Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 917
1.
Arch Microbiol ; 206(7): 287, 2024 Jun 04.
Article En | MEDLINE | ID: mdl-38833010

Hepcidin is a crucial regulator of iron homeostasis with protective effects on liver fibrosis. Additionally, gut microbiota can also affect liver fibrosis and iron metabolism. Although the hepatoprotective potential of Akkermansia muciniphila and Faecalibacterium duncaniae, formerly known as F. prausnitzii, has been reported, however, their effects on hepcidin expression remain unknown. We investigated the direct and macrophage stimulation-mediated effects of active, heat-inactivated, and cell-free supernatant (CFS) forms of A. muciniphila and F. duncaniae on hepcidin expression in HepG2 cells by RT-qPCR analysis. Following stimulation of phorbol-12-myristate-13-acetate (PMA) -differentiated THP-1 cells with A. muciniphila and F. duncaniae, IL-6 concentration was assessed via ELISA. Additionally, the resulting supernatant was treated with HepG2 cells to evaluate the effect of macrophage stimulation on hepcidin gene expression. The expression of genes mediating iron absorption and export was also examined in HepG2 and Caco-2 cells via RT-qPCR. All forms of F. duncaniae increased hepcidin expression while active and heat-inactivated/CFS forms of A. muciniphila upregulated and downregulated its expression, respectively. Active, heat-inactivated, and CFS forms of A. muciniphila and F. duncaniae upregulated hepcidin expression, consistent with the elevation of IL-6 released from THP-1-stimulated cells as a macrophage stimulation effect in HepG2 cells. A. muciniphila and F. duncaniae in active, inactive, and CFS forms altered the expression of hepatocyte and intestinal iron-mediated absorption /exporter genes, namely dcytb and dmt1, and fpn in HepG2 and Caco-2 cells, respectively. In conclusion, A. muciniphila and F. duncaniae affect not only directly but also through macrophage stimulation the expression of hepcidin gene in HepG2 cells. These findings underscore the potential of A. muciniphila and F. duncaniae as a potential therapeutic target for liver fibrosis by modulating hepcidin and intestinal and hepatocyte iron metabolism mediated gene expression.


Akkermansia , Hepcidins , Macrophages , Humans , Hepcidins/genetics , Hepcidins/metabolism , Hep G2 Cells , Caco-2 Cells , Macrophages/immunology , Macrophages/microbiology , Macrophages/metabolism , THP-1 Cells , Iron/metabolism , Interleukin-6/metabolism , Interleukin-6/genetics , Macrophage Activation , Gastrointestinal Microbiome
2.
Clin Exp Pharmacol Physiol ; 51(6): e13869, 2024 Jun.
Article En | MEDLINE | ID: mdl-38725222

Treatment with erythropoietin (EPO) can correct anaemia in chronic kidney disease (CKD) patients; however, up to 10% exhibit resistance or hyporesponsiveness to EPO. Non-alcoholic fatty liver disease (NAFLD), prevalent liver disease in CKD patients, may limit EPO response because of thrombopoietin deficiency, iron homeostasis disorder and inflammation. Therefore, we hypothesized NAFLD is a risk factor for EPO responsiveness. To test our hypothesis, we evaluated the effect of EPO in healthy rats and rats with NAFLD induced by a high-fat, high-carbohydrate (HFHC) diet. After 12 weeks on the HFHC diet, NAFLD rats showed lower erythroid response to EPO treatment than healthy rats. We, then, determined that the primary cause of EPO hyporesponsiveness could be iron deficiency associated with inflammation, which reduces erythroid cell production. Specifically, the concentrations of hepcidin, ferritin, transferrin and white blood cells in NAFLD rats were 12.8-, 16.4-, 2.51- and 1.40-fold higher than those in healthy rats, respectively. However, erythroid cell types in the bone marrow of NAFLD rats were significantly reduced. In conclusion, our data suggest that NAFLD could be a risk factor for EPO responsiveness, which is attributed to functional iron deficiency associated with inflammation.


Erythropoietin , Non-alcoholic Fatty Liver Disease , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/pathology , Rats , Male , Rats, Sprague-Dawley , Diet, High-Fat/adverse effects , Hepcidins/metabolism
3.
Int Immunopharmacol ; 134: 112219, 2024 Jun 15.
Article En | MEDLINE | ID: mdl-38733823

BACKGROUNDS & AIMS: Given its ability to inhibit HBV replication, Interferon alpha (IFN-α) treatment has been confirmed to be effective in managing Chronic Hepatitis B (CHB). However, its underlying mechanisms are incompletely understood. METHODS: Herein, we investigated the antiviral properties of IFN-α by introducing IFN-α expression plasmids into a well-established HBV Hydrodynamic Injection (HDI) mouse model and examined the impact of IFN-α or hepcidin treatment on macrophages derived from THP-1 cells. The cytokine profiles were analyzed using the cytometry microsphere microarray technology, and flow cytometry was used to analyze the polarization of macrophages. Additionally, the IL-6/JAK2/STAT3 signaling pathway and the hepcidin-ferroportin axis were analyzed to better understand the macrophage polarization mechanism. RESULTS: As evidenced by the suppression of HBV replication, injection of an IFN-α expression plasmid and supernatants of IFN-α-treated macrophages exerted anti-HBV effects. The IFN-α treatment up-regulated IL-6 in mice with HBV replication, as well as in IFN-α-treated HepG2 cells and macrophages. Furthermore, JAK2/STAT3 signaling and hepcidin expression was promoted, inducing iron accumulation via the hepcidin-ferroportin axis, which caused the polarization of M1 macrophages. Furthermore, under the effect of IFN-α, IL-6 silencing or blockade downregulated the JAK2/STAT3 signaling pathway and hepcidin, implying that increased hepcidin expression under IFN-α treatment was dependent on the IL-6/JAK2/STAT3 pathway. CONCLUSION: The IL-6/JAK2/STAT3 signaling pathway is activated by IFN-α which induces hepcidin expression. The resulting iron accumulation then induces the polarization of M1 macrophages via the hepcidin-ferroportin axis, yielding an immune response which exerts antiviral effects against HBV replication.


