Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
Food Res Int ; 186: 114328, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38729714

ABSTRACT

The metabolism and absorption of citrus flavanones are intrinsically linked to the gut microbiota, creating a bidirectional relationship where these compounds influence the microbiome, and in turn, the microbiota affects their metabolism. This study evaluates the effect of acute and chronic consumption of orange juice (OJ) on the urinary excretion of gut-derived flavanone metabolites and the gut microbiota. Health volunteers ingested 500 mL of OJ for 60 days in a single-arm human intervention study. Blood and feces were collected at baseline and after 60 days, with an additional 24-hour urine collection after a single dose on day 1 and day 63. LC-MS/MS analyzed urinary flavanone metabolites, while 16S rRNA sequencing characterized gut microbiota. Total urinary hesperetin conjugates excretion significantly decreased over 60 days, while gut-derived total phenolic acids, particularly three hydroxybenzoic acids, increased. Moreover, the heterogeneity of the total amount of flavanone conjugates, initially categorizing individuals into high-, medium- and low- urinary excretor profiles, shifted towards medium-excretor, except for five individuals who remained as low-excretors. This alteration was accompanied by a decrease in intestinal ß-glucosidase activity and a shift in the relative abundance of specific genera, such as decreases in Blautia, Eubacterium hallii, Anaerostipes, and Fusicatenibacter, among which, Blautia was associated with higher urinary flavanone conjugates excretion. Conversely, an increase in Prevotella was observed. In summary, chronic OJ consumption induced transient changes in gut microbiota and altered the metabolism of citrus flavanones, leading to distinct urinary excretion profiles of flavanone metabolites.


Subject(s)
Citrus sinensis , Feces , Flavanones , Fruit and Vegetable Juices , Gastrointestinal Microbiome , Humans , Flavanones/urine , Male , Adult , Female , Feces/microbiology , Feces/chemistry , Hesperidin/urine , Tandem Mass Spectrometry , Middle Aged , Young Adult , Bacteria/classification , Bacteria/metabolism , Bacteria/genetics , Hydroxybenzoates/urine
2.
Food Res Int ; 182: 114134, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38519156

ABSTRACT

Hesperidin is a phenolic compound usually found in citrus fruits, which is known for its anti-inflammatory and antioxidant properties. This bioactive compound has already been used to formulate medications to treat chronic venous insufficiency. In this work, through a system which allows the in-line coupling of the pressurized liquid extraction (PLE) and high-intensity ultrasound (HIUS) with solid phase extraction (SPE), and analysis by high-performance liquid chromatography with UV-Vis detector (HPLC-UV) in on-line mode, a method was developed to obtain, separate, and quantify hesperidin from the industrial waste of lime. An eco-friendly approach with water and ethanol as extraction solvents was used. Parameters such as temperature (80, 100, and 120 °C) and HIUS power (0, 200, and 400 W) were evaluated regarding hesperidin yield. In this context, the higher hesperidin yield (18.25 ± 1.52 mg/g) was achieved using water at a subcritical state (120 °C and 15 MPa). The adsorbent SepraTM C-18-E isolated hesperidin from the other extracted compounds employing 50% ethanol in the SPE elution. The possibility ofon-lineanalysis coupling a high-performance liquid chromatograph to an ultraviolet detector (HPLC-UV) system was studied and shown to be a feasible approach for developing integrated technologies. Conventional extractions and their antioxidant capacities were evaluated, highlighting the advantages of the HIUS-PLE-SPE extractive method. Furthermore, the on-linechromatographic analysis showed the potential of the HIUS-PLE-SPE- HPLC-UV system to quantify the extracted compounds in real time.


Subject(s)
Calcium Compounds , Hesperidin , Oxides , Antioxidants , Water/chemistry , Ethanol
3.
Acta Cir Bras ; 39: e391124, 2024.
Article in English | MEDLINE | ID: mdl-38477785

ABSTRACT

PURPOSE: This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. METHODS: Fifty male Sprague Dawley rats (250-300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid-Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. RESULTS: Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. CONCLUSIONS: Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.


