median infection began with PCR-detectable viremia at 36 days and a maximum viral load of 2.0 × 104 IU/mL. Viremia doubled in 2.4 days and had a half-life of 1.6 days. HEV IgM started to rise on about day 33 and peaked on day 36; IgG started to rise on about day 32 and peaked on day 53. Although HEV IgG titers remained stable, IgM titers became undetectable in 40% of donors. Knowledge of the dynamics of HEV viremia is useful for assessing the risk for transfusion-transmitted hepatitis E.


Subject(s)
Blood Donors , Hepatitis E virus , Hepatitis E , RNA, Viral , Viral Load , Viremia , Humans , Hepatitis E/epidemiology , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Male , Adult , Immunoglobulin M/blood , Female , Immunoglobulin G/blood , Kinetics , Middle Aged , Asymptomatic Infections/epidemiology , Retrospective Studies , Hepatitis Antibodies/blood , Germany/epidemiology , Young Adult
19.
Viruses ; 16(4)2024 03 28.
Article in English | MEDLINE | ID: mdl-38675869

ABSTRACT

Transfusion-transmitted hepatitis E virus (HEV) infection is an increasing concern in many countries. We investigated the detection rate of HEV viremia in blood donors in Russia. A total of 20,405 regular repetitive voluntary non-renumerated blood donors from two regions (Moscow and Belgorod) were screened for HEV RNA using the cobas® HEV test in mini-pools of six plasma samples. Samples from each reactive pool were tested individually. The average HEV RNA prevalence was 0.024% (95% CI: 0.01-0.05%), or 1 case per 4081 donations. No statistically significant differences in HEV RNA prevalence were observed between the two study regions. The PCR threshold cycle (Ct) values ranged from 25.0 to 40.5 in reactive pools, and from 20.9 to 41.4 in reactive plasma samples when tested individually. The HEV viremic donors had different antibody patterns. Two donor samples were reactive for both anti-HEV IgM and IgG antibodies, one sample was reactive for anti-HEV IgM and negative for anti-HEV IgG, and two samples were seronegative. At follow-up testing 6 months later, on average, four donors available for follow-up had become negative for HEV RNA and positive for anti-HEV IgG. The HEV ORF2 sequence belonging to HEV-3 sub-genotype 3a was obtained from one donor sample. The sequencing failed in the other four samples from viremic donors, presumably due to the low viral load. In conclusion, the HEV RNA detection rate in blood donors in Russia corresponds with data from other European countries, including those that implemented universal donor HEV screening. These data support the implementation of HEV RNA donor screening to reduce the risk of transfusion-transmitted HEV infection in Russia.


Subject(s)
Blood Donors , Hepatitis Antibodies , Hepatitis E virus , Hepatitis E , RNA, Viral , Humans , Hepatitis E/epidemiology , Hepatitis E/transmission , Hepatitis E/virology , Hepatitis E virus/genetics , Hepatitis E virus/immunology , Hepatitis E virus/isolation & purification , Russia/epidemiology , RNA, Viral/blood , Male , Adult , Female , Hepatitis Antibodies/blood , Middle Aged , Viremia/epidemiology , Young Adult , Immunoglobulin M/blood , Phylogeny , Prevalence , Immunoglobulin G/blood , Genotype
20.
Int J Food Microbiol ; 417: 110682, 2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38626694

ABSTRACT

Hepatitis E infection is typically caused by contaminated water or food. In July and August 2022, an outbreak of hepatitis E was reported in a nursing home in Zhejiang Province, China. Local authorities and workers took immediate actions to confirm the outbreak, investigated the sources of infection and routes of transmission, took measures to terminate the outbreak, and summarized the lessons learned. An epidemiological investigation was conducted on all individuals in the nursing home, including demographic information, clinical symptoms, history of dietary, water intake and contact. Stool and blood samples were collected from these populations for laboratory examinations. The hygiene environment of the nursing home was also investigated. A case-control study was conducted to identify the risk factors for this outbreak. Of the 722 subjects in the nursing home, 77 were diagnosed with hepatitis E, for an attack rate of 10.66 %. Among them, 18 (23.38 %, 18/77) individuals had symptoms such as jaundice, fever, and loss of appetite and were defined as the population with hepatitis E. The average age of people infected with hepatitis E virus (HEV) was 59.96 years and the attack rate of hepatitis E among women (12.02 %, 59/491) was greater than that among men (7.79 %, 18/231). The rate was the highest among caregivers (22.22 %, 32/144) and lowest among logistics personnel (6.25 %, 2/32); however, these differences were not statistically significant (P > 0.05). Laboratory sequencing results indicated that the genotype of this hepatitis E outbreak was 4d. A case-control study showed that consuming pig liver (odds ratio (OR) = 7.50; 95 % confidence interval [CI]: 3.84-16.14, P < 0.001) and consuming raw fruits and vegetables (OR = 5.92; 95 % CI: 1.74-37.13, P = 0.017) were risk factors for this outbreak of Hepatitis E. Moreover, a monitoring video showed that the canteen personnel did not separate raw and cooked foods, and pig livers were cooked for only 2 min and 10 s. Approximately 1 month after the outbreak, an emergency vaccination for HEV was administered. No new cases were reported after two long incubation periods (approximately 4 months). The outbreak of HEV genotype 4d was likely caused by consuming undercooked pig liver, resulting in an attack rate of 10.66 %. This was related to the rapid stir-frying cooking method and the hygiene habit of not separating raw and cooked foods.


Subject(s)
Cooking , Hepatitis E , Nursing Homes , Pork Meat , Hepatitis E virus/classification , Hepatitis E virus/genetics , Hepatitis E/epidemiology , Hepatitis E/transmission , Hepatitis E/virology , Genotype , China/epidemiology , Pork Meat/virology , Liver/virology , Humans , Male , Female , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Risk Factors , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...