Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 4.104
Filter
1.
Can Vet J ; 65(8): 813-816, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39091477

ABSTRACT

Objective: Our objective was to determine whether equine herpesviruses 1 (EHV-1) viral nucleic acids could be detected immediately after foaling from nasal and vaginal swabs, whole blood, and placental tissue of healthy mares. Animals procedure and results: Nasal and vaginal swabs, EDTA blood, and placental tissue (296 samples) were collected from 74 clinically healthy postpartum broodmares within 24 h after giving birth to live, clinically healthy foals. All samples were tested (PCR) for nucleic acids of neuropathogenic and non-neuropathogenic strains of EHV-1, and all were negative. Conclusion and clinical relevance: As EHV-1 was not detected in the immediate postpartum period in healthy mares with uncomplicated foaling, we inferred that EHV-1-positive samples from aborting mares and/or EHV-1 detection in fetal membranes indicate EHV-1-associated abortion.


Tests moléculaires pour l'herpèsvirus équin 1 (EHV-1) chez des juments poulinières post-partum en bonne santé. Objectif: Notre objectif était de déterminer si les acides nucléiques viraux de l'herpèsvirus équin 1 (EHV-1) pouvaient être détectés immédiatement après la mise bas à partir de prélèvements nasaux et vaginaux, de sang total et de tissus placentaires de juments saines. Animaux procédure et résultats: Des écouvillons nasaux et vaginaux, du sang EDTA et du tissu placentaire (296 échantillons) ont été prélevés sur 74 juments poulinières post-partum cliniquement saines dans les 24 heures suivant la naissance de poulains vivants et cliniquement sains. Tous les échantillons ont été testés (PCR) pour les acides nucléiques des souches neuropathogènes et non-neuropathogènes de l'EHV-1, et tous se sont révélés négatifs. Conclusion et pertinence clinique: Comme l'EHV-1 n'a pas été détecté dans la période post-partum immédiate chez des juments en bonne santé avec un poulinage sans complication, nous avons déduit que les échantillons positifs pour l'EHV-1 provenant de juments qui ont avorté et/ou la détection de l'EHV-1 dans les membranes foetales indiquent un avortement associé à l'EHV-1.(Traduit par Dr Serge Messier).


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Postpartum Period , Animals , Horses , Herpesvirus 1, Equid/isolation & purification , Female , Horse Diseases/virology , Horse Diseases/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Pregnancy , Placenta/virology , Vagina/virology , Abortion, Veterinary/virology , DNA, Viral/analysis , DNA, Viral/isolation & purification , Polymerase Chain Reaction/veterinary
2.
J Gen Virol ; 105(8)2024 Aug.
Article in English | MEDLINE | ID: mdl-39093048

ABSTRACT

Cytomegaloviruses (CMVs) transmit via chronic shedding from the salivary glands. How this relates to the broad cell tropism they exhibit in vitro is unclear. Human CMV (HCMV) infection presents only after salivary gland infection is established. Murine CMV (MCMV) is therefore useful to analyse early infection events. It reaches the salivary glands via infected myeloid cells. Three adjacent spliced genes designated as m131/129 (MCK-2), sgg1 and sgg1.1, positional homologues of the HCMV UL128/130/131 tropism determinants, are implicated. We show that a sgg1 null mutant is defective in infected myeloid cell entry into the salivary glands, a phenotype distinct from MCMV lacking MCK-2. These data point to a complex, multi-step process of salivary gland colonization.


Subject(s)
Muromegalovirus , Salivary Glands , Animals , Salivary Glands/virology , Muromegalovirus/genetics , Muromegalovirus/physiology , Mice , Viral Tropism , Myeloid Cells/virology , Myeloid Cells/metabolism , Viral Proteins/genetics , Viral Proteins/metabolism , Herpesviridae Infections/virology , Chemokines, CC
3.
Proc Natl Acad Sci U S A ; 121(32): e2404536121, 2024 Aug 06.
Article in English | MEDLINE | ID: mdl-39088396

ABSTRACT

Alcelaphine gammaherpesvirus 1 (AlHV-1) asymptomatically persists in its natural host, the wildebeest. However, cross-species transmission to cattle results in the induction of an acute and lethal peripheral T cell lymphoma-like disease (PTCL), named malignant catarrhal fever (MCF). Our previous findings demonstrated an essential role for viral genome maintenance in infected CD8+ T lymphocytes but the exact mechanism(s) leading to lymphoproliferation and MCF remained unknown. To decipher how AlHV-1 dysregulates T lymphocytes, we first examined the global phenotypic changes in circulating CD8+ T cells after experimental infection of calves. T cell receptor repertoire together with transcriptomics and epigenomics analyses demonstrated an oligoclonal expansion of infected CD8+ T cells displaying effector and exhaustion gene signatures, including GZMA, GNLY, PD-1, and TOX2 expression. Then, among viral genes expressed in infected CD8+ T cells, we uncovered A10 that encodes a transmembrane signaling protein displaying multiple tyrosine residues, with predicted ITAM and SH3 motifs. Impaired A10 expression did not affect AlHV-1 replication in vitro but rendered AlHV-1 unable to induce MCF. Furthermore, A10 was phosphorylated in T lymphocytes in vitro and affected T cell signaling. Finally, while AlHV-1 mutants expressing mutated forms of A10 devoid of ITAM or SH3 motifs (or both) were able to induce MCF, a recombinant virus expressing a mutated form of A10 unable to phosphorylate its tyrosine residues resulted in the lack of MCF and protected against a wild-type virus challenge. Thus, we could characterize the nature of this γ-herpesvirus-induced PTCL-like disease and identify an essential mechanism explaining its development.


