Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.386
Filter
1.
Exp Clin Transplant ; 22(8): 586-599, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39254070

ABSTRACT

Liver disease is a major worldwide health and economic problem. Allograft liver transplant is the only effective therapy for end-stage liver disease. The shortage of donors, the high costs, postoperative complications, and lifelong immunosuppression are rate-limiting factors for this established line of treatment. Hence, searching for therapeutic alternatives is mandatory. Stem cells are attractive candidates for cell-based therapy for their potential to support liver regeneration with few complications. They can differentiate into specialized cells, including hepatocytes to restore liver structure and function. Stem cells originating from different sources have been investigated for the treatment of liver diseases. In this review, we highlight the role of stem cells as an appropriate source for liver cell replacement in different liver diseases.


Subject(s)
Liver Diseases , Liver Regeneration , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Humans , Liver Diseases/therapy , Liver Diseases/surgery , Treatment Outcome , Animals , Hepatocytes/transplantation , Regenerative Medicine/trends , Liver/pathology , Cell Differentiation , Recovery of Function , Phenotype
2.
Methods Mol Biol ; 2837: 199-206, 2024.
Article in English | MEDLINE | ID: mdl-39044086

ABSTRACT

Chimeric mouse models with a humanized liver (Hu-HEP mice) provide a unique tool to study human hepatotropic virus diseases, including viral infection, viral pathogenesis, and anti-viral therapy. Here, we describe a detailed protocol for studying hepatitis B infection in NRG-derived fumarylacetoacetate hydrolase (FAH) knockout mice repopulated with human hepatocytes (FRG-Hu HEP mice). The procedures include (1) maintenance and genotyping of the FRG mice, (2) intrasplenic injection of primary human hepatocytes (PHH), (3) 2-(2-nitro-4-fluoromethylbenzoyl)-1,3-cyclohexanedione (NTBC) drug reduction cycling to improve human hepatocyte repopulation, (4) human albumin detection, and (5) HBV infection and detection. The method is simple and allows for highly reproducible generation of FRG-Hu HEP mice for HBV infection and therapy investigations.


Subject(s)
Disease Models, Animal , Hepatitis B virus , Hepatitis B , Hepatocytes , Hydrolases , Liver , Mice, Knockout , Animals , Humans , Mice , Hydrolases/genetics , Hydrolases/metabolism , Hydrolases/deficiency , Hepatitis B/virology , Hepatitis B virus/genetics , Liver/virology , Liver/pathology , Hepatocytes/virology , Hepatocytes/transplantation , Mice, Inbred NOD , Interleukin Receptor Common gamma Subunit/genetics , Interleukin Receptor Common gamma Subunit/deficiency , Chimera , Cyclohexanones , Nitrobenzoates
3.
Nat Commun ; 15(1): 5010, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38866762

ABSTRACT

Primary human hepatocyte (PHH) transplantation is a promising alternative to liver transplantation, whereby liver function could be restored by partial repopulation of the diseased organ with healthy cells. However, currently PHH engraftment efficiency is low and benefits are not maintained long-term. Here we refine two male mouse models of human chronic and acute liver diseases to recapitulate compromised hepatocyte proliferation observed in nearly all human liver diseases by overexpression of p21 in hepatocytes. In these clinically relevant contexts, we demonstrate that transient, yet robust expression of human hepatocyte growth factor and epidermal growth factor in the liver via nucleoside-modified mRNA in lipid nanoparticles, whose safety was validated with mRNA-based COVID-19 vaccines, drastically improves PHH engraftment, reduces disease burden, and improves overall liver function. This strategy may overcome the critical barriers to clinical translation of cell therapies with primary or stem cell-derived hepatocytes for the treatment of liver diseases.