Antiviral Agents , Hepatitis B virus , Hepcidins , Interferon-alpha , Janus Kinase 2 , Macrophages , STAT3 Transcription Factor , Hepcidins/metabolism , Hepcidins/genetics , Animals , Humans , Interferon-alpha/pharmacology , Macrophages/immunology , Macrophages/drug effects , Hepatitis B virus/physiology , Hepatitis B virus/drug effects , Hepatitis B virus/immunology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Mice , Janus Kinase 2/metabolism , STAT3 Transcription Factor/metabolism , Hep G2 Cells , Signal Transduction/drug effects , Interleukin-6/metabolism , THP-1 Cells , Mice, Inbred C57BL , Virus Replication/drug effects , Male , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/drug therapy , Hepatitis B, Chronic/virology , Disease Models, Animal , Hepatitis B/immunology , Hepatitis B/drug therapy , Hepatitis B/virology , Cation Transport Proteins/metabolism , Cation Transport Proteins/genetics
4.
Swiss Med Wkly ; 154: 3635, 2024 Feb 19.
Article En | MEDLINE | ID: mdl-38579297

BACKGROUND: Iron deficiency without anaemia is a common health problem, especially in young menstruating women. The efficacy of the usually recommended oral iron supplementation is limited due to increased plasma hepcidin concentration, which reduces iron absorption and leads to side effects such as intestinal irritation. This observation raises the question of how low-dose iron therapy may affect plasma hepcidin levels and whether oral iron intake dose-dependently affects plasma hepcidin production. METHODS: Fifteen non-anaemic women with iron deficiency (serum ferritin ≤30 ng/ml) received a single dose of 0, 6, 30, or 60 mg of elemental oral iron as ferrous sulfate on different days. Plasma hepcidin was measured before and seven hours after each dose. RESULTS: Subjects had an average age of 23 (standard deviation = 3.0) years and serum ferritin of 24 ng/ml (interquartile range = 16-27). The highest mean change in plasma hepcidin levels was measured after ingesting 60 mg of iron, increasing from 2.1 ng/ml (interquartile range = 1.6-2.9) to 4.1 ng/ml (interquartile range = 2.5-6.9; p < 0.001). Iron had a significant dose-dependent effect on the absolute change in plasma hepcidin (p = 0.008), where lower iron dose supplementation resulted in lower plasma hepcidin levels. Serum ferritin levels were significantly correlated with fasting plasma hepcidin levels (R2 = 0.504, p = 0.003) and the change in plasma hepcidin concentration after iron intake (R2 = 0.529, p = 0.002). CONCLUSION: We found a dose-dependent effect of iron supplementation on plasma hepcidin levels. Lower iron dosage results in a smaller increase in hepcidin and might thus lead to more efficient intestinal iron absorption and fewer side effects. The effectiveness and side effects of low-dose iron treatment in women with iron deficiency should be further investigated. This study was registered at the Swiss National Clinical Trials Portal (2021-00312) and ClinicalTrials.gov (NCT04735848).


Hepcidins , Iron , Female , Humans , Anemia, Iron-Deficiency/drug therapy , Dietary Supplements , Ferritins , Hepcidins/drug effects , Hepcidins/metabolism , Iron/pharmacology , Iron/therapeutic use , Iron Deficiencies/drug therapy , Nutritional Status
5.
BMC Pediatr ; 24(1): 240, 2024 Apr 04.
Article En | MEDLINE | ID: mdl-38575873

BACKGROUND: Iron deficiency anemia remains a significant public health issue in developing countries. The regulation of iron metabolism is primarily controlled by hepcidin, a key regulatory protein. During erythropoiesis, erythroferrone (ERFE), a hormone produced by erythroblasts in response to erythropoietin (EPO) synthesis, mediates the suppression of hepcidin. In this study, it was aimed to determine the correlation between erythroferrone (ERFE) and hepcidin levels in children with iron deficiency anemia. METHODS: This is a case-control study conducted at Kirsehir Ahi Evran University Training and Research Hospital Pediatrics Clinic between 1 and 31 September 2020. The study included 26 healthy children and 26 children with iron deficiency anemia. In order to evaluate iron status,whole blood count, serum iron, total iron binding capacity (TIBC), and ferritin levels were analyzed. The study measured the levels of hepcidin and erythroferrone in the serum of children diagnosed with iron deficiency before and after one month of iron treatment, as well as in a control group, using the ELISA method. Correlation between whole blood count, initial ferritin, hepcidin, ERFE and ferritin in the iron deficiency group was evaluated. RESULTS: Compared with healthy controls, the iron-deficient group had significantly lower haemoglobin (p < 0.001), MCV (p = 0.001), MCH (p < 0.001), MCHC (p < 0.001), iron (p < 0.001), ferritin (p < 0.001) and hepcidin (p = 0.001). Ferritin and hepcidin levels increased while erythroferrone levels remained unchanged after iron deficiency treatment. There was no correlation between hepcidin and ferritin levels in treatment group. CONCLUSIONS: The study found a strong and positive correlation between ferritin and hepcidin levels in iron-deficient children, but not between ERFE levels, suggesting that hepcidin is largely regulated by iron deposition levels. In addition, there was an increase in ferritin and hepcidin levels after iron treatment. The study found no significant difference in erythroferrone levels between the iron-deficient group and the control group. It is thought that this may be due to the short duration of iron treatment given to the patients with iron deficiency anemia included in the study.