Subject(s)
CD8-Positive T-Lymphocytes , Gammaherpesvirinae , Animals , CD8-Positive T-Lymphocytes/immunology , Gammaherpesvirinae/genetics , Gammaherpesvirinae/immunology , Cattle , Malignant Catarrh/virology , Malignant Catarrh/immunology , Herpesviridae Infections/immunology , Herpesviridae Infections/virology
4.
PLoS Pathog ; 20(7): e1012338, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39008527

ABSTRACT

Recently published near full-length KSHV genomes from a Cameroon Kaposi sarcoma case-control study showed strong evidence of viral recombination and mixed infections, but no sequence variations associated with disease. Using the same methodology, an additional 102 KSHV genomes from 76 individuals with KSHV-associated diseases have been sequenced. Diagnoses comprise all KSHV-associated diseases (KAD): Kaposi sarcoma (KS), primary effusion lymphoma (PEL), KSHV-associated large cell lymphoma (KSHV-LCL), a type of multicentric Castleman disease (KSHV-MCD), and KSHV inflammatory cytokine syndrome (KICS). Participants originated from 22 different countries, providing the opportunity to obtain new near full-length sequences of a wide diversity of KSHV genomes. These include near full-length sequence of genomes with KSHV K1 subtypes A, B, C, and F as well as subtype E, for which no full sequence was previously available. High levels of recombination were observed. Fourteen individuals (18%) showed evidence of infection with multiple KSHV variants (from two to four unique genomes). Twenty-six comparisons of sequences, obtained from various sampling sites including PBMC, tissue biopsies, oral fluids, and effusions in the same participants, identified near complete genome conservation between different biological compartments. Polymorphisms were identified in coding and non-coding regions, including indels in the K3 and K15 genes and sequence inversions here reported for the first time. One such polymorphism in KSHV ORF46, specific to the KSHV K1 subtype E2, encoded a mutation in the leucine loop extension of the uracil DNA glycosylase that results in alteration of biochemical functions of this protein. This confirms that KSHV sequence variations can have functional consequences warranting further investigation. This study represents the largest and most diverse analysis of KSHV genome sequences to date among individuals with KAD and provides important new information on global KSHV genomics.


Subject(s)
Genome, Viral , Herpesvirus 8, Human , Sarcoma, Kaposi , Humans , Herpesvirus 8, Human/genetics , Sarcoma, Kaposi/virology , Sarcoma, Kaposi/genetics , Male , Female , Middle Aged , Adult , Polymorphism, Genetic , Aged , Herpesviridae Infections/genetics , Herpesviridae Infections/virology , Ethnicity/genetics , Castleman Disease/virology , Castleman Disease/genetics , Phylogeny
5.
PLoS One ; 19(7): e0301987, 2024.
Article in English | MEDLINE | ID: mdl-38995916

ABSTRACT

Equid alphaherpesviruses 1 (EHV-1) and 4 (EHV-4) are closely related and both endemic in horses worldwide. Both viruses replicate in the upper respiratory tract, but EHV-1 may additionally lead to abortion and equine herpesvirus myeloencephalopathy (EHM). We focused on antibody responses in horses against the receptor-binding glycoprotein D of EHV-1 (gD1), which shares a 77% amino acid identity with its counterpart in EHV-4 (gD4). Both antigens give rise to cross-reacting antibodies, including neutralizing antibodies. However, immunity against EHV-4 is not considered protective against EHM. While a diagnostic ELISA to discriminate between EHV-1 and EHV-4 infections is available based on type-specific fragments of glycoprotein G (gG1 and gG4, respectively), the type-specific antibody reaction against gD1 has not yet been sufficiently addressed. Starting from the N-terminus of gD1, we developed luciferase immunoprecipitation system (LIPS) assays, using gD1-fragments of increasing size as antigens, i.e. gD1_83 (comprising the first 83 amino acids), gD1_160, gD1_180, and gD1_402 (the full-length molecule). These assays were then used to analyse panels of horse sera from Switzerland (n = 60) and Iceland (n = 50), the latter of which is considered EHV-1 free. We detected only one true negative horse serum from Iceland, whereas all other sera in both panels were seropositive for both gG4 (ELISA) and gD1 (LIPS against gD1_402). In contrast, seropositivity against gG1 was rather rare (35% Swiss sera; 14% Icelandic sera). Therefore, a high percentage of antibodies against gD1 could be attributed to cross-reaction and due to EHV-4 infections. In contrast, the gD1_83 fragment was able to identify sera with type-specific antibodies against gD1. Interestingly, those sera stemmed almost exclusively from vaccinated horses. Although it is uncertain that the N-terminal epitopes of gD1 addressed in this communication are linked to better protection, we suggest that in future vaccine developments, type-common antigens should be avoided, while a broad range of type-specific antigens should be favored.