Subject(s)
Hepatocyte Growth Factor , Hepatocytes , Nanoparticles , RNA, Messenger , Animals , Hepatocytes/metabolism , Hepatocytes/transplantation , Humans , Mice , Male , RNA, Messenger/metabolism , RNA, Messenger/genetics , Nanoparticles/chemistry , Hepatocyte Growth Factor/metabolism , Hepatocyte Growth Factor/genetics , Disease Models, Animal , Liver/metabolism , Epidermal Growth Factor/metabolism , Cell- and Tissue-Based Therapy/methods , COVID-19/therapy , Liver Diseases/therapy , Liver Diseases/metabolism , Liver Diseases/genetics , Cell Proliferation , SARS-CoV-2/genetics , Liposomes
4.
Sci Adv ; 10(23): eado1550, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848358

ABSTRACT

The utilization of three-dimensional (3D) bioprinting technology to create a transplantable bioartificial liver emerges as a promising remedy for the scarcity of liver donors. This study outlines our strategy for constructing a 3D-bioprinted liver, using in vitro-expanded primary hepatocytes recognized for their safety and enhanced functional robustness as hepatic cell sources for bioartificial liver construction. In addition, we have developed bioink biomaterials with mechanical and rheological properties, as well as printing capabilities, tailored for 3D bioprinting. Upon heterotopic transplantation into the mesentery of tyrosinemia or 90% hepatectomy mice, our 3D-bioprinted liver effectively restored lost liver functions, consequently extending the life span of mice afflicted with liver injuries. Notably, the inclusion of an artificial blood vessel in our 3D-bioprinted liver allowed for biomolecule exchange with host blood vessels, demonstrating, in principle, the rapid integration of the bioartificial liver into the host vascular system. This model underscores the therapeutic potential of transplantation for the treatment of liver failure diseases.


Subject(s)
Bioprinting , Hepatocytes , Liver Failure , Liver , Printing, Three-Dimensional , Animals , Hepatocytes/metabolism , Hepatocytes/transplantation , Mice , Bioprinting/methods , Liver/metabolism , Liver Failure/therapy , Tissue Engineering/methods , Liver Transplantation/methods , Liver, Artificial , Disease Models, Animal , Tyrosinemias/therapy , Tyrosinemias/metabolism , Tissue Scaffolds/chemistry
5.
Cell Stem Cell ; 31(8): 1187-1202.e8, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38772378

ABSTRACT

Cell-based ex vivo gene therapy in solid organs, especially the liver, has proven technically challenging. Here, we report a feasible strategy for the clinical application of hepatocyte therapy. We first generated high-quality autologous hepatocytes through the large-scale expansion of patient-derived hepatocytes. Moreover, the proliferating patient-derived hepatocytes, together with the AAV2.7m8 variant identified through screening, enabled CRISPR-Cas9-mediated targeted integration efficiently, achieving functional correction of pathogenic mutations in FAH or OTC. Importantly, these edited hepatocytes repopulated the injured mouse liver at high repopulation levels and underwent maturation, successfully treating mice with tyrosinemia following transplantation. Our study combines ex vivo large-scale cell expansion and gene editing in patient-derived transplantable hepatocytes, which holds potential for treating human liver diseases.


Subject(s)
CRISPR-Cas Systems , Gene Editing , Genetic Therapy , Hepatocytes , Liver Diseases , Hepatocytes/metabolism , Hepatocytes/transplantation , CRISPR-Cas Systems/genetics , Humans , Animals , Liver Diseases/therapy , Liver Diseases/genetics , Liver Diseases/pathology , Mice , Genetic Therapy/methods , Tyrosinemias/therapy , Tyrosinemias/genetics , Cell Proliferation , Hydrolases
6.
Front Immunol ; 15: 1385022, 2024.
Article in English | MEDLINE | ID: mdl-38694507

ABSTRACT

Liver failure represents a critical medical condition with a traditionally grim prognosis, where treatment options have been notably limited. Historically, liver transplantation has stood as the sole definitive cure, yet the stark disparity between the limited availability of liver donations and the high demand for such organs has significantly hampered its feasibility. This discrepancy has necessitated the exploration of hepatocyte transplantation as a temporary, supportive intervention. In light of this, our review delves into the burgeoning field of hepatocyte transplantation, with a focus on the latest advancements in maintaining hepatocyte function, co-microencapsulation techniques, xenogeneic hepatocyte transplantation, and the selection of materials for microencapsulation. Our examination of hepatocyte microencapsulation research highlights that, to date, most studies have been conducted in vitro or using liver failure mouse models, with a notable paucity of experiments on larger mammals. The functionality of microencapsulated hepatocytes is primarily inferred through indirect measures such as urea and albumin production and the rate of ammonia clearance. Furthermore, research on the mechanisms underlying hepatocyte co-microencapsulation remains limited, and the practicality of xenogeneic hepatocyte transplantation requires further validation. The potential of hepatocyte microencapsulation extends beyond the current scope of application, suggesting a promising horizon for liver failure treatment modalities. Innovations in encapsulation materials and techniques aim to enhance cell viability and function, indicating a need for comprehensive studies that bridge the gap between small-scale laboratory success and clinical applicability. Moreover, the integration of bioengineering and regenerative medicine offers novel pathways to refine hepatocyte transplantation, potentially overcoming the challenges of immune rejection and ensuring the long-term functionality of transplanted cells. In conclusion, while hepatocyte microencapsulation and transplantation herald a new era in liver failure therapy, significant strides must be made to translate these experimental approaches into viable clinical solutions. Future research should aim to expand the experimental models to include larger mammals, thereby providing a clearer understanding of the clinical potential of these therapies. Additionally, a deeper exploration into the mechanisms of cell survival and function within microcapsules, alongside the development of innovative encapsulation materials, will be critical in advancing the field and offering new hope to patients with liver failure.