Anemia, Iron-Deficiency , Iron Deficiencies , Humans , Child , Hepcidins/metabolism , Case-Control Studies , Iron , Ferritins
6.
Free Radic Biol Med ; 219: 153-162, 2024 Jul.
Article En | MEDLINE | ID: mdl-38657753

The anemia of inflammation (AI) is characterized by the presence of inflammation and abnormal elevation of hepcidin. Accumulating evidence has proved that Rocaglamide (RocA) was involved in inflammation regulation. Nevertheless, the role of RocA in AI, especially in iron metabolism, has not been investigated, and its underlying mechanism remains elusive. Here, we demonstrated that RocA dramatically suppressed the elevation of hepcidin and ferritin in LPS-treated mice cell line RAW264.7 and peritoneal macrophages. In vivo study showed that RocA can restrain the depletion of serum iron (SI) and transferrin (Tf) saturation caused by LPS. Further investigation showed that RocA suppressed the upregulation of hepcidin mRNA and downregulation of Fpn1 protein expression in the spleen and liver of LPS-treated mice. Mechanistically, this effect was attributed to RocA's ability to inhibit the IL-6/STAT3 pathway, resulting in the suppression of hepcidin mRNA and subsequent increase in Fpn1 and TfR1 expression in LPS-treated macrophages. Moreover, RocA inhibited the elevation of the cellular labile iron pool (LIP) and reactive oxygen species (ROS) induced by LPS in RAW264.7 cells. These findings reveal a pivotal mechanism underlying the roles of RocA in modulating iron homeostasis and also provide a candidate natural product on alleviating AI.


Hepcidins , Homeostasis , Interleukin-6 , Iron , Lipopolysaccharides , Receptors, Transferrin , STAT3 Transcription Factor , Hepcidins/metabolism , Hepcidins/genetics , Animals , Mice , Iron/metabolism , RAW 264.7 Cells , Receptors, Transferrin/metabolism , Receptors, Transferrin/genetics , Lipopolysaccharides/pharmacology , Interleukin-6/metabolism , Interleukin-6/genetics , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Reactive Oxygen Species/metabolism , Gene Expression Regulation/drug effects , Inflammation/metabolism , Inflammation/genetics , Inflammation/pathology , Signal Transduction/drug effects , Anemia/metabolism , Anemia/genetics , Anemia/drug therapy , Anemia/pathology , Ferritins/metabolism , Ferritins/genetics , Male , Liver/metabolism , Liver/pathology , Macrophages/metabolism , Macrophages/drug effects , Cation Transport Proteins
7.
J Am Heart Assoc ; 13(9): e032540, 2024 May 07.
Article En | MEDLINE | ID: mdl-38639356

BACKGROUND: Iron deficiency (ID) is a frequent comorbidity in patients with acute (AHF) and chronic heart failure (CHF) associated with morbidity and death. We aimed to better characterize iron homeostasis in patients with heart failure applying different biomarkers and to evaluate the accuracy of current ID definition by the European Society of Cardiology/American College of Cardiology/American Heart Association to indicate tissue iron availability and demand. METHODS AND RESULTS: We performed a retrospective cohort study investigating 277 patients with AHF and 476 patients with CHF between February 2021 and May 2022. Patients with AHF had more advanced ID than patients with CHF, reflected by increased soluble transferrin receptor and soluble transferrin receptor-ferritin index, and lower ferritin, serum iron, transferrin saturation, hepcidin, and reticulocyte hemoglobin. Decreased iron availability or increased tissue iron demand, reflected by increased soluble transferrin receptor-ferritin index and decreased reticulocyte hemoglobin, was found in 84.1% (AHF) and 28.0% (CHF) with absolute ID and in 50.0% (AHF) and 10.5% (CHF) with combined ID according to the current European Society of Cardiology/American College of Cardiology/American Heart Association-based ID definition. Low hepcidin expression as an indicator of systemic ID was found in 91.1% (AHF) and 80.4% (CHF) of patients with absolute ID and in 32.3% (AHF) and 18.8% (CHF) of patients with combined ID. ID definitions with higher specificity reduce the need for iron supplementation by 25.5% in patients with AHF and by 65.6% in patients with CHF. CONCLUSIONS: Our results suggest that the current European Society of Cardiology/American College of Cardiology/American Heart Association-based ID definition might overestimate true ID, particularly in CHF. More stringent thresholds for ID could more accurately identify patients with heart failure with reduced tissue iron availability who benefit from intravenous iron supplementation.