Subject(s)
Antibodies, Viral , Herpesvirus 1, Equid , Horse Diseases , Viral Envelope Proteins , Animals , Horses/immunology , Herpesvirus 1, Equid/immunology , Antibodies, Viral/immunology , Antibodies, Viral/blood , Viral Envelope Proteins/immunology , Horse Diseases/virology , Horse Diseases/immunology , Horse Diseases/prevention & control , Herpesvirus 4, Equid/immunology , Herpesviridae Infections/veterinary , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Cross Reactions/immunology , Enzyme-Linked Immunosorbent Assay , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Protein Domains/immunology
6.
Front Immunol ; 15: 1408510, 2024.
Article in English | MEDLINE | ID: mdl-39021566

ABSTRACT

Equid alphaherpesvirus 1 (EqAHV1) is a viral pathogen known to cause respiratory disease, neurologic syndromes, and abortion storms in horses. Currently, there are no vaccines that provide complete protection against EqAHV1. Marker vaccines and the differentiation of infected and vaccinated animals (DIVA) strategy are effective for preventing and controlling outbreaks but have not been used for the prevention of EqAHV1 infection. Glycoprotein 2 (gp2), located on the envelope of viruses (EqAHV1), exhibits high antigenicity and functions as a molecular marker for DIVA. In this study, a series of EqAHV1 mutants with deletion of gp2 along with other virulence genes (TK, UL24/TK, gI/gE) were engineered. The mutant viruses were studied in vitro and then in an in vivo experiment using Golden Syrian hamsters to assess the extent of viral attenuation and the immune response elicited by the mutant viruses in comparison to the wild-type (WT) virus. Compared with the WT strain, the YM2019 Δgp2, ΔTK/gp2, and ΔUL24/TK/gp2 strains exhibited reduced growth in RK-13 cells, while the ΔgI/gE/gp2 strain exhibited significantly impaired proliferation. The YM2019 Δgp2 strain induced clinical signs and mortality in hamsters. In contrast, the YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 variants displayed diminished pathogenicity, causing no observable clinical signs or fatalities. Immunization with nasal vaccines containing YM2019 ΔTK/gp2 and ΔUL24/TK/gp2 elicited a robust immune response in hamsters. In particular, compared with the vaccine containing the ΔTK/gp2 strain, the vaccine containing the ΔUL24/TK/gp2 strain demonstrated enhanced immune protection upon challenge with the WT virus. Furthermore, an ELISA for gp2 was established and refined to accurately differentiate between infected and vaccinated animals. These results confirm that the ΔUL24/TK/gp2 strain is a safe and effective live attenuated vaccine candidate for controlling EqAHV1 infection.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Vaccines, Attenuated , Animals , Vaccines, Attenuated/immunology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/immunology , Herpesviridae Infections/virology , Herpesviridae Infections/veterinary , Herpesvirus 1, Equid/immunology , Herpesvirus 1, Equid/genetics , Horses , Mesocricetus , Antibodies, Viral/blood , Antibodies, Viral/immunology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/genetics , Cricetinae , Horse Diseases/prevention & control , Horse Diseases/immunology , Horse Diseases/virology , Viral Vaccines/immunology , Viral Vaccines/genetics , Cell Line , Mutation
7.
Nat Commun ; 15(1): 5515, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38951495

ABSTRACT

Like many other viruses, KSHV has two life cycle modes: the latent phase and the lytic phase. The RTA protein from KSHV is essential for lytic reactivation, but how this protein's activity is regulated is not fully understood. Here, we report that linear ubiquitination regulates the activity of RTA during KSHV lytic reactivation and de novo infection. Overexpressing OTULIN inhibits KSHV lytic reactivation, whereas knocking down OTULIN or overexpressing HOIP enhances it. Intriguingly, we found that RTA is linearly polyubiquitinated by HOIP at K516 and K518, and these modifications control the RTA's nuclear localization. OTULIN removes linear polyubiquitin chains from cytoplasmic RTA, preventing its nuclear import. The RTA orthologs encoded by the EB and MHV68 viruses are also linearly polyubiquitinated and regulated by OTULIN. Our study establishes that linear polyubiquitination plays a critically regulatory role in herpesvirus infection, adding virus infection to the list of biological processes known to be controlled by linear polyubiquitination.