Subject(s)
Hesperidin , Reperfusion Injury , Male , Rats , Animals , Proliferating Cell Nuclear Antigen , Antioxidants , Rats, Sprague-Dawley , Stomach , Superoxide Dismutase , Ischemia , Malondialdehyde , Sulfhydryl Compounds , Glutathione Peroxidase
4.
Appl Microbiol Biotechnol ; 108(1): 250, 2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38430417

ABSTRACT

The fungal diglycosidase α-rhamnosyl-ß-glucosidase I (αRßG I) from Acremonium sp. DSM 24697 catalyzes the glycosylation of various OH-acceptors using the citrus flavanone hesperidin. We successfully applied a one-pot biocatalysis process to synthesize 4-methylumbellipheryl rutinoside (4-MUR) and glyceryl rutinoside using a citrus peel residue as sugar donor. This residue, which contained 3.5 % [w/w] hesperidin, is the remaining of citrus processing after producing orange juice, essential oil, and peel-juice. The low-cost compound glycerol was utilized in the synthesis of glyceryl rutinoside. We implemented a simple method for the obtention of glyceryl rutinoside with 99 % yield, and its purification involving activated charcoal, which also facilitated the recovery of the by-product hesperetin through liquid-liquid extraction. This process presents a promising alternative for biorefinery operations, highlighting the valuable role of αRßG I in valorizing glycerol and agricultural by-products. KEYPOINTS: • αRßG I catalyzed the synthesis of rutinosides using a suspension of OPW as sugar donor. • The glycosylation of aliphatic polyalcohols by the αRßG I resulted in products bearing a single rutinose moiety. • αRßG I catalyzed the synthesis of glyceryl rutinoside with high glycosylation/hydrolysis selectivity (99 % yield).


Subject(s)
Acremonium , Hesperidin , Hesperidin/chemistry , Glycerol
5.
Acta cir. bras ; Acta cir. bras;39: e391124, 2024. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1556667

ABSTRACT

Purpose: This study evaluated the protective effect of hesperidin on injury induced by gastric ischemia-reperfusion. Methods: Fifty male Sprague Dawley rats (250­300 g) were divided into five groups: control (C), sham (S), ischemia (I), ischemia-reperfusion (I/R) and hesperidin + ischemia-reperfusion (Hes + I/R). Hesperidin was injected intraperitoneally at the dose of 100 mg/kg one hour before the experimental stomach ischemia-reperfusion. Celiac artery was ligated. After 45 minutes ischemia and 60 minutes reperfusion period, blood samples were obtained under anesthesia. Then, animals were sacrificed, stomach tissues were excised for biochemical, and histopathological analyses were performed. Malondialdehyde levels and superoxide dismutase, glutathione peroxidase activities and total antioxidant status (TAS), total oxidant status (TOS), protein, total thiol parameters were measured in plasma, and tissue homogenate samples. H + E, periodic acid­Schiff, hypoxia inducible factor, terminal deoxynucleotidyl transferase mediated deoxyuridine triphosphate nick end-labeling (TUNEL), and proliferating cell nuclear antigen (PCNA) for cell proliferation as immunohistochemical parameters were determined. Results: Upon biochemical and histopathological assessment, hesperidin decreased stomach tissue changes in comparison with IR group. Ischemia-reperfusion injury led to a considerably increase in malondialdehyde, protein, and TOS levels (p < 0.001) in stomach tissue. Hesperidin treatment significantly decreased malondialdehyde, protein, and TOS levels (p < 0.001). Hesperidin increased superoxide dismutase, TAS, total thiol and glutathione peroxidase activities in comparison with IR group. Hesperidin reduced damage and also increased TUNEL and PCNA immunoreactivity in stomach tissue. Conclusions: Hesperidin was able to decrease I/R injury of the stomach tissue due to inhibition of lipid peroxidation and protein oxidation, duration of antioxidant, and free radical scavenger properties. Consequently, hesperidin can provide a beneficial therapeutic choice for preventing stomach tissue ischemia-reperfusion injury in clinical application.