Biomarkers , Heart Failure , Iron , Humans , Heart Failure/epidemiology , Heart Failure/blood , Heart Failure/metabolism , Heart Failure/diagnosis , Female , Male , Retrospective Studies , Aged , Iron/metabolism , Iron/blood , Biomarkers/blood , Ferritins/blood , Chronic Disease , Middle Aged , Receptors, Transferrin/blood , Anemia, Iron-Deficiency/blood , Anemia, Iron-Deficiency/epidemiology , Anemia, Iron-Deficiency/diagnosis , Acute Disease , Hepcidins/blood , Hepcidins/metabolism , Aged, 80 and over , Iron Deficiencies
8.
Blood Adv ; 8(11): 2870-2879, 2024 Jun 11.
Article En | MEDLINE | ID: mdl-38588481

ABSTRACT: Hemojuvelin (HJV) is a glycosylphosphatidylinositol-anchored protein of the repulsive guidance molecule family acting as a bone morphogenetic protein (BMP) coreceptor to induce the hepatic iron regulatory protein hepcidin. Hepcidin causes ubiquitination and degradation of the sole known iron exporter ferroportin, thereby limiting iron availability. The detailed signaling mechanism of HJV in vivo has yet to be investigated. In the current manuscript, we used an established model of adeno-associated virus (AAV)-mediated liver-specific overexpression of HJV in murine models of hepatocyte-specific deficiency of the BMP type I receptors Alk2 or Alk3. In control mice, HJV overexpression increased hepatic Hamp messenger RNA (mRNA) levels, soluble HJV (sHJV), splenic iron content (SIC), as well as phosphorylated small mothers against decapentaplegic protein (pSMAD1/5/8) levels. In contrast, in Alk2fl/fl;Alb-Cre and Alk3fl/fl;Alb-Cre mice, which present with moderate and severe iron overload, respectively, the administration of AAV-HJV induced HJV and sHJV. However, it did not rescue the iron overload phenotypes of those mice. Serum iron levels were induced in Alk2fl/fl;Alb-Cre mice after HJV overexpression. In phosphate-buffered saline-injected Alk3fl/fl;Alb-Cre mice, serum iron levels and the expression of duodenal ferroportin remained high, whereas Hamp mRNA levels were decreased to 1% to 5% of the levels detected in controls. This was reduced even further by AAV-HJV overexpression. SIC remained low in mice with hepatocyte-specific Alk2 or Alk3 deficiency, reflecting disturbed iron homeostasis with high serum iron levels and transferrin saturation and an inability to induce hepcidin by HJV overexpression. The data indicate that ALK2 and ALK3 are both required in vivo for the HJV-mediated induction of hepcidin.


GPI-Linked Proteins , Hemochromatosis Protein , Hepcidins , Animals , Mice , GPI-Linked Proteins/metabolism , GPI-Linked Proteins/genetics , Hepcidins/metabolism , Hepcidins/genetics , Hemochromatosis Protein/metabolism , Hemochromatosis Protein/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/genetics , Liver/metabolism , Iron/metabolism , Iron Overload/metabolism , Iron Overload/genetics , Activin Receptors, Type I/metabolism , Activin Receptors, Type I/genetics , Activin Receptors, Type II
9.
Curr Opin Nephrol Hypertens ; 33(4): 368-374, 2024 07 01.
Article En | MEDLINE | ID: mdl-38661434

PURPOSE OF REVIEW: Iron deficiency regulates the production of the bone-derived phosphaturic hormone fibroblast growth factor 23 (FGF23) but also its cleavage, to generate both intact (iFGF23) and C-terminal (Cter)-FGF23 peptides. Novel studies demonstrate that independently of the phosphaturic effects of iFGF23, Cter-FGF23 peptides play an important role in the regulation of systemic iron homeostasis. This review describes the complex interplay between iron metabolism and FGF23 biology. RECENT FINDINGS: C-terminal (Cter) FGF23 peptides antagonize inflammation-induced hypoferremia to maintain a pool of bioavailable iron in the circulation. A key mechanism proposed is the down-regulation of the iron-regulating hormone hepcidin by Cter-FGF23. SUMMARY: In this manuscript, we discuss how FGF23 is produced and cleaved in response to iron deficiency, and the principal functions of cleaved C-terminal FGF23 peptides. We also review possible implications anemia of chronic kidney disease (CKD).


Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Hepcidins , Iron , Fibroblast Growth Factor-23/metabolism , Humans , Fibroblast Growth Factors/metabolism , Iron/metabolism , Animals , Hepcidins/metabolism , Renal Insufficiency, Chronic/metabolism , Anemia, Iron-Deficiency/metabolism , Homeostasis
10.
Pathog Dis ; 822024 Feb 07.
Article En | MEDLINE | ID: mdl-38555503

INTRODUCTION: There is a proven role for hepcidin and the composition of gut microbiota and its derivatives in the pathophysiology of liver fibrosis. AREA COVERED: This review focuses on the literature search regarding the effect of hepcidin and gut microbiota on regulating liver physiology. We presented the regulating mechanisms of hepcidin expression and discussed the possible interaction between gut microbiota and hepcidin regulation. Furthermore, we investigated the importance of the hepcidin gene in biological processes and bacterial interactions using bioinformatics analysis. EXPERT OPINION: One of the main features of liver fibrosis is iron accumulation in hepatic cells, including hepatocytes. This accumulation can induce an oxidative stress response, inflammation, and activation of hepatic stellate cells. Hepcidin is a crucial regulator of iron by targeting ferroportin expressed on hepatocytes, macrophages, and enterocytes. Various stimuli, such as iron load and inflammatory signals, control hepcidin regulation. Furthermore, a bidirectional relationship exists between iron and the composition and metabolic activity of gut microbiota. We explored the potential of gut microbiota to influence hepcidin expression and potentially manage liver fibrosis, as the regulation of iron metabolism plays a crucial role in this context.