Subject(s)
Herpesvirus 8, Human , Immediate-Early Proteins , Trans-Activators , Ubiquitination , Virus Replication , Herpesvirus 8, Human/physiology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/metabolism , Humans , Immediate-Early Proteins/metabolism , Immediate-Early Proteins/genetics , HEK293 Cells , Trans-Activators/metabolism , Trans-Activators/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Virus Activation , Herpesviridae Infections/metabolism , Herpesviridae Infections/virology , Cell Nucleus/metabolism
8.
BMC Vet Res ; 20(1): 287, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961400

ABSTRACT

BACKGROUND: Equine herpesvirus 4 (EHV-4) causes respiratory disease in horses, and the virus is considered endemic in the global equine population. However, outbreaks can occur when several horses are gathered in relation to shows, competitions, breeding units and at hospitals. In the spring year 2022, an EHV-4 outbreak occurred at the Large Animal Teaching Hospital, University of Copenhagen, Denmark. Nine horses were tested EHV-4 positive during the outbreak, which lasted approx. seven weeks. In addition, a tenth horse "Eq10" tested EHV-4 positive almost three weeks after the last of the outbreak horses tested positive. Detailed clinical registrations were obtained from all ten horses as well as their location and movement during hospitalization. Nasal swabs were obtained throughout the outbreak and tested by qPCR for EHV-4. Additionally, pre- and post-infection sera were tested for the presence of EHV-4 antibodies. Selected samples were characterized by partial and full genome sequencing. RESULTS: The most common clinical signs of the EHV-4 infected horses during this outbreak were pyrexia, nasal discharge, mandibular lymphadenopathy and increased lung sounds upon auscultation. Based on the locations of the horses, EHV-4 detection and antibody responses the most likely "patient zero" was identified as being "Eq1". Partial genome sequencing revealed that Eq10 was infected by another wild type EHV-4 strain, suggesting that the hospital was able to eliminate the outbreak by testing and reinforcing biosecurity measures. The complete genome sequence of the outbreak strain was obtained and revealed a closer relation to Australian and Japanese EHV-4 strains rather than to other European EHV-4 strains, however, very limited sequence data are available from Europe. CONCLUSION: The study illustrated the transmission of EHV-4 within an equine facility/hospital and provided new insights into the viral shedding, antibody responses and clinical signs related to EHV-4 infections. Finally, sequencing proved a useful tool in understanding the transmission within the hospital, and in characterizing of the outbreak strain.


Subject(s)
Disease Outbreaks , Herpesviridae Infections , Herpesvirus 4, Equid , Horse Diseases , Animals , Horses , Horse Diseases/virology , Horse Diseases/epidemiology , Disease Outbreaks/veterinary , Denmark/epidemiology , Herpesviridae Infections/veterinary , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesvirus 4, Equid/isolation & purification , Male , Female , Antibodies, Viral/blood , Hospitals, Animal
9.
Viruses ; 16(7)2024 Jun 25.
Article in English | MEDLINE | ID: mdl-39066180

ABSTRACT

Since the significance of viral infections in children and adolescents with nephrotic syndrome (NS) is yet to be defined, this study intended to estimate the occurrence, pattern, and outcomes of some DNA viral infections in children with NS. METHODS: A prospective study was conducted to determine the genome identification of the viruses Epstein-Barr (EBV), human cytomegalovirus (HCMV), human herpesvirus 6 (HHV-6 type A and type B) and 7 (HHV-7), polyomavirus (BKV), and human adenovirus (HAdV) in plasma and urine samples of pediatric patients with NS. RESULTS: A total of 35 patients aged 1 to 18 years with NS and under immunosuppressant drugs participated in the study. Plasma and urine samples were collected at regular intervals during a median follow-up of 266 days (range 133-595), and DNA was analyzed to detect the selected DNA viruses. Eleven patients (31.4%) had active virus infections, and patterns were classified as coinfection, recurrent, and consecutive. Of these, six patients (54.5%) presented viral coinfection, six (54.5%) viral recurrence, and seven patients (63.3%) had viral consecutive infection. Ten of the eleven patients with active infection had a proteinuria relapse (91%) and eight (72.7%) were hospitalized (p = 0.0022). Active HCMV infection was the most frequent infection and was observed in six patients (54.5%), three of the eleven patients (27.2%) had suspected HCMV disease in the gastrointestinal tract, and one had HHV-7 coinfection. The frequency of other infections was: 9% for HHV-6, 45.5% for BKV, 27.3% for HHV-7, 18.2% for EBV, and 18.2% for HAdV. CONCLUSION: viral infections, especially HCMV, can be an important cause of morbidity and nephrotic syndrome relapse in children.