Subject(s)
Cell Encapsulation , Cell Survival , Hepatocytes , Animals , Humans , Cell Encapsulation/methods , Hepatocytes/transplantation , Hepatocytes/cytology , Liver Failure/therapy , Transplantation, Heterologous
7.
Cell Transplant ; 33: 9636897241253700, 2024.
Article in English | MEDLINE | ID: mdl-38770981

ABSTRACT

Hepatocyte transplantation (HCT) is a potential bridging therapy or an alternative to liver transplantation. Conventionally, single-cell hepatocytes are injected via the portal vein. This strategy, however, has yet to overcome poor cell engraftment and function. Therefore, we developed an orthotopic HCT method using a liver-derived extracellular matrix (L-ECM) gel. PXB cells (flesh mature human hepatocytes) were dispersed into the hydrogel solution in vitro, and the gel solution was immediately gelated in 37°C incubators to investigate the affinity between mature human hepatocyte and the L-ECM gel. During the 3-day cultivation in hepatocyte medium, PXB cells formed cell aggregates via cell-cell interactions. Quantitative analysis revealed human albumin production in culture supernatants. For the in vivo assay, PXB cells were encapsulated in the L-ECM gel and transplanted between the liver lobes of normal rats. Pathologically, the L-ECM gel was localized at the transplant site and retained PXB cells. Cell survival and hepatic function marker expression were verified in another rat model wherein thioacetamide was administered to induce liver fibrosis. Moreover, cell-cell interactions and angiogenesis were enhanced in the L-ECM gel compared with that in the collagen gel. Our results indicate that L-ECM gels can help engraft transplanted hepatocytes and express hepatic function as a scaffold for cell transplantation.


Subject(s)
Cell Communication , Hepatocytes , Liver Cirrhosis , Hepatocytes/cytology , Hepatocytes/transplantation , Hepatocytes/metabolism , Animals , Humans , Liver Cirrhosis/therapy , Liver Cirrhosis/pathology , Rats , Neovascularization, Physiologic , Extracellular Matrix/metabolism , Male , Liver , Hydrogels/chemistry , Tissue Engineering/methods , Rats, Sprague-Dawley , Cells, Cultured , Angiogenesis
8.
Curr Opin Organ Transplant ; 29(4): 239-247, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38764406

ABSTRACT

PURPOSE OF REVIEW: In an attempt to reduce waiting list mortality in liver transplantation, less-than-ideal quality donor livers from extended criteria donors are increasingly accepted. Predicting the outcome of these organs remains a challenge. Machine perfusion provides the unique possibility to assess donor liver viability pretransplantation and predict postreperfusion organ function. RECENT FINDINGS: Assessing liver viability during hypothermic machine perfusion remains challenging, as the liver is not metabolically active. Nevertheless, the levels of flavin mononucleotide, transaminases, lactate dehydrogenase, glucose and pH in the perfusate have proven to be predictors of liver viability. During normothermic machine perfusion, the liver is metabolically active and in addition to the perfusate levels of pH, transaminases, glucose and lactate, the production of bile is a crucial criterion for hepatocyte viability. Cholangiocyte viability can be determined by analyzing bile composition. The differences between perfusate and bile levels of pH, bicarbonate and glucose are good predictors of freedom from ischemic cholangiopathy. SUMMARY: Although consensus is lacking regarding precise cut-off values during machine perfusion, there is general consensus on the importance of evaluating both hepatocyte and cholangiocyte compartments. The challenge is to reach consensus for increased organ utilization, while at the same time pushing the boundaries by expanding the possibilities for viability testing.