Gastrointestinal Microbiome , Hepcidins , Iron , Liver Cirrhosis , Humans , Hepatocytes/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Liver/metabolism , Liver Cirrhosis/metabolism , Liver Cirrhosis/microbiology , Animals
11.
Int J Biol Macromol ; 266(Pt 1): 131144, 2024 May.
Article En | MEDLINE | ID: mdl-38556234

The increasing emergence and dissemination of bacterial pathogens in largemouth bass culture accelerate the desire for new treatment measures. Antimicrobial peptides as the host's antimicrobial source dominate the preferred molecules for discovering antibacterial agents. Here, the potential of Hepcidin-1 from largemouth bass (Micropterus salmoides) (MsHep-1) against bacterial infection is demonstrated. MsHep-1 not only improved the survival rate in infection experiments involving Nocardia seriolae (12 %) and Aeromonas hydrophila (18 %) but also coped with iron overload conditions in vivo. Moreover, the antibacterial activity of MsHep-1 in vitro was identified against both gram-negative and gram-positive bacteria. Mechanistic studies show MsHep-1 leads to bacterial death by changing the bacterial membrane potential and disrupting the bacterial membrane structure. These findings demonstrate that MsHep-1 may play an important role in the host response to bacterial infection. It provides promising strategies in the application of immunosuppression prevention and control in fish. AMPs may be a promising and available reservoir for treating the current bacterial diseases.


Bacterial Infections , Bass , Fish Diseases , Hepcidins , Animals , Hepcidins/metabolism , Bass/microbiology , Fish Diseases/microbiology , Fish Diseases/drug therapy , Bacterial Infections/drug therapy , Bacterial Infections/microbiology , Anti-Bacterial Agents/pharmacology , Aeromonas hydrophila/drug effects , Aeromonas hydrophila/pathogenicity
12.
Int J Mol Sci ; 25(5)2024 Feb 25.
Article En | MEDLINE | ID: mdl-38473913

Hemochromatosis represents clinically one of the most important genetic storage diseases of the liver caused by iron overload, which is to be differentiated from hepatic iron overload due to excessive iron release from erythrocytes in patients with genetic hemolytic disorders. This disorder is under recent mechanistic discussion regarding ferroptosis, reactive oxygen species (ROS), the gut microbiome, and alcohol abuse as a risk factor, which are all topics of this review article. Triggered by released intracellular free iron from ferritin via the autophagic process of ferritinophagy, ferroptosis is involved in hemochromatosis as a specific form of iron-dependent regulated cell death. This develops in the course of mitochondrial injury associated with additional iron accumulation, followed by excessive production of ROS and lipid peroxidation. A low fecal iron content during therapeutic iron depletion reduces colonic inflammation and oxidative stress. In clinical terms, iron is an essential trace element required for human health. Humans cannot synthesize iron and must take it up from iron-containing foods and beverages. Under physiological conditions, healthy individuals allow for iron homeostasis by restricting the extent of intestinal iron depending on realistic demand, avoiding uptake of iron in excess. For this condition, the human body has no chance to adequately compensate through removal. In patients with hemochromatosis, the molecular finetuning of intestinal iron uptake is set off due to mutations in the high-FE2+ (HFE) genes that lead to a lack of hepcidin or resistance on the part of ferroportin to hepcidin binding. This is the major mechanism for the increased iron stores in the body. Hepcidin is a liver-derived peptide, which impairs the release of iron from enterocytes and macrophages by interacting with ferroportin. As a result, iron accumulates in various organs including the liver, which is severely injured and causes the clinically important hemochromatosis. This diagnosis is difficult to establish due to uncharacteristic features. Among these are asthenia, joint pain, arthritis, chondrocalcinosis, diabetes mellitus, hypopituitarism, hypogonadotropic hypogonadism, and cardiopathy. Diagnosis is initially suspected by increased serum levels of ferritin, a non-specific parameter also elevated in inflammatory diseases that must be excluded to be on the safer diagnostic side. Diagnosis is facilitated if ferritin is combined with elevated fasting transferrin saturation, genetic testing, and family screening. Various diagnostic attempts were published as algorithms. However, none of these were based on evidence or quantitative results derived from scored key features as opposed to other known complex diseases. Among these are autoimmune hepatitis (AIH) or drug-induced liver injury (DILI). For both diseases, the scored diagnostic algorithms are used in line with artificial intelligence (AI) principles to ascertain the diagnosis. The first-line therapy of hemochromatosis involves regular and life-long phlebotomy to remove iron from the blood, which improves the prognosis and may prevent the development of end-stage liver disease such as cirrhosis and hepatocellular carcinoma. Liver transplantation is rarely performed, confined to acute liver failure. In conclusion, ferroptosis, ROS, the gut microbiome, and concomitant alcohol abuse play a major contributing role in the development and clinical course of genetic hemochromatosis, which requires early diagnosis and therapy initiation through phlebotomy as a first-line treatment.