Subject(s)
BK Virus , Nephrotic Syndrome , Humans , Nephrotic Syndrome/virology , Nephrotic Syndrome/complications , Adolescent , Child , Male , Female , Child, Preschool , BK Virus/genetics , BK Virus/isolation & purification , Infant , Prospective Studies , DNA, Viral/genetics , Herpesviridae/genetics , Herpesviridae/classification , Herpesviridae/isolation & purification , Coinfection/virology , Herpesviridae Infections/virology , Adenoviridae/genetics , Adenoviridae/isolation & purification , Adenoviridae/classification
10.
Viruses ; 16(7)2024 Jun 26.
Article in English | MEDLINE | ID: mdl-39066187

ABSTRACT

Herpesviruses are significant pathogens of ruminants. In water buffaloes (Bubalus bubalis), however, herpesviruses have not been thoroughly studied. Although bubaline alphaherpesvirus 1 (BuAHV1) and bovine alphaherpesvirus 1 (BoAHV1) have already been recovered from water buffaloes, to date, no reports on the occurrence of bovine alphaherpesvirus 5 (BoAHV5) in these animals have been published. Therefore, the aim of this study was to search for BuAHV1, BoAHV1, and BoAHV5 in palatine tonsils of apparently healthy water buffaloes from the Pará state, Northern Brazil. Tissue samples of tonsils (n = 293) were screened by a nested PCR (nPCR) targeting a region of UL44 (gC coding gene), followed by sequencing, to detect and differentiate between the viral types. Viral genome segments were detected in 18 out of 293 (6.1%) of the palatine tonsil samples. Two animals carried genomes of BoAHV1 only, eleven animals carried BoAHV5 genomes only, and four animals carried BuAHV1 only. Another animal had both BoAHV1 and BoAHV5 genomes in its tonsils. No infectious virus could be recovered from any of the samples. The BuAHV1 sequences identified here were more closely related to BuAHV1 genomes identified in India. Phylogenetic analyses suggested a closer relationship between the recovered BoAHV5 and BuAHV1 genomes. Therefore, evidence is provided here to confirm that not only BoAHV1 and BuAHV1, but also BoAHV5, can infect water buffaloes. This report highlights (i) the first detection of BoAHV5 in water buffaloes and (ii) the occurrence of coinfections with BoAHV1 and BoAHV5 in that species. Such findings and the similarity of BoAHV5 to Indian herpesvirus genomes suggest that the origin of type 5 may be linked to recombinations between bovine and bubaline herpesviruses within bubalines, since the scenario for generation of recombinants in buffaloes is potentially present.


Subject(s)
Buffaloes , Herpesviridae Infections , Palatine Tonsil , Phylogeny , Animals , Buffaloes/virology , Palatine Tonsil/virology , Brazil , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Alphaherpesvirinae/genetics , Alphaherpesvirinae/isolation & purification , Alphaherpesvirinae/classification , Cattle , Genome, Viral , DNA, Viral/genetics , Sequence Analysis, DNA , Polymerase Chain Reaction
11.
Viruses ; 16(7)2024 Jun 30.
Article in English | MEDLINE | ID: mdl-39066225

ABSTRACT

Infectious diseases are a leading cause of losses in the aquaculture industry and conservation programs globally. Simultaneously, infectious diseases pose a substantial risk to fish being hatchery-reared and released into natural habitats for conservation purposes, including the Great Lakes lake sturgeon (Acipenser fulvescens, i.e., GL-LST). Recently, an alloherpesvirus (lake sturgeon herpesvirus 2, i.e., LSHV-2) capable of inducing disease and/or mortality in adult and juvenile GL-LSTs was detected in two adult GL-LST populations. To begin developing disease prevention and/or control methods, in vitro experiments were designed to determine the susceptibility of LSHV-2 to disinfectants commonly used in hatchery and aquaculture facilities (Virkon®-Aquatic: potassium peroxymonosulfate; Ovadine®: polyvinylpyrrolidone iodine complex; and Perox-Aid®: hydrogen peroxide). Cultured LSHV-2 was exposed to each disinfectant at two concentrations (Virkon®-Aquatic: 0.5% and 1%; Ovadine®: 50 and 100 ppm; and Perox-Aid®: 500 and 1000 ppm) in duplicate for durations of 1, 10, and 30 min. Following exposure, the disinfectant was neutralized, and after a 14-day incubation period on a white sturgeon × lake sturgeon hybrid cell line (WSxLS), percent reduction was calculated by comparing the 50% tissue culture infectious doses (TCID50/mL) of the virus with and without disinfectant exposure. When exposed to Perox-Aid®, LSHV-2 percent reduction ranged from 58.7% to 99.5%. When exposed to Ovadine®, the percent reduction ranged from 99.4% to 100%. Lastly, the percent reduction when exposed to Virkon®-Aquatic was 100% for both concentrations and all timepoints. The results herein provide evidence that both Virkon®-Aquatic and Ovadine® are virucidal to LSHV-2 and may represent a means to reduce virus transmission risk under field settings.