Subject(s)
Liver Transplantation , Liver , Organ Preservation , Perfusion , Humans , Perfusion/methods , Perfusion/adverse effects , Liver Transplantation/adverse effects , Liver/surgery , Liver/metabolism , Organ Preservation/methods , Organ Preservation/adverse effects , Tissue Survival , Tissue Donors , Hepatocytes/metabolism , Hepatocytes/transplantation , Animals , Donor Selection , Bile/metabolism , Cell Survival , Biomarkers/metabolism , Predictive Value of Tests , Cold Ischemia/adverse effects
9.
Hepatol Commun ; 8(5)2024 05 01.
Article in English | MEDLINE | ID: mdl-38668730

ABSTRACT

BACKGROUND: We previously demonstrated the successful use of in vivo CRISPR gene editing to delete 4-hydroxyphenylpyruvate dioxygenase (HPD) to rescue mice deficient in fumarylacetoacetate hydrolase (FAH), a disorder known as hereditary tyrosinemia type 1 (HT1). The aim of this study was to develop an ex vivo gene-editing protocol and apply it as a cell therapy for HT1. METHODS: We isolated hepatocytes from wild-type (C57BL/6J) and Fah-/- mice and then used an optimized electroporation protocol to deliver Hpd-targeting CRISPR-Cas9 ribonucleoproteins into hepatocytes. Next, hepatocytes were transiently incubated in cytokine recovery media formulated to block apoptosis, followed by splenic injection into recipient Fah-/- mice. RESULTS: We observed robust engraftment and expansion of transplanted gene-edited hepatocytes from wild-type donors in the livers of recipient mice when transient incubation with our cytokine recovery media was used after electroporation and negligible engraftment without the media (mean: 46.8% and 0.83%, respectively; p=0.0025). Thus, the cytokine recovery medium was critical to our electroporation protocol. When hepatocytes from Fah-/- mice were used as donors for transplantation, we observed 35% and 28% engraftment for Hpd-Cas9 ribonucleoproteins and Cas9 mRNA, respectively. Tyrosine, phenylalanine, and biochemical markers of liver injury normalized in both Hpd-targeting Cas9 ribonucleoprotein and mRNA groups independent of induced inhibition of Hpd through nitisinone, indicating correction of disease indicators in Fah-/- mice. CONCLUSIONS: The successful liver cell therapy for HT1 validates our protocol and, despite the known growth advantage of HT1, showcases ex vivo gene editing using electroporation in combination with liver cell therapy to cure a disease model. These advancements underscore the potential impacts of electroporation combined with transplantation as a cell therapy.


Subject(s)
Gene Editing , Hepatocytes , Hydrolases , Mice, Inbred C57BL , Tyrosinemias , Animals , Tyrosinemias/therapy , Tyrosinemias/genetics , Gene Editing/methods , Mice , Hepatocytes/transplantation , Hepatocytes/metabolism , Hydrolases/genetics , Cell- and Tissue-Based Therapy/methods , CRISPR-Cas Systems , Electroporation/methods , Mice, Knockout , 4-Hydroxyphenylpyruvate Dioxygenase/genetics , Disease Models, Animal , Cyclohexanones , Nitrobenzoates
10.
FEBS Lett ; 598(11): 1354-1365, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38594179

ABSTRACT

Chronic infection with the hepatitis B virus (HBV) induces progressive hepatic impairment. Achieving complete eradication of the virus remains a formidable challenge. Cytotoxic T lymphocytes, specific to viral antigens, either exhibit a numerical deficiency or succumb to an exhausted state in individuals chronically afflicted with HBV. The comprehension of the genesis and dissemination of stem cell memory T cells (TSCMs) targeting HBV remains inadequately elucidated. We identified TSCMs in subjects with chronic HBV infection and scrutinized their efficacy in a murine model with human hepatocyte transplants, specifically the TK-NOG mice. TSCMs were discerned in all subjects under examination. Introduction of TSCMs into the HBV mouse model precipitated a severe necro-inflammatory response, resulting in the elimination of human hepatocytes. TSCMs may constitute a valuable tool in the pursuit of a remedial therapy for HBV infection.