Subject(s)
Animals , Rats , Wounds and Injuries , Reperfusion , Hesperidin , Ischemia , Animals, Laboratory
6.
Eur J Appl Physiol ; 123(9): 1949-1964, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37119360

ABSTRACT

PURPOSE: Delayed-onset muscle soreness (DOMS) describes an entity characterized by ultrastructural muscle damage. Hesperidin methyl chalcone (HMC) is a synthetic flavonoid presenting analgesic, anti-inflammatory, and antioxidant properties. We evaluated the effects of HMC upon DOMS. METHOD: In a preventive paradigm, 31 sedentary young men were submitted to a randomized, double-blinded parallel trial and received HMC 500 mg or one placebo capsule × 3 days before an intense dynamic exercise protocol (concentric/eccentric actions) applied for lower limbs for inducing muscle damage. Assessments were conducted at baseline, and 24 and 48 h after, comprising physical performance, and post-muscle soreness and damage, inflammation, recovery of muscle strength, and postural balance associated with DOMS. HMC safety was also evaluated. Thirty participants completed the study. RESULTS: HMC improved the performance of participants during exercise (40.3 vs 51.3 repetitions to failure, p = 0.0187) and inhibited CPK levels (90.5 vs 57.9 U/L, p = 0.0391) and muscle soreness during passive quadriceps palpation (2.6 vs 1.4 VAS cm, p = 0.0439), but not during active actions, nor did it inhibit IL-1ß or IL-10 levels. HMC improved muscle strength recovery, and satisfactorily refined postural balance, without inducing injury to kidneys or liver. CONCLUSIONS: Preemptive HMC supplementation may be beneficial for boosting physical performance and for the amelioration of clinical parameters related to DOMS, including pain on muscle palpation, increased blood CPK levels, and muscle strength and proprioceptive deficits, without causing adverse effects. These data advance the understanding of the benefits provided by HMC for DOMS treatment, which supports its usefulness for such purpose.


Subject(s)
Chalcones , Hesperidin , Male , Humans , Young Adult , Myalgia/drug therapy , Myalgia/prevention & control , Myalgia/etiology , Hesperidin/pharmacology , Hesperidin/therapeutic use , Chalcones/pharmacology , Chalcones/therapeutic use , Exercise/physiology , Muscle, Skeletal
7.
Acta Cir Bras ; 38: e381723, 2023.
Article in English | MEDLINE | ID: mdl-37098927

ABSTRACT

PURPOSE: The effects of hesperidin application on the wound caused by esophageal burns were investigated in this study. METHODS: Wistar albino rats were divided into three groups: Control group: only 1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn group: An alkaline esophageal burn model was created with 0.2 mL of 25% NaOH orally by gavage-1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn+Hesperidin group: 1 mL of 50 mL/kg of hesperidin was given i.p. for 28 days to rats after burn injury. Blood samples were collected for biochemical analysis. Esophagus samples were processed for histochemical staining and immunohistochemistry. RESULTS: Malondialdehyde (MDA) and myeloperoxidase (MPO) levels were significantly increased in Burn group. Glutathione (GSH) content and histological scores of epithelialization, collagen formation, neovascularization was decreased. After hesperidin treatment, these values were significantly improved in the Burn+Hesperidin group. In the Burn group, epithelial cells and muscular layers were degenerated. Hesperidin treatment restored these pathologies in Burn+Hesperidin group. Ki-67 and caspase-3 expressions were mainly negative in control group; however, the expression was increased in the Burn group. In the Burn+Hesperidin group, Ki-67 and caspase-3 immune activities were reduced. CONCLUSIONS: Hesperidin dosage and application methods can be developed as an alternative treatment for burn healing and treatment.


Subject(s)
Hesperidin , Animals , Rats , Hesperidin/pharmacology , Ki-67 Antigen , Caspase 3 , Sodium Chloride/pharmacology , Rats, Wistar , Wound Healing , Glutathione/metabolism , Esophagus/injuries , Esophagus/metabolism , Esophagus/pathology
8.
Anal Bioanal Chem ; 415(18): 4411-4422, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36853412