Subject(s)
Disinfectants , Fish Diseases , Fishes , Herpesviridae , Animals , Disinfectants/pharmacology , Fishes/virology , Fish Diseases/virology , Fish Diseases/prevention & control , Herpesviridae/drug effects , Aquaculture , Virus Inactivation/drug effects , Lakes/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/prevention & control , Herpesviridae Infections/transmission , Povidone-Iodine/pharmacology , Hydrogen Peroxide/pharmacology , Cell Line , Peroxides , Sulfuric Acids
12.
Viruses ; 16(7)2024 Jul 02.
Article in English | MEDLINE | ID: mdl-39066229

ABSTRACT

Pediatric solid organ transplant (SOT) recipients face a challenging balance between immunosuppression and graft rejection. While Epstein-Barr Virus (EBV) and cytomegalovirus (HCMV) are known contributors to post-transplant lymphoproliferative disease and graft rejection, respectively, the roles of herpesvirus 6 and 7 (HHV6 and HHV7) and the impact of these herpesviruses on cytokine levels remain unclear, leading to gaps in clinical practice. In this associative study, we measured 17 cytokines using a Bio-Plex assay in a meticulously curated plasma sample pool (N = 158) from pediatric kidney and liver transplant recipients over a one-year follow-up period. The samples included virus-negative and virus-positive cases, either individually or in combination, along with episodes of graft rejection. We observed that the elevation of IL-4, IL-8, and IL-10 correlated with graft rejection. These cytokines were elevated in samples where HCMV or HHV6 were detected alone or where EBV and HHV7 were co-detected. Interestingly, latent EBV, when detected independently, exhibited an immunomodulatory effect by downregulating cytokine levels. However, in co-detection scenarios with ß-herpesviruses, EBV transitioned to a lytic state, also associating with heightened cytokinemia and graft rejection. These findings highlight the complex interactions between the immune response and herpesviruses in transplant recipients. The study advocates for enhanced monitoring of not only EBV and HCMV but also HHV6 and HHV7, providing valuable insights for improved risk assessment and targeted interventions in pediatric SOT recipients.


Subject(s)
Cytokines , Cytomegalovirus , Graft Rejection , Herpesvirus 6, Human , Herpesvirus 7, Human , Kidney Transplantation , Liver Transplantation , Humans , Kidney Transplantation/adverse effects , Cytokines/blood , Cytokines/metabolism , Child , Herpesvirus 6, Human/immunology , Male , Female , Child, Preschool , Liver Transplantation/adverse effects , Cytomegalovirus/immunology , Graft Rejection/virology , Graft Rejection/immunology , Herpesvirus 4, Human/immunology , Adolescent , Infant , Herpesviridae Infections/virology , Herpesviridae Infections/immunology , Transplant Recipients , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/immunology , Cytomegalovirus Infections/virology , Cytomegalovirus Infections/immunology , Herpesviridae
13.
Viruses ; 16(7)2024 Jul 03.
Article in English | MEDLINE | ID: mdl-39066232

ABSTRACT

In populations of healthy show horses, the subclinical transmission and circulation of respiratory pathogens can lead to disease outbreaks. Due to recent outbreaks of equine herpesvirus-1 myeloencephalopathy (EHM) in the USA and Europe, many show organizers have instituted various biosecurity protocols such as individual horse testing, monitoring for early clinical disease and increasing hygiene and cleanliness protocols. The aim of this study was to determine the accuracy of detecting EHV-1 in the various environmental samples collected from the stalls of subclinical shedders. Four healthy adult horses were vaccinated intranasally with a modified-live EHV-1 vaccine in order to mimic subclinical shedding. Three additional horses served as non-vaccinated controls. All the horses were stabled in the same barn in individual stalls. Each vaccinated horse had nose-to-nose contact with at least one other horse. Prior to the vaccine administration, and daily thereafter for 10 days, various samples were collected, including a 6" rayon-tipped nasal swab, an environmental sponge, a cloth strip placed above the automatic waterer and an air sample. The various samples were processed for nucleic acid purification and analyzed for the presence of EHV-1 via quantitative PCR (qPCR). EHV-1 in nasal secretions was only detected in the vaccinated horses for 1-2 days post-vaccine administration. The environmental sponges tested EHV-1 qPCR-positive for 2-5 days (median 3.5 days) in the vaccinated horses and 1 day for a single control horse. EHV-1 was detected by qPCR in stall strips from three out of four vaccinated horses and from two out of three controls for only one day. EHV-1 qPCR-positive air samples were only detected in three out of four vaccinated horses for one single day. For the vaccinated horses, a total of 25% of the nasal swabs, 35% of the environmental stall sponges, 7.5% of the strips and 7.5% of the air samples tested qPCR positive for EHV-1 during the 10 study days. When monitoring the subclinical EHV-1 shedders, the collection and testing of the environmental sponges were able to detect EHV-1 in the environment with greater frequency as compared to nasal swabs, stationary strips and air samples.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses , Herpesvirus 1, Equid/isolation & purification , Horse Diseases/virology , Horse Diseases/diagnosis , Horse Diseases/prevention & control , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Herpesviridae Infections/prevention & control , Virus Shedding , Environmental Microbiology
14.
Viruses ; 16(7)2024 Jul 07.
Article in English | MEDLINE | ID: mdl-39066254