Subject(s)
Cell Differentiation , Hepatitis B virus , Hepatocytes , Memory T Cells , T-Lymphocytes, Cytotoxic , Animals , Humans , Hepatocytes/virology , Hepatocytes/immunology , Hepatocytes/transplantation , Hepatitis B virus/immunology , Hepatitis B virus/physiology , T-Lymphocytes, Cytotoxic/immunology , Mice , Cell Differentiation/immunology , Memory T Cells/immunology , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Male , Female , Disease Models, Animal , Stem Cells/virology , Stem Cells/immunology , Stem Cells/cytology , Adult
11.
Stem Cell Res Ther ; 15(1): 48, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38378583

ABSTRACT

BACKGROUND: Allogeneic hepatocyte transplantation is an emerging approach to treat acute liver defects. However, durable engraftment of the transplanted cells remains a daunting task, as they are actively cleared by the recipient's immune system. Therefore, a detailed understanding of the innate or adaptive immune cells-derived responses against allogeneic transplanted hepatic cells is the key to rationalize cell-based therapies. METHODS: Here, we induced an acute inflammatory regenerative niche (3-96 h) on the surface of the liver by the application of cryo-injury (CI) to systematically evaluate the innate immune response against transplanted allogeneic hepatic progenitors in a sustained micro-inflammatory environment. RESULTS: The resulting data highlighted that the injured site was significantly repopulated by alternating numbers of innate immune cells, including neutrophils, monocytes and Kupffer cells (KCs), from 3 to 96 h. The transplanted allo-HPs, engrafted 6 h post-injury, were collectively eliminated by the innate immune response within 24 h of transplantation. Selective depletion of the KCs demonstrated a delayed recruitment of monocytes from day 2 to day 6. In addition, the intrasplenic engraftment of the hepatic progenitors 54 h post-transplantation was dismantled by KCs, while a time-dependent better survival and translocation of the transplanted cells into the injured site could be observed in samples devoid of KCs. CONCLUSION: Overall, this study provides evidence that KCs ablation enables a better survival and integration of allo-HPs in a sustained liver inflammatory environment, having implications for rationalizing the cell-based therapeutic interventions against liver defects.


Subject(s)
Hematopoietic Stem Cell Transplantation , Kupffer Cells , Kupffer Cells/physiology , Liver , Hepatocytes/transplantation , Liver Regeneration/physiology
12.
J Control Release ; 366: 160-169, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154542

ABSTRACT

Hepatic tissue engineering has been applied for the treatment of intractable liver diseases, and hepatocyte sheets are promising for this purpose. However, hepatocyte sheets have poor survival after transplantation because of their high metabolic activity. In this study, we aimed to develop basic fibroblast growth factor (bFGF)-releasing nanoparticles to prolong the survival of hepatocyte sheets after transplantation. The nanoparticles were prepared by electrospraying a bFGF-dispersed poly(D,l-lactide-co-glycolide) emulsion. bFGF-loaded PLGA nanoparticles can be developed by optimizing the applied electrospray voltage and the oil:water ratio of the emulsion. The prepared nanoparticles exhibited prompt release at the initial duration and continuous gradual release at the subsequent duration. Hepatocyte sheet engraftment was evaluated by transplanting hepatocyte sheets containing the prepared nanoparticles into rats. The hepatocyte sheets with the prepared nanoparticles exhibited longer survival than those without the bFGF nanoparticles or solution owing to the local and continuous release of bFGF from the nanoparticles and the subsequent enhanced angiogenesis at the transplantation site. These results indicated that the prepared bFGF-releasing nanoparticles can enhance the efficiency of hepatocyte sheet transplantation. The developed bFGF-releasing nanoparticles would be useful for the transplantation of cellular tissue with post-transplantation survival challenges.