ABSTRACT

The growing interest in ingredients from natural sources has expanded the need for quality assessments of plant extracts. Analytical quality-by-design (AQbD) has been increasingly applied in regulated environments such as pharmaceutical industries and, more recently, for the bioactive compounds found in botanical materials. This work aimed to obtain qualitative (overall resolution and maximum peak capacity) and quantitative performances for target analytes using AQbD principles. The analytical target profile was elaborated; critical method parameters (independent variables) that affect the critical method attributes (dependent variables) were selected from a risk assessment for a reversed-phase liquid chromatography with diode array detection (RPLC-DAD) method. YMC-Triart C18 (3.0 × 100 mm, 1.9 µm) and a gradient elution using 0.2% acetic acid and methanol:acetonitrile 1:3 (v/v) were chosen as the stationary and mobile phases, respectively. The optimal and robust conditions (temperature at 33.3 °C, flow rate of 0.68 mL.min-1, and a gradient slope of 4.18%.min-1) were established by the method operable design region (MODR). The validation was performed by accuracy profiles using 90% expectation tolerance intervals for the selected compounds found in Citrus spp. using C. japonica as blank matrix. The lower limits of quantification for hesperidin, bergapten, herniarin, and citropten were 5.32, 0.40, 0.49, and 0.52 mg.L-1, respectively (acceptance limit was set at ± 20%). Nobiletin did not show an adequate quantitative performance.


Subject(s)
Citrus , Hesperidin , Chromatography, High Pressure Liquid/methods , Chromatography, Reverse-Phase
9.
Molecules ; 28(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36677929

ABSTRACT

Arthroplasty is an orthopedic surgical procedure that replaces a dysfunctional joint by an orthopedic prosthesis, thereby restoring joint function. Upon the use of the joint prosthesis, a wearing process begins, which releases components such as titanium dioxide (TiO2) that trigger an immune response in the periprosthetic tissue, leading to arthritis, arthroplasty failure, and the need for revision. Flavonoids belong to a class of natural polyphenolic compounds that possess antioxidant and anti-inflammatory activities. Hesperidin methyl chalcone's (HMC) analgesic, anti-inflammatory, and antioxidant effects have been investigated in some models, but its activity against the arthritis caused by prosthesis-wearing molecules, such as TiO2, has not been investigated. Mice were treated with HMC (100 mg/kg, intraperitoneally (i.p.)) 24 h after intra-articular injection of 3 mg/joint of TiO2, which was used to induce chronic arthritis. HMC inhibited mechanical hyperalgesia, thermal hyperalgesia, joint edema, leukocyte recruitment, and oxidative stress in the knee joint (alterations in gp91phox, GSH, superoxide anion, and lipid peroxidation) and in recruited leukocytes (total reactive oxygen species and GSH); reduced patellar proteoglycan degradation; and decreased pro-inflammatory cytokine production. HMC also reduced the activation of nociceptor-sensory TRPV1+ and TRPA1+ neurons. These effects occurred without renal, hepatic, or gastric damage. Thus, HMC reduces arthritis triggered by TiO2, a component released upon wearing of prosthesis.


Subject(s)
Arthritis , Chalcones , Hesperidin , Mice , Animals , Nociceptors/metabolism , Chalcones/therapeutic use , Inflammation/drug therapy , Inflammation/metabolism , Arthritis/drug therapy , Oxidative Stress , Antioxidants/pharmacology , Anti-Inflammatory Agents/pharmacology , Hyperalgesia/drug therapy , Cytokines/metabolism
11.
Acta cir. bras ; Acta cir. bras;38: e381723, 2023. tab, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1429536

ABSTRACT

Purpose: The effects of hesperidin application on the wound caused by esophageal burns were investigated in this study. Methods: Wistar albino rats were divided into three groups: Control group: only 1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn group: An alkaline esophageal burn model was created with 0.2 mL of 25% NaOH orally by gavage­1 mL of 0.09% NaCl was administered i.p. for 28 days; Burn+Hesperidin group: 1 mL of 50 mL/kg of hesperidin was given i.p. for 28 days to rats after burn injury. Blood samples were collected for biochemical analysis. Esophagus samples were processed for histochemical staining and immunohistochemistry. Results: Malondialdehyde (MDA) and myeloperoxidase (MPO) levels were significantly increased in Burn group. Glutathione (GSH) content and histological scores of epithelialization, collagen formation, neovascularization was decreased. After hesperidin treatment, these values were significantly improved in the Burn+Hesperidin group. In the Burn group, epithelial cells and muscular layers were degenerated. Hesperidin treatment restored these pathologies in Burn+Hesperidin group. Ki-67 and caspase-3 expressions were mainly negative in control group; however, the expression was increased in the Burn group. In the Burn+Hesperidin group, Ki-67 and caspase-3 immune activities were reduced. Conclusion: Hesperidin dosage and application methods can be developed as an alternative treatment for burn healing and treatment.