Alcoholism , Ferroptosis , Gastrointestinal Microbiome , Hemochromatosis , Iron Overload , Liver Neoplasms , Humans , Hemochromatosis/genetics , Hepcidins/metabolism , Reactive Oxygen Species/metabolism , Alcoholism/complications , Artificial Intelligence , Confounding Factors, Epidemiologic , Histocompatibility Antigens Class I/genetics , Hemochromatosis Protein/metabolism , Membrane Proteins/metabolism , Iron/metabolism , Iron Overload/genetics , Ferritins , Ethanol , Liver Neoplasms/complications
13.
J Comp Physiol B ; 194(2): 191-202, 2024 Apr.
Article En | MEDLINE | ID: mdl-38522042

Disuse-induced muscular atrophy is frequently accompanied by iron overload. Hibernating animals are a natural animal model for resistance to disuse muscle atrophy. In this paper, we explored changes in skeletal muscle iron content of Daurian ground squirrels (Spermophilus dauricus) during different periods of hibernation as well as the regulatory mechanisms involved. The results revealed that compared with the summer active group (SA), iron content in the soleus muscle (SOL) decreased (- 65%) in the torpor group (TOR), but returned to normal levels in the inter-bout arousal (IBA); splenic iron content increased in the TOR group (vs. SA, + 67%), decreased in the IBA group (vs. TOR, - 37%). Expression of serum hepcidin decreased in the TOR group (vs. SA, - 22%) and returned to normal levels in the IBA groups; serum ferritin increased in the TOR group (vs. SA, + 31%), then recovered in the IBA groups. Soleus muscle transferrin receptor 1 (TfR1) expression increased in the TOR group (vs. SA, + 83%), decreased in the IBA group (vs. TOR, - 30%); ferroportin 1 increased in the IBA group (vs. SA, + 55%); ferritin increased in the IBA group (vs. SA, + 42%). No significant differences in extensor digitorum longus in iron content or iron metabolism-related protein expression were observed among the groups. Significantly, all increased or decreased indicators in this study returned to normal levels after the post-hibernation group, showing remarkable plasticity. In summary, avoiding iron overload may be a potential mechanism for hibernating Daurian ground squirrels to avoid disuse induced muscular atrophy. In addition, the different skeletal muscle types exhibited unique strategies for regulating iron homeostasis.


Antigens, CD , Ferritins , Hepcidins , Hibernation , Homeostasis , Iron , Muscle, Skeletal , Muscular Atrophy , Receptors, Transferrin , Sciuridae , Animals , Sciuridae/physiology , Hibernation/physiology , Iron/metabolism , Muscle, Skeletal/metabolism , Muscular Atrophy/metabolism , Muscular Atrophy/pathology , Hepcidins/metabolism , Receptors, Transferrin/metabolism , Ferritins/metabolism , Male , Spleen/metabolism , Cation Transport Proteins/metabolism
14.
Sci Rep ; 14(1): 3986, 2024 02 17.
Article En | MEDLINE | ID: mdl-38368463

Bone marrow stromal cells (BMSCs) have immunomodulatory activities in numerous species and have been used in clinical trials. BMSCs also make antibacterial agents. Since hepcidin is known to have antimicrobial effects in fish, we wondered if it might also be used as an antimicrobial agent by mammalian BMSCs. In the present study, we show hepcidin expression in both mouse (mBMSC) and human BMSCs (hBMSC). We observed a hBMSC hepcidin-dependent degradation of ferroportin in HEK-293 reporter cells in vitro. In human and mouse bone marrows (BM) we detected hepcidin-positive BMSCs in close proximity to hematopoietic progenitors. The conditioned culture medium of hBMSCs significantly reduced bacterial proliferation that was partially blocked by a hepcidin-neutralizing antibody. Similarly, medium in which hepcidin-deficient (Hamp-/-) mouse BMSCs had been grown was significantly less effective in reducing bacterial counts than the medium of wild-type cells. In a zymosan-induced peritonitis mouse model we found that mBMSC-derived hepcidin reduced the number of invading polymorphonuclear (PMN) cells in the peritoneal cavity. Our results show that BMSC-derived hepcidin has antimicrobial properties in vitro and also reduces inflammation in vivo. We conclude that hepcidin should be added to the expanding arsenal of agents available to BMSCs to fight infections and inflammation.


Anti-Infective Agents , Mesenchymal Stem Cells , Humans , Mice , Animals , Hepcidins/metabolism , HEK293 Cells , Anti-Infective Agents/pharmacology , Inflammation/metabolism , Bone Marrow Cells , Mammals
15.
Int J Hematol ; 119(4): 392-398, 2024 Apr.
Article En | MEDLINE | ID: mdl-38372875

Iron is an essential trace metal, vital for various physiologic processes, but excess levels can harm health. Maintaining iron homeostasis is critical, with hepcidin playing a key role. The isoform hepcidin-25 exerts the most significant influence on iron metabolism, making its serum levels a valuable diagnostic tool. However, mass-spectrometry and other conventional measurement methods can be difficult to perform, and some immunoassays lack reliability. In this study, we employed a recently developed latex agglutination method integrated with a readily available automated analyzer to quantify serum hepcidin-25 levels in both volunteers recruited from personnel of our hospital (n = 93) and patients with various hematological disorders (n = 112). Our findings unveiled a robust positive correlation between serum hepcidin-25 and ferritin, as well as C-reactive protein levels, in both volunteers and patients. Among the patients with hematological disorders, there was a noteworthy negative correlation between hepcidin-25 levels and hemoglobin concentrations, as well as reticulocyte counts. Interestingly, the hepcidin-25/ferritin ratio was remarkably low in patients with hemolytic anemia and myelodysplastic syndromes with ring sideroblasts. Our findings suggest that quantifying serum hepcidin-25 and the hepcidin-25/ferritin ratio using this method may be valuable for screening of hematopoietic diseases and other iron metabolism disorders.