ABSTRACT

BACKGROUND: Equid alphaherpesvirus 1 (EHV-1) is a highly contagious respiratory tract pathogen of horses, and infection may be followed by myeloencephalopathy or abortion. Surveillance and early detection have focused on PCR assays using less tolerated nasal swabs. Here, we assess non-invasive non-contact sampling techniques as surveillance tools in naturally equid gammaherpesvirus 2-shedding horses as surrogates for EHV-1. METHODS: Horses were individually housed for 10 h periods on 2 consecutive days. Sampling included nasal swabs, nostril wipes, environmental swabs, droplet-catching devices, and air sampling. The latter was completed via two strategies: a combined air sample collected while going from horse to horse and a collective air sample collected at a stationary central point for 6 h. Samples were screened through quantitative PCR and digital PCR. RESULTS: Nine horses on day 1 and 11 horses on day 2 were positive for EHV-1; overall, 90.9% of the nostril wipes, 81.8% of the environmental surfaces, and 90.9% of the droplet-catching devices were found to be positive. Quantitative analysis showed that the mean DNA copies detection per cm2 of nostril wipe sampled concentration (4.3 × 105 per day) was significantly (p < 0.05) comparable to that of nasal swabs (3.6 × 105 per day) followed by environmental swabs (4.3 × 105 per day) and droplet catchers (3.5 × 103 per day), respectively. Overall, 100% of the air samples collected were positive on both qPCR and dPCR. In individual air samples, a mean concentration of 1.0 × 104 copies of DNA were detected in per m3 air sampled per day, while in the collective air samples, the mean concentration was 1.1 × 103. CONCLUSIONS: Environmental samples look promising in replacing direct contact sampling. Environmental and air sampling could become efficient surveillance tools at equestrian events; however, it needs threshold calculations for minimum detection levels.


Subject(s)
Herpesviridae Infections , Herpesvirus 1, Equid , Horse Diseases , Animals , Horses/virology , Horse Diseases/virology , Horse Diseases/diagnosis , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Herpesvirus 1, Equid/isolation & purification , Herpesvirus 1, Equid/genetics , Specimen Handling/methods , Female , Virus Shedding
15.
Emerg Infect Dis ; 30(8): 1664-1667, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39043429

ABSTRACT

We identified a rustrela virus variant in a wild mountain lion (Puma concolor) in Colorado, USA. The animal had clinical signs and histologic lesions compatible with staggering disease. Considering its wide host range in Europe, rustrela virus should be considered as a cause for neurologic diseases among mammal species in North America.


Subject(s)
Puma , Animals , Colorado/epidemiology , Puma/virology , Phylogeny , Animals, Wild/virology , Herpesviridae Infections/veterinary , Herpesviridae Infections/virology , Herpesviridae Infections/epidemiology
16.
Curr Opin Virol ; 67: 101424, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38981163

ABSTRACT

Oncogenic viruses play a pivotal role in oncology due to their unique role in unraveling the complexities of cancer development. Understanding the role viruses play in specific cancers is important to provide basic insights into the transformation process, which will help identify potential cellular targets for treatment. This review discusses the diverse role of animal herpesviruses in initiating and promoting various forms of cancer. We will summarize the mechanisms that underlie the development of animal herpesvirus-induced cancer that may provide a basis for developing potential therapeutic interventions or preventative strategies in the future.


Subject(s)
Herpesviridae Infections , Herpesviridae , Neoplasms , Oncogenic Viruses , Animals , Herpesviridae/physiology , Herpesviridae/pathogenicity , Herpesviridae/genetics , Humans , Neoplasms/virology , Herpesviridae Infections/virology , Oncogenic Viruses/physiology , Carcinogenesis
17.
J Med Virol ; 96(8): e29836, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39078052

ABSTRACT

Primary effusion lymphoma (PEL) is a rare B-cell non-Hodgkin lymphoma associated with Kaposi Sarcoma-associated herpesvirus (KSHV/HHV8) infection. Lymphoma cells are coinfected with Epstein-Barr virus (EBV) in 60-80% of cases. Tools allowing a reliable PEL diagnosis are lacking. This study reports PEL diagnosis in 4 patients using a Flow-Fluorescence in situ hybridization (FlowFISH) technique that allowed detection of differentially expressed EBV and HHV8 transcripts within the same sample, revealing viral heterogeneity of the disease. Moreover, infected cells exhibited variable expressions of CD19, CD38, CD40, and CD138. Therefore, FlowFISH is a promising tool to diagnose and characterize complex viral lymphoproliferations.