Subject(s)
Wound Healing/drug effects , Apoptosis , Ki-67 Antigen , Esophagus/injuries , Caspase 3 , Hesperidin/administration & dosage , Burns
12.
Nutrients ; 14(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36145145

ABSTRACT

Citrus fruits and juices are a major source of dietary flavanones, and the regular consumption of these foods is inversely associated with the development of cardiometabolic diseases. However, the biological benefits depend on the bioavailability of these compounds, and previous studies have reported a large interindividual variability in the absorption and excretion of these compounds. Different factors, such as age, gender or genetic polymorphism of genes coding enzymes involved in the metabolism and transport of the flavanones, may explain this heterogeneity. This study aimed to assess the impact of single nucleotide polymorphism of sulfotransferases SULT1A1 and SULT1C4, and ABCC2 transporter genes on excretion of phase II flavanone metabolites in volunteers after 24 h of orange juice intake. Forty-six volunteers ingested a single dose of 500 mL of orange juice and 24-h urine was collected. The hesperetin and naringenin phase II metabolites were quantified in urine, and SNPs in SULT1A1, SULT1C4 and ABCC2 genes were genotyped. A significant (p < 0.05) relationship between the SNPs in these genes and the high excretion of phase II flavanone metabolites were observed. These results identified novel polymorphisms associated with higher absorption of flavanones, which may provide bases for future personalized nutritional guidelines for consuming flavanone-rich foods rich in these nutrients for better benefit from their health properties.


Subject(s)
Citrus sinensis , Flavanones , Hesperidin , Arylsulfotransferase/genetics , Beverages/analysis , Citrus sinensis/genetics , Humans , Polymorphism, Single Nucleotide , Sulfotransferases/genetics
13.
Food Res Int ; 157: 111252, 2022 07.
Article in English | MEDLINE | ID: mdl-35761564

ABSTRACT

This work aimed to develop an integrated method to extract and fractionate phenolic compounds from lemon (Citrus limon L.) peel by in-line coupling pressurized liquid extraction and solid-phase extraction (PLE-SPE). The effect of the adsorbent used in the SPE (Sepra™ C18-E, Sepra™ NH2, and PoraPak Rxn), the combination of organic extraction-elution solvents (water-ethanol and water-ethyl lactate), extraction temperature (40-80 °C), and extraction water pH (4.0, 6.0, and 7.0) were the investigated variables. The highest yield and separation degree were observed using Sepra™ C18-E and the water-ethanol combination as the extraction solvent-eluent. Higher temperatures led to higher yields but negatively affected the retention of less polar compounds, hesperidin, and narirutin during the extraction step. The lower pH improved the yield of most evaluated compounds; however, it did not improve the adsorbent retention at high temperatures. Thus, the developed PLE-SPE method resulted in higher extraction yields from lemon peel, especially total less polar compounds (20.2100 ± 0,0050 mg/g) and hesperidin (12.8120 ± 0.0006 mg/g) and allowed the separation of polar compounds and less polar compounds in distinct extract fractions. Besides, PLE-SPE resulted in higher yields compared to other extraction methods. The integrated approach allowed obtaining extract fractions with different chemical composition through an environmentally friendly procedure. The research outcomes may be helpful for natural products chemistry, and industrial processes.


Subject(s)
Citrus , Hesperidin , Ethanol , Phenols/chemistry , Solid Phase Extraction , Solvents/chemistry , Water
14.
Food Res Int ; 157: 111381, 2022 07.
Article in English | MEDLINE | ID: mdl-35761637