Hepcidins , Myelodysplastic Syndromes , Humans , Hepcidins/metabolism , Healthy Volunteers , Latex Fixation Tests , Reproducibility of Results , Iron/metabolism , Ferritins , Myelodysplastic Syndromes/diagnosis
16.
Mar Biotechnol (NY) ; 26(2): 261-275, 2024 Apr.
Article En | MEDLINE | ID: mdl-38353762

The role of hepcidins, antimicrobial peptides involved in iron metabolism, immunity, and inflammation, is studied. First, gilthead seabream (Sparus aurata L.) head-kidney leucocytes (HKLs) were incubated with λ-carrageenin to study the expression of hepcidin and iron metabolism-related genes. While the expression of most of the genes studied was upregulated, the expression of ferroportin gene (slc40a) was downregulated. In the second part of the study, seabream specimens were injected intramuscularly with λ-carrageenin or buffer (control). The expression of the same genes was evaluated in the head kidney, liver, and skin at different time points after injection. The expression of Hamp1m, ferritin b, and ferroportin genes (hamp1, fthb, and slc40a) was upregulated in the head kidney of fish from the λ-carrageenin-injected group, while the expression of Hamp2C and Hamp2E genes (hamp2.3 and hamp2.7) was downregulated. In the liver, the expression of hamp1, ferritin a (ftha), slc40a, Hamp2J, and Hamp2D (hamp2.5/6) genes was downregulated in the λ-carrageenin-injected group. In the skin, the expression of hamp1 and (Hamp2A Hamp2C) hamp2.1/3/4 genes was upregulated in the λ-carrageenin-injected group. A bioinformatic analysis was performed to predict the presence of transcription factor binding sites in the promoter region of hepcidins. The primary sequence of hepcidin was conserved among the different mature peptides, although changes in specific amino acid residues were identified. These changes affected the charge, hydrophobicity, and probability of hepcidins being antimicrobial peptides. This study sheds light on the poorly understood roles of hepcidins in fish. The results provide insight into the regulatory mechanisms of inflammation in fish and could contribute to the development of new strategies for treat inflammation in farm animals.


Fish Proteins , Hepcidins , Inflammation , Sea Bream , Animals , Sea Bream/genetics , Sea Bream/metabolism , Sea Bream/immunology , Hepcidins/genetics , Hepcidins/metabolism , Fish Proteins/genetics , Fish Proteins/metabolism , Inflammation/genetics , Inflammation/metabolism , Liver/metabolism , Fish Diseases/immunology , Fish Diseases/genetics , Fish Diseases/metabolism , Head Kidney/metabolism , Iron/metabolism , Gene Expression Regulation/drug effects , Leukocytes/metabolism , Leukocytes/drug effects , Skin/metabolism , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Ferritins/genetics , Ferritins/metabolism , Promoter Regions, Genetic
17.
Cell Biol Int ; 48(5): 737-754, 2024 May.
Article En | MEDLINE | ID: mdl-38410054

Macrophages in the endometrium promote receptivity and implantation by secreting proinflammatory cytokines and other factors like fractalkine (FKN). Macrophages are closely linked to regulating iron homeostasis and can modulate iron availability in the tissue microenvironment. It has been revealed that the iron metabolism of the mother is crucial in fertility. Iron metabolism is strictly controlled by hepcidin, the principal iron regulatory protein. The inflammatory cytokines can modulate hepcidin synthesis and, therefore, the iron metabolism of the endometrium. It was proven recently that FKN, a unique chemokine, is implicated in maternal-fetal communication and may contribute to endometrial receptivity and implantation. In the present study, we investigated the effect of activated THP-1 macrophages and FKN on the iron metabolism of the HEC-1A endometrial cells. We established a noncontact coculture with or without recombinant human FKN supplementation to study the impact of the macrophage-derived factors and FKN on the regulation of hepcidin synthesis and iron release and storage of endometrial cells. Based on our findings, the conditioned medium of the activated macrophages could modify hepcidin synthesis via the nuclear factor kappa-light-chain-enhancer of activated B cells, the signal transducer and activator of transcription 3, and the transferrin receptor 2/bone morphogenetic protein 6/suppressor of mothers against decapentaplegic 1/5/8 signaling pathways, and FKN could alter this effect on the endometrial cells. It was also revealed that the conditioned macrophage medium and FKN modulated the iron release and storage of HEC-1A cells. FKN signaling may be involved in the management of iron trafficking of the endometrium by the regulation of hepcidin. It can contribute to the iron supply for fetal development at the early stage of the pregnancy.


Chemokine CX3CL1 , Hepcidins , Female , Humans , Chemokine CX3CL1/metabolism , Chemokine CX3CL1/pharmacology , Hepcidins/metabolism , Endometrium/metabolism , Macrophages/metabolism , Iron/metabolism
18.
Int J Mol Sci ; 25(3)2024 Jan 30.
Article En | MEDLINE | ID: mdl-38338987

Hepcidin is upregulated by increased body iron stores and inflammatory cytokines. It is associated with cardiovascular events, arterial stiffness, and increased iron accumulation in human atheroma with hemorrhage. However, it is unknown whether the expression of hepcidin in human carotid plaques is related to plaque severity and whether hepcidin expression differs between men and women. Carotid samples from 58 patients (38 males and 20 females) were immunostained with hepcidin, macrophages, ferritin, and transferrin receptor. Immunocytochemistry of hepcidin was performed on THP-1 macrophages exposed to iron or 7betahydroxycholesterol. Hepcidin expression significantly increases with the progression of human atherosclerotic plaques. Plaques of male patients have significantly higher levels of hepcidin. Expressions of hepcidin are significantly correlated with the accumulation of CD68-positive macrophages and transferrin receptor 1 (TfR1) and apoptosis. In vitro, hepcidin is significantly increased in macrophages exposed to iron and moderately increased following 7-oxysterol treatment. In the cultured cells, suppression of hepcidin protected against macrophage cell death, lysosomal membrane permeabilization, and oxidative stress. Hepcidin may play a crucial role in the development and progression of atherosclerosis. The differential expression of hepcidin in male and female patients and its significant correlations with plaque severity, highlight the potential of hepcidin as a biomarker for risk stratification and therapeutic targeting in atherosclerosis.