Subject(s)
Fibroblast Growth Factor 2 , Hepatocytes , Nanoparticles , Animals , Rats , Emulsions , Hepatocytes/transplantation , Tissue Engineering/methods
13.
J Surg Res ; 293: 128-135, 2024 01.
Article in English | MEDLINE | ID: mdl-37738854

ABSTRACT

INTRODUCTION: Irreversible electroporation (IRE) is a tissue ablation technology that kills cells with short electrical pulses that do not induce thermal damage, thereby preserving the extracellular matrix. Preclinical research suggests that IRE may be developed as a tool for regenerative surgery by clearing existing host cells within a solid organ and creating a supportive niche for new cell engraftment. We hypothesized that hepatocytes transplanted by injection into the portal circulation would preferentially engraft within liver parenchyma pretreated with IRE. METHODS: Transgene-positive ß-galactosidase-expressing hepatocytes were isolated from B6.129S7-Gt(ROSA)26Sor/J (ROSA26) mice and transplanted by intrasplenic injection into wild-type littermates that received liver IRE pretreatment or control sham treatment. Engraftment of donor hepatocytes in recipient livers was determined by X-gal staining. RESULTS: Significantly higher numbers of X-gal+ donor hepatocytes engrafted in the livers of IRE-treated mice as compared to sham-treated mice. X-gal+ hepatocytes persisted in IRE-treated recipients for at least 11 d post-transplant and formed clusters. Immunostaining demonstrated the presence of HNF4A/Ki67/ß-galactosidase triple-positive cells within IRE-ablation zones, indicating that transplanted hepatocytes preferentially engrafted in IRE-treated liver parenchyma and proliferated. CONCLUSIONS: IRE pretreatment of the liver increased engraftment of transplanted hepatocytes within the IRE-ablation zone. IRE treatment of the host liver may be developed clinically as a strategy to increase engraftment efficiency of primary hepatocytes and/or hepatocytes derived from stem cells in cell transplant therapies.


Subject(s)
Hepatocytes , Liver , Mice , Animals , Liver/surgery , Hepatocytes/transplantation , Electroporation , Stem Cell Transplantation , beta-Galactosidase
14.
Front Med ; 17(3): 432-457, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37402953

ABSTRACT

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.


Subject(s)
Liver Diseases , Liver , Humans , Liver/surgery , Hepatocytes/metabolism , Hepatocytes/transplantation , Stem Cells/metabolism , Liver Diseases/surgery
15.
Int J Mol Sci ; 24(11)2023 May 26.
Article in English | MEDLINE | ID: mdl-37298243

ABSTRACT

The term "liver disease" refers to any hepatic condition that leads to tissue damage or altered hepatic function and can be induced by virus infections, autoimmunity, inherited genetic mutations, high consumption of alcohol or drugs, fat accumulation, and cancer. Some types of liver diseases are becoming more frequent worldwide. This can be related to increasing rates of obesity in developed countries, diet changes, higher alcohol intake, and even the coronavirus disease 2019 (COVID-19) pandemic was associated with increased liver disease-related deaths. Although the liver can regenerate, in cases of chronic damage or extensive fibrosis, the recovery of tissue mass is impossible, and a liver transplant is indicated. Because of reduced organ availability, it is necessary to search for alternative bioengineered solutions aiming for a cure or increased life expectancy while a transplant is not possible. Therefore, several groups were studying the possibility of stem cells transplantation as a therapeutic alternative since it is a promising strategy in regenerative medicine for treating various diseases. At the same time, nanotechnological advances can contribute to specifically targeting transplanted cells to injured sites using magnetic nanoparticles. In this review, we summarize multiple magnetic nanostructure-based strategies that are promising for treating liver diseases.


Subject(s)
COVID-19 , Liver Diseases , Nanostructures , Humans , Regenerative Medicine , Hepatocytes/transplantation , COVID-19/therapy , Liver Diseases/therapy , Stem Cells , Liver Regeneration , Magnetic Phenomena
16.
Stem Cell Res Ther ; 14(1): 141, 2023 05 25.
Article in English | MEDLINE | ID: mdl-37231461

ABSTRACT

Liver disease is prevalent worldwide. When it reaches the end stage, mortality rises to 50% or more. Although liver transplantation has emerged as the most efficient treatment for end-stage liver disease, its application has been limited by the scarcity of donor livers. The lack of acceptable donor organs implies that patients are at high risk while waiting for suitable livers. In this scenario, cell therapy has emerged as a promising treatment approach. Most of the time, transplanted cells can replace host hepatocytes and remodel the hepatic microenvironment. For instance, hepatocytes derived from donor livers or stem cells colonize and proliferate in the liver, can replace host hepatocytes, and restore liver function. Other cellular therapy candidates, such as macrophages and mesenchymal stem cells, can remodel the hepatic microenvironment, thereby repairing the damaged liver. In recent years, cell therapy has transitioned from animal research to early human studies. In this review, we will discuss cell therapy in end-stage liver disease treatment, especially focusing on various cell types utilized for cell transplantation, and elucidate the processes involved. Furthermore, we will also summarize the practical obstacles of cell therapy and offer potential solutions.


Subject(s)
End Stage Liver Disease , Liver Diseases , Animals , Humans , End Stage Liver Disease/therapy , End Stage Liver Disease/metabolism , Liver/metabolism , Hepatocytes/transplantation , Liver Diseases/therapy , Cell- and Tissue-Based Therapy , Liver Regeneration , Cell Differentiation
17.
Frontiers of Medicine ; (4): 432-457, 2023.
Article in English | WPRIM (Western Pacific) | ID: wpr-982589

ABSTRACT

The liver has a complex cellular composition and a remarkable regenerative capacity. The primary cell types in the liver are two parenchymal cell populations, hepatocytes and cholangiocytes, that perform most of the functions of the liver and that are helped through interactions with non-parenchymal cell types comprising stellate cells, endothelia and various hemopoietic cell populations. The regulation of the cells in the liver is mediated by an insoluble complex of proteins and carbohydrates, the extracellular matrix, working synergistically with soluble paracrine and systemic signals. In recent years, with the rapid development of genetic sequencing technologies, research on the liver's cellular composition and its regulatory mechanisms during various conditions has been extensively explored. Meanwhile breakthroughs in strategies for cell transplantation are enabling a future in which there can be a rescue of patients with end-stage liver diseases, offering potential solutions to the chronic shortage of livers and alternatives to liver transplantation. This review will focus on the cellular mechanisms of liver homeostasis and how to select ideal sources of cells to be transplanted to achieve liver regeneration and repair. Recent advances are summarized for promoting the treatment of end-stage liver diseases by forms of cell transplantation that now include grafting strategies.


Subject(s)
Humans , Liver/surgery , Hepatocytes/transplantation , Stem Cells/metabolism , Liver Diseases/surgery
18.
J Transl Med ; 20(1): 479, 2022 10 20.
Article in English | MEDLINE | ID: mdl-36266691

ABSTRACT

BACKGROUND: Explanted livers from patients with inherited metabolic liver diseases possess the potential to be a cell source of good-quality hepatocytes for hepatocyte transplantation (HT). This study evaluated the therapeutic effects of domino HT using hepatocytes isolated from explanted human livers for acute liver failure (ALF). METHODS: Isolated hepatocytes were evaluated for viability and function and then transplanted into D-galactosamine/lipopolysaccharide-induced ALF mice via splenic injection. The survival rate was analyzed by the Kaplan-Meier method and log-rank test. Liver function was evaluated by serum biochemical parameters, and inflammatory cytokine levels were measured by ELISA. The pathological changes in the liver tissues were assessed by hematoxylin-eosin staining. Hepatocyte apoptosis was investigated by TUNEL, and hepatocyte apoptosis-related proteins were detected by western blot. The localization of human hepatocytes in the injured mouse livers was detected by immunohistochemical analyses. RESULTS: Hepatocytes were successfully isolated from explanted livers of 10 pediatric patients with various liver-based metabolic disorders, with an average viability of 85.3% ± 13.0% and average yield of 9.2 × 106 ± 3.4 × 106 cells/g. Isolated hepatocytes had an excellent ability to secret albumin, produce urea, uptake indocyanine green, storage glycogen, and express alpha 1 antitrypsin, albumin, cytokeratin 18, and CYP3A4. Domino HT significantly reduced mortality, decreased serum levels of alanine aminotransferase and aspartate aminotransferase, and improved the pathological damage. Moreover, transplanted hepatocytes inhibited interleukin-6 and tumor necrosis factor-α levels. Domino HT also ameliorates hepatocyte apoptosis, as evidenced by decreased TUNEL positive cells. Positive staining for human albumin suggested the localization of human hepatocytes in ALF mice livers. CONCLUSION: Explanted livers from patients with inheritable metabolic disorders can serve as a viable cell source for cell-based therapies. Domino HT using hepatocytes with certain metabolic defects has the potential to be a novel therapeutic strategy for ALF.