ABSTRACT

This work evaluated two emerging techniques in extracting phenolic compounds from Tahiti lime pomace - pressurized liquid extraction (PLE) and ultrasound-assisted extraction (UAE). PLE was performed at different temperatures (60 - 110 °C) and times (5 - 40 min), and UAE was carried out varying ultrasound power (160 - 792 W), time (2 - 10 min), and solvent to feed mass ratio (20 - 40 kg solvent/kg dried pomace). Both used ethanol and water (3:1, wt.) as the solvent. The effects of these variables were evaluated on global extraction yield, polyphenols, hesperidin, narirutin yields, and antioxidant capacity. PLE was strongly affected by temperature and extraction time, and the highest temperature (110 °C) provided the best results for global yield, total phenolic, and ORAC, except for hesperidin and narirutin, which were not significative affected by temperature. UAE revealed a weak dependency on power, S/F, and time; however, the lowest power level significantly increased the yields compared to no power application. Thus, P = 480 W, t = 6 min, and S/F = 30 was chosen as the best condition in the UAE in terms of overall extraction yield, total phenolics, specific phenolics, antioxidant capacities, and solvent and energy expenditures. UAE mechanisms were investigated by comparing with heated and stirred maceration, and scanning electron microscopy suggested that total phenolic yield was influenced by mechanisms that only ultrasound can provide. Micrographics confirmed the cavitation effect on Tahiti lime pomace particles' surface. To sum up, PLE resulted in the highest yields and antioxidant capacity, followed by UAE.


Subject(s)
Antioxidants/chemistry , Citrus , Hesperidin , Calcium Compounds/chemistry , Hesperidin/chemistry , Hesperidin/isolation & purification , Oxides/chemistry , Phenols/chemistry , Phenols/isolation & purification , Solvents
15.
AAPS PharmSciTech ; 23(6): 170, 2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35729366

ABSTRACT

UV radiation can cause damages, such as erythema, skin photoaging, and carcinogenesis. The adoption of protective measures against sun exposure is essential to prevent these damages, and the interest in using natural substances as an alternative for photoprotection is growing. Thus, hesperetin with antioxidant, anti-inflammatory, and anticancer properties is a promising substance to be used with photochemopreventive action and to protect the skin from damage induced by UV radiation. Therefore, the present study aimed to develop a topical formulation based on AAMVPC gel containing hesperetin and evaluate its photoprotective effect on the skin of rats exposed to UVA-UVB radiation. The animals were submitted to the irradiation protocol UVA-UVB, and at the end, erythema, lipid peroxidation, and activity of the antioxidant enzyme catalase and superoxide dismutase were evaluated. Additionally, it evaluated the activity of myeloperoxidase and histological changes. The formulation presented a rheological and spreadability profile suitable for cutaneous application. In vivo results demonstrated that the topical formulation of AAMVPC gel containing hesperetin at a concentration of 10% protected the skin from damage induced by UVA-UVB radiation, with the absence of erythema, lipid lipoperoxidation, and inflammation (low myeloperoxidase activity), and increased catalase and superoxide dismutase activities. The morphology and architecture of the dermo-epidermal tissue of these animals were like those observed under normal conditions (non-irradiated animals). Thus, the results showed that hesperetin was able to protect the animals' skin against UV radiation-induced skin damage and the protection mechanisms may be related to the antioxidant and anti-inflammatory properties of this natural product.


Subject(s)
Peroxidase , Ultraviolet Rays , Animals , Anti-Inflammatory Agents/metabolism , Antioxidants/metabolism , Antioxidants/pharmacology , Catalase , Hesperidin , Hydrogels/metabolism , Oxidative Stress , Peroxidase/metabolism , Peroxidase/pharmacology , Rats , Skin/metabolism , Superoxide Dismutase/metabolism , Superoxide Dismutase/pharmacology , Ultraviolet Rays/adverse effects
16.
Biomolecules ; 12(5)2022 04 23.
Article in English | MEDLINE | ID: mdl-35625554

ABSTRACT

Flavonoids are natural phytochemicals that have therapeutic effects and act in the prevention of several pathologies. These phytochemicals can be found in seeds, grains, tea, coffee, wine, chocolate, cocoa, vegetables and, mainly, in citrus fruits. Neohesperidin, hesperidin and hesperetin are citrus flavonoids from the flavanones subclass that have anti-inflammatory and antioxidant potential. Neohesperidin, in the form of neohesperidin dihydrochalcone (NHDC), also has dietary properties as a sweetener. In general, these flavanones have been investigated as a strategy to control bone diseases, such as osteoporosis and osteoarthritis. In this literature review, we compiled studies that investigated the effects of neohesperidin, hesperidin and its aglycone, hesperetin, on bone health. In vitro studies showed that these flavanones exerted an antiosteoclastic and anti- inflammatory effects, inhibiting the expression of osteoclastic markers and reducing the levels of reactive oxygen species, proinflammatory cytokines and matrix metalloproteinase levels. Similarly, such studies favored the osteogenic potential of preosteoblastic cells and induced the overexpression of osteogenic markers. In vivo, these flavanones favored the regeneration of bone defects and minimized inflammation in arthritis- and periodontitis-induced models. Additionally, they exerted a significant anticatabolic effect in ovariectomy models, reducing trabecular bone loss and increasing bone mineral density. Although research should advance to the clinical field, these flavanones may have therapeutic potential for controlling the progression of metabolic, autoimmune or inflammatory bone diseases.