Atherosclerosis , Plaque, Atherosclerotic , Female , Humans , Male , Atherosclerosis/metabolism , Hepcidins/genetics , Hepcidins/metabolism , Iron/metabolism , Plaque, Atherosclerotic/genetics , Plaque, Atherosclerotic/metabolism , Receptors, Transferrin/genetics , Sex Characteristics
19.
BMC Pediatr ; 24(1): 105, 2024 Feb 10.
Article En | MEDLINE | ID: mdl-38341535

Several studies have shown association of single nucleotide polymorphisms (SNPs) of hepcidin regulatory pathways genes with impaired iron status. The most common is in the TMPRSS6 gene. In Africa, very few studies have been reported. We aimed to investigate the correlation between the common SNPs in the transmembrane protease, serine 6 (TMPRSS6) gene and iron indicators in a sample of Egyptian children for identifying the suitable candidate for iron supplementation.Patients and methods One hundred and sixty children aged 5-13 years were included & classified into iron deficient, iron deficient anemia and normal healthy controls. All were subjected to assessment of serum iron, serum ferritin, total iron binding capacity, complete blood count, reticulocyte count, serum soluble transferrin receptor and serum hepcidin. Molecular study of TMPRSS6 genotyping polymorphisms (rs4820268, rs855791 and rs11704654) were also evaluated.Results There was an association of iron deficiency with AG of rs855791 SNP, (P = 0.01). The minor allele frequency for included children were 0.43, 0.45 & 0.17 for rs4820268, rs855791 & rs11704654 respectively. Genotype GG of rs4820268 expressed the highest hepcidin gene expression fold, the lowest serum ferroportin & iron store compared to AA and AG genotypes (p = 0.05, p = 0.05, p = 0.03 respectively). GG of rs855791 had lower serum ferritin than AA (p = 0.04), lowest iron store & highest serum hepcidin compared to AA and AG genotypes (p = 0.04, p = 0.01 respectively). Children having CC of rs11704654 had lower level of hemoglobin, serum ferritin and serum hepcidin compared with CT genotype (p = 0.01, p = 0.01, p = 0.02) respectively.Conclusion Possible contribution of SNPs (rs855791, rs4820268 and rs11704654) to low iron status.


Anemia, Iron-Deficiency , Iron , Child , Humans , Hepcidins/genetics , Hepcidins/metabolism , Pilot Projects , Serine/genetics , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Egypt , Serine Endopeptidases/genetics , Serine Endopeptidases/metabolism , Polymorphism, Single Nucleotide , Ferritins , Anemia, Iron-Deficiency/genetics , Membrane Proteins/genetics
20.
Int J Mol Sci ; 25(4)2024 Feb 11.
Article En | MEDLINE | ID: mdl-38396865

Antipsychotic drug (APD) medication can lead to metabolic dysfunctions and weight gain, which together increase morbidity and mortality. Metabolically active visceral adipose tissue (VAT) in particular plays a crucial role in the etiopathology of these metabolic dysregulations. Here, we studied the effect of 12 weeks of drug medication by daily oral feeding of clozapine and haloperidol on the perirenal fat tissue as part of VAT of male and female Sprague Dawley rats in the context of complex former investigations on brain, liver, and blood. Adipocyte area values were determined, as well as triglycerides, non-esterified fatty acids (NEFAs), glucose, glycogen, lactate, malondialdehyde equivalents, ferric iron and protein levels of Perilipin-A, hormone-sensitive-lipase (HSL), hepcidin, glucose transporter-4 (Glut-4) and insulin receptor-ß (IR-ß). We found increased adipocyte mass in males, with slightly higher adipocyte area values in both males and females under clozapine treatment. Triglycerides, NEFAs, glucose and oxidative stress in the medicated groups were unchanged or slightly decreased. In contrast to controls and haloperidol-medicated rats, perirenal adipocyte mass and serum leptin levels were not correlated under clozapine. Protein expressions of perilipin-A, Glut-4 and HSL were decreased under clozapine treatment. IR-ß expression changed sex-specifically in the clozapine-medicated groups associated with higher hepcidin levels in the perirenal adipose tissue of clozapine-treated females. Taken together, clozapine and haloperidol had a smaller effect than expected on perirenal adipose tissue. The perirenal adipose tissue shows only weak changes in lipid and glucose metabolism. The main changes can be seen in the proteins examined, and probably in their effect on liver metabolism.


Antipsychotic Agents , Clozapine , Rats , Male , Female , Animals , Antipsychotic Agents/pharmacology , Antipsychotic Agents/metabolism , Clozapine/pharmacology , Haloperidol/pharmacology , Hepcidins/metabolism , Rats, Sprague-Dawley , Adipocytes/metabolism , Adipose Tissue/metabolism , Liver/metabolism , Triglycerides/metabolism , Glucose/metabolism , Fatty Acids, Nonesterified/metabolism , Brain/metabolism , Perilipins/metabolism
...