Subject(s)
Herpesvirus 4, Human , Herpesvirus 8, Human , In Situ Hybridization, Fluorescence , Lymphoma, Primary Effusion , Humans , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/isolation & purification , In Situ Hybridization, Fluorescence/methods , Lymphoma, Primary Effusion/virology , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/isolation & purification , Male , Aged , Middle Aged , Female , Herpesviridae Infections/virology , Herpesviridae Infections/diagnosis , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , Aged, 80 and over
18.
Vopr Virusol ; 69(3): 277-284, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38996376

ABSTRACT

OBJECTIVES: Human herpesvirus 8 (HHV8) is rarely studied in Congo, despite its prevalence in Africa. Among healthy individuals, HHV-8 does not always lead to a life-threatening infection; however, in immunocompromised individuals, it could lead to more severe disease. The distribution of HHV-8 genotypes varies depending on ethnicity and geographic region. METHOD: A prospective cross-sectional study included 265 samples from healthy blood donors from the National Blood Transfusion Center in Brazzaville, with an average age of 35 years, with extremes ranging from 18 to 60 years. After DNA extraction, a nested PCR was carried out for molecular detection, followed by genotyping by amplification of specific primers. RESULT: In this study, 4.9% were positive for molecular detection of HHV-8 DNA. All HHV-8 positive DNA samples that were subjected to genotyping by amplification with specific primers allowing discrimination of two major genotypes (A and B). Genotype A was identified in 5 (1.9%) samples and genotype B in 2 (0.7%) samples, indicating that both genotypes were predominant. The remaining viral DNA samples not identified as the major genotypes were classified as «indeterminate¼ and consisted of 6 (2.3%) samples. CONCLUSION: The results of the study suggest that Congo is an area where HHV-8 infection is endemic.


Subject(s)
Blood Donors , DNA, Viral , Genotype , Herpesviridae Infections , Herpesvirus 8, Human , Humans , Congo/epidemiology , Herpesvirus 8, Human/genetics , Herpesvirus 8, Human/isolation & purification , Herpesvirus 8, Human/classification , Adult , Male , Female , Middle Aged , DNA, Viral/genetics , Herpesviridae Infections/epidemiology , Herpesviridae Infections/virology , Herpesviridae Infections/blood , Adolescent , Cross-Sectional Studies , Prospective Studies , Polymerase Chain Reaction
20.
Vopr Virusol ; 69(2): 134-150, 2024 May 06.
Article in Russian | MEDLINE | ID: mdl-38843020

ABSTRACT

INTRODUCTION: SARS-CoV-2 infection causes immune disorders that create conditions for the reactivation of human herpesviruses (HHVs). However, the estimates of the HHVs effect on the course and outcome of COVID-19 are ambiguous. Аim - to study the possible relationship between the HHV reactivation and the adverse outcome of COVID-19. MATERIALS AND METHODS: Postmortem samples from the brain, liver, spleen, lymph nodes and lungs were obtained from 59 patients treated at the Moscow Infectious Diseases Hospital No.1 in 2021-2023. The group 1 comprised 39 patients with fatal COVID-19; group 2 (comparison group) included 20 patients not infected with SARS-CoV-2 who died from various somatic diseases. HHV DNA and SARS-CoV-2 RNA were determined by PCR. RESULTS: HHV DNA was found in autopsy samples from all patients. In group 1, EBV was most often detected in lymph nodes (94%), HHV-6 in liver (68%), CMV in lymph nodes (18%), HSV in brain (16%), VZV in lung and spleen (3% each). The detection rates of HHVs in both groups was similar. Important differences were found in viral load. In patients with COVID-19, the number of samples containing more than 1,000 copies of HHV DNA per 100,000 cells was 52.4%, in the comparison group - 16.6% (p < 0.002). An association has been established between the reactivation of HSV and HHV-6 and the severity of lung damage. Reactivation of EBV correlated with increased levels of liver enzymes. CONCLUSION: Reactivation of HHVs in patients with fatal COVID-19 was associated with severe lung and liver damages, which indicates a link between HHV reactivation and COVID-19 deaths.


Subject(s)
Autopsy , COVID-19 , DNA, Viral , Herpesviridae Infections , Herpesviridae , SARS-CoV-2 , Humans , COVID-19/virology , COVID-19/mortality , COVID-19/diagnosis , COVID-19/pathology , Female , Male , DNA, Viral/genetics , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Middle Aged , Aged , Herpesviridae/genetics , Herpesviridae/isolation & purification , Herpesviridae Infections/virology , Herpesviridae Infections/mortality , Adult , Lung/virology , Lung/pathology , Virus Activation , Herpesvirus 6, Human/genetics , Herpesvirus 6, Human/isolation & purification , Moscow , Viral Load , Lymph Nodes/virology , Lymph Nodes/pathology , Aged, 80 and over , Spleen/virology , Spleen/pathology
SELECTION OF CITATIONS
SEARCH DETAIL