Subject(s)
Citrus , Flavanones , Hesperidin , Osteoporosis , Bone Density , Citrus/chemistry , Flavanones/pharmacology , Flavanones/therapeutic use , Flavonoids/pharmacology , Flavonoids/therapeutic use , Hesperidin/analogs & derivatives , Hesperidin/pharmacology , Hesperidin/therapeutic use , Osteoporosis/drug therapy
17.
Neurotoxicology ; 89: 174-183, 2022 03.
Article in English | MEDLINE | ID: mdl-35167856

ABSTRACT

Non-motor alterations such as anxiety and memory deficit may represent early indications of Parkinson's disease (PD), and therapeutic strategies that reduce non-motor alterations are promising alternatives for the treatment. Therefore, the search for natural compounds that act on motor and non-motor complications is highly relevant. In this sense, we demonstrated the role of hesperidin (Hsd) as a citrus flavonoid and its pharmacological properties as an antioxidant and neuroprotective agent. Our objective was to evaluate Hsd in developing motor and non-motor alterations in a Drosophila melanogaster model of Parkinson-like disease induced by iron (Fe) exposure. The flies were divided into six groups: control, Hsd (10 µM), L-dopa (positive control, 1 mM), Fe (1 mM), Fe + Hsd, and Fe + L-dopa. Motor coordination tests, memory assessment through aversive phototaxy, and anxiety-like behaviors characterized in flies, such as grooming and aggressiveness, were performed. The Hsd attenuated motor and non-motor alterations, such as motor coordination, memory deficits and anxiety-like behaviors, attenuated monoaminergic deficits, and lowered Fe levels in the head of flies. In addition, Hsd prolonged the life of the flies, thereby standing out from the L-dopa-treated group. Thus, Hsd can protect the dopaminergic system from insults caused by Fe, preventing non-motor alterations in PD; Hsd also reduced Fe levels in the flies' heads, suggesting that iron chelation may represent an important mechanism of action, in addition to its antioxidant action.


Subject(s)
Hesperidin , Parkinson Disease , Animals , Disease Models, Animal , Dopamine , Drosophila melanogaster , Hesperidin/pharmacology , Hesperidin/therapeutic use , Levodopa , Parkinson Disease/drug therapy
18.
Free Radic Biol Med ; 180: 253-262, 2022 02 20.
Article in English | MEDLINE | ID: mdl-35092853

ABSTRACT

Mechanical ventilation (MV) is a tool used in critical patient care. However, it can trigger inflammatory and oxidative processes capable of causing or aggravating lung injuries, which is known as ventilator-induced lung injury (VILI). Hesperidin is a flavonoid with antioxidant and anti-inflammatory properties in various diseases. The role of hesperidin in the process triggered by MV is poorly studied. Thus, we hypothesize hesperidin could protect the lung of mice submitted to mechanical ventilation. For that, we evaluated cell viability and reactive oxygen species (ROS) formation in macrophages using different hesperidin concentrations. We observed hesperidin did not reduce cell viability, however; it attenuated the production of intracellular ROS in cells stimulated with lipopolysaccharide (LPS). We further evaluated the effects of hesperidin in vivo in animals submitted to MV. In the bronchoalveolar lavage fluid, there were higher levels of macrophage, lymphocyte and neutrophil counts in animals submitted to MV, indicating an inflammatory process. In the lung tissue, MV induced oxidative damage and increased myeloperoxidase activity, though the antioxidant enzyme activity decreased. MV also induced the production of the inflammatory mediators CCL-2, TNF-α and IL-12. Pretreatment with hesperidin resulted in less recruitment of inflammatory cells to the airways and less oxidative damage. Also, it reduced the formation of CCL-2 and IL-12. Our results show pretreatment with hesperidin can protect the lungs of mice submitted to mechanical ventilation by modulating the inflammatory response and redox imbalance and may act to prevent MV injury.