Subject(s)
Hepatocytes , Liver Failure, Acute , Metabolic Diseases , Animals , Child , Humans , Mice , Alanine Transaminase/metabolism , Albumins/metabolism , alpha 1-Antitrypsin/metabolism , Aspartate Aminotransferases/metabolism , Cytochrome P-450 CYP3A/metabolism , Galactosamine/adverse effects , Glycogen/metabolism , Interleukin-6/metabolism , Keratin-18/metabolism , Lipopolysaccharides , Liver Failure, Acute/chemically induced , Liver Failure, Acute/surgery , Metabolic Diseases/chemically induced , Metabolic Diseases/surgery , Serum Albumin, Human/metabolism , Tumor Necrosis Factor-alpha/metabolism , Urea/metabolism , Hepatocytes/transplantation
19.
Exp Clin Transplant ; 20(4): 408-412, 2022 03.
Article in English | MEDLINE | ID: mdl-35475422

ABSTRACT

OBJECTIVES: We analyzed liver tissue morphology dynamics in experimental animals with acute liver failure during treatment with a combination of transplanted cultured embryonic hepatocytes and the hepatoprotective drug Erbisol. MATERIALS AND METHODS: We studied 30 white outbred male rats weighing 250 to 350 g, divided into 6 groups with 5 animals in each group. Acute liver damage was induced by a hepatotoxic model of acute liver failure for which carbon tetrachloride was applied (200 µg CCl4/100 g body weight with toxin-to-oil volume ratio of 1:1). To obtain cultured embryonic hepatocytes, we used an enzymatic-mechanical process that caused only minimal cell damage. This method is known to improve the output of viable cultured embryonic hepatocytes, improve the morphological-functional properties of the hepatocytes, and reduce the process time during procurement, and thereby reduce the overall time from procurement to the subsequent culturing of the obtained cells. Transplant of cultured embryonic hepatocytes was performed intrape-ritoneally at a dose of 50 million (0.5 × 108) cells. Morphological studies were performed on day 7 and day 21 of the experiment. RESULTS AND CONCLUSIONS: There were significant morphological changes in livers from animals with acute liver failure, caused by widespread necrosis and an elevated inflammatory response. Treatment with injections of cultured embryonic hepatocytes induced regeneration of the liver parenchyma cells and reduced the inflammatory response, both of which were further reduced in rats that received combined treatment of transplant with Erbisol. Combined application of cultured embryonic hepatocytes and Erbisol potentiated the effects of both treatments, which produced intensive proliferation of hepatocytes, hypertrophy and polyploidization of hepatocyte nuclei, and an early restoration of liver structure and organ mass.


Subject(s)
Liver Failure, Acute , Transplants , Animals , Hepatocytes/transplantation , Humans , Liver Failure, Acute/chemically induced , Liver Failure, Acute/surgery , Male , Rats , Treatment Outcome
20.
Sci Rep ; 12(1): 4241, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35273344

ABSTRACT

Clinical hepatocyte transplantation (HTx) is only performed without general anesthesia, while inhalation anesthetics are usually used in animal experiments. We hypothesized that isoflurane may be a possible reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx. Syngeneic rat hepatocytes (1.0 × 107) were transplanted to analbuminemic rats with (ISO group) and without (AW group) isoflurane. The serum albumin, AST, ALT, LDH levels and several inflammatory mediators were analyzed. Immunohistochemical staining and ex vivo imaging were also performed. The serum albumin levels of the ISO group were significantly higher in comparison to the AW group (p < 0.05). The serum AST, ALT, LDH levels of the ISO group were significantly suppressed in comparison to the AW group (p < 0.0001, respectively). The serum IL-1ß, IL-10, IL-18, MCP-1, RNTES, Fractalkine and LIX levels were significantly suppressed in the ISO group. The ischemic regions of the recipient livers in the ISO group tended to be smaller than the AW group; however, the distribution of transplanted hepatocytes in the liver parenchyma was comparable between the two groups. Isoflurane may at least in part be a reason for the discrepancy between the results of animal experiments and the clinical outcomes of HTx.


Subject(s)
Anesthetics, Inhalation , Isoflurane , Liver Transplantation , Anesthetics, Inhalation/pharmacology , Animals , Hepatocytes/transplantation , Isoflurane/pharmacology , Liver , Liver Transplantation/methods , Rats , Serum Albumin
SELECTION OF CITATIONS
SEARCH DETAIL