Subject(s)
Hesperidin , Pneumonia , Ventilator-Induced Lung Injury , Animals , Bronchoalveolar Lavage Fluid , Hesperidin/pharmacology , Humans , Lung , Mice , Models, Theoretical , Pneumonia/drug therapy , Ventilator-Induced Lung Injury/prevention & control
19.
J Sci Food Agric ; 102(10): 4151-4161, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35000197

ABSTRACT

BACKGROUND: Citrus fruits are a rich source of valuable molecules, and their industrial processing produces bagasses, little explored to generate important by-products. These Citrus residues, including seeds and peels, also contain numerous pharmacologically important substances. To reduce the impact of these Citrus by-products, young, harvested fruits could be used as a functional supplemental food while another part is grown until maturity for industrial production. This study therefore aims to valorize rangpur (Citrus limonia) in the first 3 months of its growth by investigating and comparing its monthly chemical profiles using ultra-performance liquid chromatography-electrospray mass spectrometry (UPLC-ESI-MS) and its anti-inflammatory and antiplatelet activity. RESULTS: Extracts obtained from the fruits harvested in November, December, and January, 2017 and 2018 (L221117, L161217, and L160118) showed different UPLC-ESI-MS profiles. Twenty-five of the 26 detected metabolites were identified as cyclitol, pyrrolidine betaine, aryl propanoyl esters, chlorogenic acids, flavonoids, coumarins, and limonoids. Quantification studies indicated an increased concentration of hesperidin from the younger fruits to the older fruits of the series. L160118 reduced nitrogen oxide (NOx), tumor necrosis factor alpha (TNF-α), and interleukin 6 (IL-6) levels more than other extracts. Their activity followed the same trends as the hesperidin concentration in each fruit. In contrast, the most promising antiplatelet activity was observed with the extracts from the two youngest fruits. This suggests combined effects of the chemical components found in these fruits' extracts. CONCLUSION: The extracts obtained from these young fruits showed considerable anti-inflammatory and antiplatelet activity. Overall, young rangpur could be used as raw material to produce functional foods without producing any waste. © 2022 Society of Chemical Industry.


Subject(s)
Citrus , Hesperidin , Anti-Inflammatory Agents/analysis , Anti-Inflammatory Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Citrus/chemistry , Fruit/chemistry , Hesperidin/pharmacology , Plant Extracts/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
20.
J Biomol Struct Dyn ; 40(5): 2156-2168, 2022 03.
Article in English | MEDLINE | ID: mdl-33076779

ABSTRACT

The human Respiratory Syncytial Virus (hRSV) is one of the most common causes of acute respiratory diseases such as bronchiolitis and pneumonia in children worldwide. Among the viral proteins, the nucleoprotein (N) stands out for forming the nucleocapsid (NC) that functions as a template for replication and transcription by the viral polymerase complex. The NC/polymerase recognition is mediated by the phosphoprotein (P), which establishes an interaction of its C-terminal residues with a hydrophobic pocket in the N-terminal domain of N (N-NTD). The present study consists of biophysical characterization of N-NTD and investigation of flavonoids binding to this domain using experimental and computational approaches. Saturation transfer difference (STD)-NMR measurements showed that among the investigated flavonoids, only hesperetin (Hst) bound to N-NTD. The binding epitope mapping of Hst suggested that its fused aromatic ring is buried in the protein binding site. STD-NMR and fluorescence anisotropy experiments showed that Hst competes with P protein C-terminal dipeptides for the hRSV nucleoprotein/phosphoprotein (N/P) interaction site in N-NTD, indicating that Hst binds to the hydrophobic pocket in this domain. Computational simulations of molecular docking and dynamics corroborated with experimental results, presenting that Hst established a stable interaction with the N/P binding site. The outcomes presented herein shed light on literature reports that described a significant antireplicative activity of Hst against hRSV, revealing molecular details that can provide the development of a new strategy against this virus.


Subject(s)
Respiratory Syncytial Virus, Human , Binding Sites , Child , Hesperidin , Humans , Molecular Docking Simulation , Nucleoproteins/chemistry , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Binding , Respiratory Syncytial Virus, Human/chemistry , Respiratory Syncytial Virus, Human/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL